

Sequential Calculations with POLYMATH and Excel,
Parametric Studies with ExcelA typical example is the solution of cubic equations of state for
the compressibility factor for specified value of the temperature
T and pressure P.R = 0.08206
 $T_c = 304.2$
 $P_c = 72.9$
 $b = RT_c/(8P_c)$
 $a = (27/64)(R^2T_c^2/P_c)$
 $P = R \cdot T/(V-b) - a/V^2$ Solution is easily obtained by Polymath for a few sets of values
of T and P. Excel or MATLAB are needed to carry out the
calculations for large sets of data

Topic 5	Solution of a System of ODEs with POLYMATH and Excel, Parametric Studies with Excel
Example 5	Adiabatic Operation of a Tubular Reactor for Cracking of Acetone
Topic 6	Solution of a System of Nonlinear Algebraic Equations (NLE) with POLYMATH and MATLAB, Parametric Studies with MATLAB
Example 6	Complex Chemical Equilibrium
Topic 7	Solution of Multiple-Model, Multiple-Algorithm Problems
Example 7	Semi-continuous Fed-Batch and Cyclic- Fed Batch Operation of a Bioreactor
Topic 8	Estimating Model Parameters for Dynamic Models
Example 8	Modeling Reproduction Rate of a Microorganism in a Fermenter
Topic 9 Example 9	Constrained Minimization with POLYMATH and Excel
	Complex Chemical Equinorium by Globs Energy Minimization

Topic 10 Example 10	Solution of a System of ODEs with POLYMATH and MATLAB, Boundary Value Iterations with MATLAB Simultaneous Multicomponent Diffusion of Gases
Topic 11 Example 11	Method of Lines for Partial Differential Equations Diffusion and Reaction in a Falling Laminar Liquid Film
Topic 12 Example 12	Applications in Environmental Engineering Numerical Simulations with the Oxygen-sag model
Topic 13 Example 13	Applications in Process Safety HAZOP Analysis of a Process for Oxidation of 2-octanol in a semi- batch reactor

Book Usage in Various Courses			
An introductory course of Computer Based Problem Solving (CBPS)	 Introduction Basic Principles and Calculations Regression and Correlation of Data Problem Solving with Excel Problem Solving with MATLAB Advanced Techniques in Problem Solving. Thermodynamics 		
Examples for Numerical Methods and Advanced Math Courses			
8. Fluid Mechanics9. Heat transfer10. Mass Transfer	 Chemical Reaction Engineering Phase Equilibria and Distillation Process Dynamics and Control Biochemical Engineering 		

