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1 General Description of Liquid-Liquid Flows: Flow Patterns

Flows of two immiscible liquids are encountered in a diverse range of processes and
equipments. In particular in the petroleum industry, where mixtures of oil and water are
transported in pipes over long distances. Accurate prediction of oil-water flow charac-
teristics, such as flow pattern, water holdup and pressure gradient is important in many
engineering applications. However, despite of their importance, liquid-liquid flows have
not been explored to the same extent as gas-liquid flows. In fact, gas-liquid systems
represent a very particular extreme of two-fluid systems characterized by low-density
ratio and low viscosity ratio. In liquid-liquid systems the density difference between the
phases is relatively low. However, the viscosity ratio encountered extends over a range
of many orders of magnitude. Table 1.1 summarizes experimental studies reported in
the literature on horizontal oil-water pipe flows, while studies on inclined and vertical
systems are summarized in Table 1.2 and 1.3. (The tables can be found at the end of the
end of this article after the bibliography). These tables reflect the wide range of physical
properties encountered. Moreover, oils and oil-water emulsions may show a Newtonian or
non-Newtonian rheological behavior. Therefore, the various concepts and results related
to gas-liquid two-phase flows cannot be readily applied to liquid-liquid systems.

Diverse flow patterns were observed in liquid-liquid systems. In most of the reported
studies the identification of the flow pattern is based on visual observations, photo-
graphic/video techniques, or on abrupt changes in the average system pressure drop. In
some recent studies, the visual observation and pressure drop measurements are backed-
up by conductivity measurements, high frequency impedance probes or Gamma den-
sitometers for local holdup sampling, or local pressure fluctuations and average holdup
measurements (see Tables 1.1 to 1.3). The flow patterns can be classified into four basic
prototypes: Stratified layers with either smooth or wavy interface; Large slugs, elongated
or spherical, of one liquid in the other; A dispersion of relatively fine drops of one liquid
in the other; Annular flow, where one of the liquids forms the core and the other liquid
flows in the annulus. In many cases, however, the flow pattern consists of a combination
of these basic prototypes.

Sketches of various possible flow patterns observed in horizontal systems are given in
Figure 1.1. Stratified flow with a complete separation of the liquids may prevail for some
limited range of relatively low flow rates where the stabilizing gravity force due to a finite
density difference is dominant (Figure 1.1a). It is possible that one of the layers is discon-
tinuous, and the flow structure is stratified layers of a free liquid and a dispersion of the



other liquid (Figure 1.1c-d). With increasing the flow rates, the interface displays a wavy
character with possible entrainment of drops at one side or both sides of the interface
(Figure 1.1b, 1.1e-g). The entrainment process increases with increasing the flow rates.
When the lighter and heavier phases are still continuous at the top and bottom of the
pipe, but there is a concentrated layer of drops at the interface, a three layer structure is
formed (Figure 1.1h). Eventually, for sufficiently high water flow rate, the entire oil phase
becomes discontinuous in a continuous water phase resulting in an oil-in-water dispersion
or emulsion (Figure 1.1i). An emulsion is a stable dispersion. Vice versa, for sufficiently
high oil flow rate, the water phase may be completely dispersed in oil phase resulting
in a water-in-oil dispersion or emulsion (Figure 1.1j). It is also possible for oil-in-water
and water-in-oil dispersions to coexist. Impurities and high mixture velocities may yield
a foam like structure of intensively intermixed oil and water, possibly with occasional
appearance of clusters of one of the liquids. There are operating conditions under which

Figure 1 a/b Stratified flow of two separated layers (S,
possibly with mixing at the interface, SM). ¢/d Stratified
layers of a free-liquid and a dispersion of the other liquid (e.g.
oil-in-water dispersion above a water layer, Do/w&w). e/f
Stratified layers of a free liquid and a dispersion in the other
liquid (e.g. oil and oil-in-water dispersion, Dq/w&o; water
and water-in-oil dispersion, Dw/o&w). g/h Layers of
dispersions (e.g. water-in-oil dispersion above oil in water
dispersion Dw/o&o/w, possibly with pure oil at the top and/or
water at the bottom). i/j Fully dispersion or emulsion of one
liquid in the other liquid (e.g. water-in-oil or oil-in-water
dispersion or emulsion, Dw/o or Do/w). k/l Core-annular flow
— a core of one liquid within the other liquid (e.g. a core of
viscous oil and water in the annulus, ANw. Oil in the

lus, ANo). m/n Annular flow of a liquid with a
dispersion in the core (water in the annulus DANw, oil in the
annulus DANo). o Core-annular flow of two dispersions
(CADw or CADo). p Intermittent flow (one liquid alternately
occupying the pipe as a free liquid or as a dispersion, lo or
Iw). q/r Large elongated or spherical bubbles of one liquid in
the other (SLo,Bo or SLw,Bw).

an oil-in-water dispersion will change to water-in-oil dispersion. This phenomena is re-
ferred in the literature as phase inversion and is associated with an abrupt change in the
frictional pressure drop (see Figure 15 in Brauner, 1998). !

Under certain conditions, the oil and water may stabilize in annular-core configuration
(Figures 1.1k-£). The flow of a viscous oil in a core, which is lubricated by a water film in
the annulus (core flow), is most attractive from the viewpoint of pressure drop reduction
in transportation of highly viscous oils. With increasing the water rate, the viscous core
breaks up to either large slugs and bubbles, (Figure 1.1q) or into oil dispersion flowing in
a continuous water phase (Figure 1.1i or q). It is possible to have also “inverted” annular
flow with the oil flowing in the annulus (Figures 1.1¢ or n). Comparison of experimental
flow pattern maps reported in the literature for horizontal oil-water systems of relatively
low viscosity ratio, po/pw < 100 and Ap/py > 0.1 (shown in Brauner, 1998, Figure 2)
indicated a general similarity between the sequence of the observed flow patterns and
the stratified flow boundaries, but differences in the classification of the various dispersed
flow regimes and the associated transitional boundaries. However, some of the reported
transitional boundaries actually represent gradual changes in the dispersions structure

L A copy of this reference can be downloaded from http://www.eng.tau.ac.il/~brauner /LL-Flow



and the associated pressure drop, and are therefore susceptible to subjective judgment
and variations. When the water is the continuous phase, oil viscosity seems to have a
minor effect on the flow patterns. However, the oil viscosity affects the location of the
phase inversion from Dw/o to Do/w. The input water-cut, Uys/U,, required to invert
the dispersion decreases with increasing the oil viscosity. Core flow (water annulus) is
usually not obtained in oil-water systems of relatively low oil viscosity and relatively high
Ap.

As in gas-liquid systems, the flow pattern depends on the liquids flow rates and
physical properties, tube diameter and inclination. However, due to the relatively low
density differential between the two-fluids, the role of gravity in liquid-liquid systems
diminishes. Therefore, wall-wetting properties of the liquids and surface tension forces
become important and may have a significant effect on the flow pattern. For instance,
in stratified flow the interface between the liquid phase is not necessarily planar. The
common assumption of a plane interface (Fig. 1.2a) is appropriate for horizontal gas-liquid
systems, which are dominated by gravity. In fact, systems of low density differential as
oil-water systems, resemble reduced gravity systems and capillary systems, where surface
forces become important. The wetting liquid tends to climb over the tube wall resulting
in a curved (concave or convex) interface (Fig. 1.2b or h). Stratified flows with curved
interfaces in liquid-liquid systems have been obtained both experimentally (Valle and
Kvandel, 1995, Angeli et al., 2002, Gat, 2002) and in numerical simulations (Ong et
al., 1994). The possible stratified flow configurations extend from fully eccentric core
of the upper phase (Fig. 1.2c) to fully eccentric core of the lower phase (Fig. 1.2g).
Hydrodynamic forces may also cause the core phase to detach from the wall surface
to form an eccentric core-annular configuration. However, due to a density differential
between the core phase and the annular phase, the core usually stabilizes in an eccentric
position (Fig. 1.2d or f) rather than in a concentric position (Fig. 1.2¢). Break-up of the
top (or bottom) wall film due to the float-up tendency of light (or heavier) core phase
results in stratification of the fluids.

The occurrence of annular flow in liquid-liquid systems is therefore more frequently
encountered in oil-water systems of low density differential, Ap and small diameter tubes.
These systems are characterized by a small non-dimensional Eotvos number, Fop =
A%f < 1 and resemble micro-gravity systems. In such systems, an annulus of the
wetting phase (surrounding a core of the non-wetting phase) is a natural configuration
which complies with surface tension forces and wall-adhesion forces. However, for specified
operational conditions, different flow patterns may result by changing the tube material
(hydrophobic or hydrophilic). The start-up procedure (oil flowing in the pipe and then
introducing water or vice versa), which affects the effective liquids-wall adhesion, or entry
conditions (type of nozzle used to introduce the two-liquids) are also important factors
in controlling the flow pattern.

In vertical upward flow and low oil viscosities, the observed flow patterns typically
include oil drops, bubbles or slugs in water, transitional flow (TF, churn), water drops
in oil and oil-in-water or water-in-oil emulsions (see Figure 5.3, Section 5). The physical
interpretation of flow patterns transitions is similar to that described for vertical gas-
liquid systems. However, the clearly defined bullet-shaped bubbles that characterize slug
flow in gas-liquid slug flow are normally not observed in oil-water systems. The churn flow



is characterized as intermittent flow of complex and irregular structures of continuous
oil phase (oil-dominated) and continuous water phase (water-dominated). The drops size
decreases with increasing the mixture velocity, and for high velocity the liquids, either
homogeneous Dw /o or Do/w of fine droplets are formed.

The organized flow pattern data on inclined liquid-liquid systems in the literature is
rather limited (see Table 1.2). In large Fop systems, a considerable drift between the
lighter oil phase and water phase exists at low mixture velocities. Under such conditions,
even a moderate inclination from the vertical affects intermittency in the flow with regions
of back-flow of the heavier phase (Vigneau et al., 1988 and Flores et al., 1997, Figure 7
shown in Brauner, 1998). It is to be noted that the stratified pattern typically vanishes
for steeper upward inclinations than ~ 30°, compared to gas-liquid systems where the
stratified flow vanishes already for shallow upward inclinations.
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Figure 1.2 Schematic description of various Figure 1.3 Flow patterns in countercurrent flow,
configurations of separated flows. a. vertical, b. off-vertical, c. inclined
column.

Counter-current liquid-liquid flow is frequently encountered in the process industry.
Figure 3 shows a schematic description of the flow patterns obtained in a column in
counter-current flow of relatively low flow rates (Ullmann, et al., 2001). In a vertical
column (Figure 3a), the basic flow pattern is dispersed flow, with either the heavy phase
dispersed in the light phase (light phase dominated, LPD), or the light phase dispersed in
the heavy phase (heavy phase dominated, HPD). These two configurations of dispersed
flow can be simultaneously obtained in the column, separated by an interface. The latter
can be placed at any position along the column by manipulating the resistance at the
heavy phase outlet. With a sufficiently low (high) resistance, the flow pattern in the
entire column is LPD (HPD), respectively. In systems of Fop > 1, the phases tend
to segregate with a slight off-vertical positioning of the column (Figure 3b). The two
configurations obtained in this case correspond to stratified-dispersed flow both in the
HPD (Do/wé&o) and in the LPD (Dw/o&w) zones. Further inclining the tube results
in a complete segregation of the phases. In an inclined tube (Figure 3c), the basic flow
pattern in both zones is stratified flow with either a wavy or smooth interface. The flow
in the HPD (LPD) zone corresponds to a thick (thin) layer of the heavy phase flowing



counter-currently to a thin (thick) layer of the light phase. Similarly to the operation of
a vertical column, the location of the interface between these two zones can be controlled
by adjusting the resistance at the heavy phase outlet. Thereby, the entire column can be
occupied by either one of these two flow configurations, or by both of them.

The various flow patterns are associated with different pressure drop, in situ holdup,
heat transfer coefficient and other related phenomena, such as fouling and corrosion of the
pipe. Therefore, generalized models which attempt to cover the whole range of different
liquid properties and different flow patterns (e.g. Charles and Lillelcht, 1966, Theissing,
1980) can only be approximate. The accepted approach today consists of predicting
the flow pattern under specified operational conditions (see Section 5) and applying an
appropriate model (see Sections 2,3,4).

2 Stratified Flow

Stratified flow is considered a basic flow pattern in horizontal or slightly inclined liquid-
liquid systems of a finite density differential, since for some range of sufficiently low flow
rates, the two liquids phases tend to segregate. The modeling of liquid-liquid stratified
flows requires the consideration of additional aspects in comparison to gas-liquid stratified
flows. Due to the variety of physical properties that may be encountered, it is not a priori
evident which of the phases is the faster (for specified operational conditions). Therefore,
the ambiguity concerning the appropriate closure law for representing the interfacial shear
is even greater than in the case of gas-liquid flows. Multiple solutions can be obtained
for specified operation conditions in co-current and counter-current inclined flows, which
are relevant in practical applications. Moreover, as a result of the relatively low density
difference, surface tension and wetting effects become important, and the interface shape
(convex, concave, plane) is an additional field that has to be solved.
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‘Figure 2.1 "Schematic description of stratified flow configuration and parameters.

The stratified flow configuration and coordinates are illustrated in Figure 2.1. A
configuration of a curved interface is associated with a different location of the triple
point (TP) and thus, with a variation in the contact area between the two fluids and
between the fluids and the pipe wall. Depending on the physical system involved, these
variations can have prominent effects on the pressure drop and transport phenomena. On
the other hand, the feasibility of obtaining exact solutions for stratified flows is restricted
to laminar-laminar flows, which are of limited relevance to practical applications of gas-
liquid two phase flows. However, laminar flow in both phases is frequently encountered
in liquid-liquid systems.



Given the location of the fluids interface, the 2-D velocity profiles in steady and
fully developed axial laminar flow of stratified layers, ui(x,y), u2(z,y) are obtained via
analytical or numerical solutions of the following Stokes equations (in the z direction, see
Figure 2.1):

82U1 + 82u1 o @ _ sinﬂ . +
HU\ 2 o2 ) 0z Py AN Oy?

The required boundary conditions follow from the no-slip condition at the pipe wall and
continuity of the velocities and tangential shear stresses across the fluids’ interface. For
a given axial pressure drop, the solution for u; and us can be integrated over the fluids
flow cross sections to yield the corresponding volumetric flow rates @1 and Q. From the
practical point of view, we are interested in a solution for the pressure drop and flow
geometry (interface location) for given flow rates. However, the inverse problem is much
more complicated, since the shape of fluids interface is, in fact, unknown.

= —= —pogsing (2.1)
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2.1 The interface shape

The location of the interface can be obtained by considering the Navier-Stokes equations
in the y and x directions:

OP; OP;

8—;+pj gcosB=0 ; 8—;:0 :
Note that equations (2.2) yield a% (0P;/0z) = 0 and % (0P;/0z) = 0. Thus, the pressure
gradient in the axial direction is the same for the two fluids (0P, /0z = OP>/0z = OP/9z).
Integration of (2.2) in the y direction yields a linear variation of the pressure in this
direction due to the hydrostatic pressure:

Py =Py —pi(y —m)gcosB 3 Po = Poy — pa(y —m)gcos 3 (2.3)

where Py;, Ps; are the local pressures at either side of the fluids interface, at y = n(z). For
an axial, fully developed flow, the hydrodynamic stresses normal to the fluids interface
vanish. In this case, the equation for the interface location evolves from the condition of
equilibrium between the pressure jump across the interface and the surface tension force:

j=1,2 (2.2)

g
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where o is the surface tension (assumed constant) between the two fluids and R; is the
local radius of the interface curvature:

P {i dn/dx }‘1 o {i da/dn }‘1 25)
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The interfacial curvature in the axial direction is infinite. Equation (2.4) is the well-known
Laplace (1806) formula that can be put in the following form:

S dnfdr ) onst —
dx{[l—i—(dn/dx)?}%} (p2 — pr)ng cos B t=A (2.6)



Equation (2.6) is a non-linear differential equation for n(z). Thus, for the flow field under
consideration, the position of the fluids interface can be obtained by solving the quasi-
static situation. The solution for n(x) should comply with the wettability condition at
the pipe wall and symmetry with respect to the y axis. It is also constrained by the fluids
in-situ holdup available in the flow.

The same differential equation (2.6) can be also obtained from the variational prob-
lem of minimizing the total system free energy (Bentwich, 1976, Gorelik and Brauner,
1999). Given the fluids holdup, the components of the free energy, that are subject to
variation with changes in the interface shape, are the potential energy in the gravity field
and the surface energy (due to the liquids contact with the pipe wall and the liquid-liquid
interface). The fact that the same differential equation evolves suggests that the formula-
tion of a variational problem that minimizes the system potential and surface energies is
consistent with the hydrodynamic equations for unidirectional and fully developed axial
flow. Hence, no other energies (such as the fluids kinetic energies) should be included
in the analysis. Equation (2.6) was solved numerically by Bentwich (1976) and analyti-
cally by Gorelik and Brauner (1999) and Ng et al., (2001) in terms of elliptical integrals.
The analytical solution includes the shape of the interface, n(z) and the dimensionless
capillary pressure, A = 4\/(Apgcos 3D?), in terms of three dimensionless parameters:
the Eotvos number, Fop, the fluid/wall wettability angle, a and the fluids holdup. The
function n(x) determines the geometry of the fluids distribution in the pipe cross section
and contact with the pipe wall, whereas A is required for calculation of the pressure
distribution.

() a=90", &,=0.5 (b) a=165", £,=0.996

‘Figure 2.2 Interface configuration for Eop = 1: effect of holdup for & = 90° and
o = 1650.

An important point to realize is, that in a pipe, the interface shape varies with the
fluids holdup. This is demonstrated in Figure 2.2 where the solutions for 7(z) are given for
a constant Eotvos number and different fluids holdup. The case of o = 90° (Figure 2.2a)
corresponds to equal wettability of the two fluids. In this case, the interface is convex
for relatively low holdup of the lower phase, €2 < 0.5 and concave for e; > 0.5. For the
particular case of €3 = €z, = 0.5, the interface is plane, since this configuration satisfies
the wettability condition at the solid wall. When the upper phase is the more wetting



phase (o > 90°), €2, increases, as shown in Figure 2.2b (for o = 165°, g, ~ 0.996). The
value of €1, = 1—eg, approaches zero as a — 7 (ideal wettability of the lighter phase) and
the interface is convex independently of the fluids holdup. Similarly, €z, — 0 as o« — 0
and the interface is always concave. However, for partial wettability (o # 0, ), there
is a particular value of holdup, €1,, where adhesion forces to the wall are just balanced
at the triple point and the system behaves as pseudo gravitational - the interface is
plane independently of the Eotvos number. For €3 # €3, the interface curvature increases
with reducing Fop. The dependence of the interface shape on the fluids holdup is a
basic difference between pipe flow and channel flow. In a rectangular cross section, the
interfacial shape is invariant with the fluids holdup, except for extremely low holdup of
one of the phases, where the interface shape may be constrained by the contact with
either the upper, or lower wall.

The variation of the TP point location with the holdup and the Eotvos number can
be studied in view of Figure 2.3. The location of the TP point corresponding to a plane
interface is given by the curve for Fop — oo, when surface forces vanish. The other
extreme of no gravity force is described by the curve of Fop = 0. The figure shows
that the location of the TP (represented by ¢¢) deviates from that predicted by a plane
interface (¢f’) already for Fop = 200. Figure 2.3a is for almost ideal wettability of the
upper phase (o = 175°). For this case €1, — 0 and the interface is practically convex for
any non-vanishing value of the capillary number, ¢q < ¢. The effect of Eop becomes
less pronounced as o — 90° (Figure 2.3b).

@) o=175°

Location of the TP Point, (o—7/2

0 01 02 03 04 05 06 07 08 09 0 0.1 02 03 04 05 06 07 08 09
Holdup of the Lower Phase, €2

Figure 2.3 The fluids contact with the wall: variation of ¢, with the holdup for
various Eotvos numbers (Eoy=2/a2 ) and wettability anlgles.

2.2 Constant curvature approximation for the interface shape

Exact analytical solutions for the velocity profiles ui(x,y), us(x,y) in laminar flows can
be obtained when the fluids interface can be described by a constant curvature curve. In



this case, the bipolar coordinate system can be applied to obtain a complete analytical
solution for the velocity profiles, distribution of shear stresses along the pipe wall and
fluids interface, axial pressure drop and in-situ holdup, in terms of prescribed flow rates
and fluids viscosities (Bentwich, 1964, Brauner et al.,1995, 1996a, Moalem Maron et
al., 1995). Otherwise, given the location of the interface 7(x), numerical schemes must
be used for solving the Stokes equations (2.1)(see Ng et al., 2002). The assumption of
a constant curvature is trivially satisfied for a zero interfacial surface tension, where
R; — oo in eq. (2.4). In this case, the interface is plane with a zero pressure difference
across the interface, and the flow geometry can be described by the thickness of the
(lower) fluid layer, h (Figure 2.1). Analytical solutions for flow with a plane interface are
given in several publications (Semenov and Tochigin 1962, Bentwich 1964, Ranger and
Davis 1979, Brauner et al., 1996a). However, in view of eq. (2.6), the assumption of a
constant interfacial curvature is evidently also valid when the effect of the gravitational
field is negligible, as under microgravity conditions or when ps ~ p;1, whereby Fop — 0.

In an attempt to bridge the gap between large and small Eotvés numbers, Brauner
et al., (1996b) modelled the shape of the interface by a constant characteristic interfacial
curvature. The appropriate characteristic interfacial curvature was derived by formulating
the variational problem of minimizing the sum of the system potential (£,) and surface
energies (E;) with approximate configurations that are described by a priori unknown
constant curvature. The curvature and the location of the TP are subject to variations,
which are constrained by a prescribed holdup.

In case the interface is of constant curvature, the flow configuration can be described
in terms of two variables: ¢¢ and ¢* (Fig. 2.1). The view angle of the interface from
a point on the upper wall, ¢g determines the distribution of the two phases over the
tube wall. The interface curvature is determined by ¢*, which is the view angle of the
two triple points (TP) from a point situated on the phases interface. Given ¢y and ¢*,
geometrical relationships yield the phases flow areas (A; and As) contact lengths with
the tube wall (S; and S2) and interface length, S; (see Table 2.1). A plan interface
is described by ¢* = m. Convex interfaces are described by ¢* less than 7, up to the
limit of ¢* = 0,¢9 = 0, which corresponds to a fully eccentric core of the lower phase
touching the tube bottom. Concave interfaces are described by ¢* > 7, up to the limit
of ¢* =7 ¢g = 27, which corresponds to a fully eccentric core of the upper phase. It is
to be noted that ¢* is always bounded between ¢ and ¢g + 7.

Taking a configuration of plane interface as a reference, the expression obtained for
the system free energy reads:

AE AFEs+ AEp [sin3 oo

* * 1. *
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3 —sin ¢} + cosa(pf — QSO)] (2.7)



Table 2.1: Geometrical relationships for curved and plane interfaces

Curved interface, ¢* # w Plane interface, ¢* =
A= 25 w/4 m/4
o=y | 4{m -0+ doino) - (28) (v -0+ dsin(267)) | | 4[n— 0 + hsin2of)]
Ao=23| 1 {60~ Lsin(200) - 2590 [6" — 7~ Lsin(20")] } L[0f — 4 sin(208)]
§1 = T — ¢o T — @b
Sy = % %o b6
Si=% (m — ¢")sin(¢o)/ sin(¢") sin(g )
~ . 2
Ur = g |n/ {w — ¢o + 3 sin(2¢0) — (j;gig) (7 —¢" + %sin(2¢*)]} 7/ [r— @0 + 3 sin(2¢0)]
U= 22| =/ {¢0 — Lsin(2¢0) + (g;ggg)Q [r—¢* + %sin(QqS*)]} /(6 — Lsin(28)]

Given Fop,a and e3 = As/A, the equilibrium interface shape is determined by ¢q
and ¢* which correspond to a minimum of AF subject to the constraints:

. 2
=1 {fbo—%sm(?cﬁo)-i- (Sm%) [w—¢*+§sin<2¢*>}} .

T sin ¢*
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The particular ¢* which corresponds to minimal energy is thus a function of the three
non-dimensional parameters ¢* = ¢*(Eop,«, holdup) = ¢*(Fop, o, ¢g). Note that in
the approximate solution, the ¢* only approximately satisfies the wettability condition.
However, in the extremes of Fop = 0 or Fop — 00, (where also the exact interfacial
shapes correspond to a constant curvature) the approximate and exact solutions coincide.

¢ (¢o,) = m = plane interface; Eop — o0
¢*(¢o, ) = (7 — @) + ¢o;  Eop — 0 (2.9)

The largest deviations of the approximate solution were obtained for Fop ~ 0.5 + 1
and ideal wettability of either of the phases. However, Figure 2.4a shows that even in
this range of parameters, the approximate solution closely follows the exact solution in
describing the effect of the holdup on the curving of the interface. Figure 2.4b summaries
results for ¢, obtained with various wettability angles and shows that the comparison
improve as a — /2. The largest deviations are for @« — 180°(or o — 0°). However, for
a = 135° (or 45°) the differences between the two solutions are already un-noticeable.

The results obtained for the interface shape, which corresponds to minimum energy
of eq. (2.7), have been used to construct the so-called ‘interface monograms’ (Fig. 9 in
Brauner, 1998). Given the Eotvos number and the wall/phases adhesion properties as
reflected by the wettability angle, a curve relating the interfacial curvature, ¢*, to the
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o —— Exact solution
(@) a=165", £,=0.996, - — — Brauner at al (1996b) model
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Figure 2.4 Comparison of the characteristic curvature model with the exact solution
Eop =0.5:
a) curves of 7j(z) for o = 165°, b) value of ¢y vs. e for various c.

phases distribution angle ¢q, is obtained. Each point along an interface monogram is
associated with a different holdup. That form of the interface monogram can be conve-
niently combined with the solution of the flow problem, where the phases in situ holdup
is obtained via the solution of the flow equations (see Figure 2.5 below).

2.3 Exact solutions of two-phase laminar pipe flow

The appropriate coordinate system for solving the flow problem, for stratified flow with
a curved interface is the well-known bipolar coordinate system. Coordinate ¢ represents
the view angle of the two triple points (TP) from an arbitrary point in the flow domain
(Figure 2.1). Coordinate £ relates to the ratio of the radius vectors r1, 7o (£ = In(r1/r2)).
The pipe perimeter and the interface between the fluids are isolines of coordinates ¢, so
that the upper section of the tube wall bounding the lighter phase is represented by ¢,,
while the bottom of the tube, bounding the denser phase, is represented by ¢ = ¢g + 7.
The interface coincides with the curve of ¢ = ¢*. Thus, the two-phase domains map into
two infinite strips in the (¢, ) domain and are defined by:

Upper phase : —co < £ <00 ; ¢g < P < P
Lower phase: —co < { <00 ; @"<op <o+ (2.10)

Analytical solutions of the Stokes equations for horizontal stratified flow with an
interface of an arbitrary curvature were explored by Brauner et al., (1995, 1996a). In
these studies, analytical expressions in terms of Fourier integrals in the bipolar coordinate
system were provided for the velocity profiles (%12 = wu1,2/Ug and the distribution of
shear stresses over the tube wall (71, 72) and free interface (7;) (see also Moalem Maron
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et al, 1995):

0(0,6) = 2sinon P o021 - ) 0 [T, 0) cos(we) )
(2.11)
(0, ) = 2ﬁsin¢o{% + 2 —u)% / Wau(w, 6) cos(we)dw)

(2.12)

where: Up = 1?:1 (52 dP ), & = p1/pe, and the spectral functions are given by:

_ sinhw(¢” —m)] sinhfw(d — ¢o)]
Wil @) = = () coshlo{6" — o)) (2.13)
_ sinh[w(¢* — )] sinhlw(¢ — 7 — ¢o)]
W (w0, 9) = (w) sinh(rw) coshlw(¢* — 7 — Po)] (2.14)
P(w) = tanhlw(¢™ — ¢o)] + ptanhlw(r + ¢o — ¢7)] (2.15)
Thus: u

e = 7 = 60,67 i); T, Fay T = F(00,67, 1) (2.16)

where 7 = = TR = % ( 55 ) Note that the velocity and shear stress scales used for
TR z

normalization include the unknown pressure drop. The phases flow rates are obtained by
integrating the phases velocities over the corresponding flow areas A; , As (see Table
2.1). For a given pressure drop and a viscosity ratio, the integration yields @1 and Q2
as functions of (¢o, ¢*, @, OP/0z). The ratio of the two fluids flow rates, however, is
independent of the system pressure drop; Q= Ql = Q(qﬁo, ¢*, 1). The corresponding
pressure drop (normalized with respect to the superﬁ01al pressure drop of the upper fluid)
is (%) = % = 2P (¢y, ¢*, ). Therefore, once the fluids viscosities and flow
rates are known, the solutlon of the flow equations provide a relationship between ¢¢ and
P

b0 = ¢o(¢*) — Flow Monogram for specified iz and @ (2.17)

Once the interface curvature is also specified, for instance, a plane interface (¢* = ), the
corresponding ¢y can be obtained, and then the system pressure drop, dimensional veloc-
ity profiles and shear stress profiles can be computed. However, the interfacial curvature
should comply with the continuity of normal stresses (pressure and surface tension forces)
across the interface and with solid/fluids adhesion forces (wettability angle). Hence, the
closure relationship needed for the interfacial curvature is provided by the system ‘inter-
face monogram’ ¢* = ¢*(Fop, a, ¢o) as described in Section 2.2.

A convenient frame for obtaining a complete solution (which includes the interface
curvature) is via the construction of the system ‘operational monograms’ (Fig. 2.5). These
monograms combine the system ‘interface monogram’ (dashed curves) with the system
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Figure 2.5 Operations monogram - effect of Eotvos number and wettability angle on
the stratified flow geometry (¢ and ¢*).

‘flow monograms’. The intersection points of the ‘interface’ and ‘flow’” monograms repre-
sent all stratified flows solutions obtained for various Q1 /@2 ratios. Fig. 2.5 indicates that
for a given physical system parameters (fi, «, Fop) and operational conditions @Q1/Q2,
there exists a single solution (¢*, ¢9) which determines the resulting flow characteristics.
Fig. 2.5a shows that as Fop decreases, the solutions for the flow configuration correspond
to stratified flow with curved interfaces (¢* # 180°). The interfacial curvature increases
with decreasing Fop. Stratified configurations with curved interfaces may also be ob-
tained in systems of low Eotvds number with partial wettability of the fluids (Fig. 2.5b
for 0 < a < 180°). But, for Eop — 0 and ideal wettability of either one of the phases
(a =0 or a = 180° in Fig. 2.5) the solutions obtained correspond to fully eccentric core-
annular configuration, irrespective of the phases flow rates (and viscosities). When the
upper phase is the wetting phase, o = 0, the solution is ¢ = 180°, ¢* = 360°, which
corresponds to a fully eccentric core of the upper non-wetting phase touching the upper
tube and surrounded by an annulus of the wetting phase. For a = 180, the solution is
¢o = 0 and ¢* = 0, in which case the lower phase forms a fully eccentric core at the
tube bottom, which is surrounded by the upper wetting phase. Indeed, the occurrence of
annular flow in liquid-liquid system is more frequently encountered in oil-water systems
of low density differential and small diameter tubes, which are characterized by small
Eotvos number.

Exact solutions of the Stokes equations (2.1) for inclined flows assuming a plane
interface between the fluids (¢* = 7) were obtained by Masliyah and Shook, 1978, Biberg
and Halvodsen, 2000 and Goldstein, 2002. These solutions are valid only for large Fop
systems.

2.4 The two-fluid model (TFM)

For laminar stratified flows, exact solutions of the Stokes equations can be obtained which
include the characteristic interface curvature and all the details of the local and integral
flow characteristics. But, these analytical solutions still involve extensive computations.
In many practical situations, one of the phases (or both) is turbulent. Therefore, for
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practical applications, there is a need for a model which can also handle turbulent flows
and mixed flow regimes in horizontal and inclined systems. To this end, the two-fluid
model can be used (Brauner and Moalem Maron, 1989, Brauner et al., 1998). The model
equations presented here and in a unified form that is applicable both to co-current and
counter current stratified flows (Ullmann et al., 2002a). Assuming a fully developed flow,
the integral forms of the momentum equations for the two fluids are (see Figure 2.1):

dP
A (E) + 7181 + 7:S; + p1A1gsin 3 =0
dP .
—Ay T + 1950 — 1;5; + p2Aagsin B =0 (2.18)
Eliminating the pressure drop yields:
S S 1 1 )
_TlA_ll +’7’2A—22—7'i57; <A_1 A_2> +(p2—p1)g SlHﬂZO. (219)

The Blassius equation can be used to provide the closure laws required for the wall and
interfacial shear stresses (71, 72, 7;) in terms of the average velocities, Uy, Us and the
friction factors f1, fo and f;:

1 DU |\ ™™
T1 =—§f1U1|U1|; fi=C (u)
M1

1 Dy|Us|\ ™™
7'2=—§f2U2|U2|; fa=0Cs (M)
M2

1
™ = _ifip(Ul — U2)|U1 — U2| . (220)

where Uy, Us are positive (negative) for downward (upward) flow (8 > 0 in both cases).
The Reynolds numbers for the two fluids in eq. (2.20) are based on the equivalent hy-
draulic diameters, which are defined according to the relative velocity of the phases. In
co-current flow, the interface is considered as “free” for the slower phase and as a “wall”
for the faster phase. When the velocities are of the same order, the interface is considered
“free” with respect to both phases:

44, 44,

Di=—————; Dy=—=; = d f; =F; f U Us,|.
1 515, 2 S, p=p1 and f fi for [Uy| > Uy
4A 4A,
Di=—; Dy=—1—""—; = d f;, =F; f U U,|.
1 g, P2 St 5 p=p2 and f, f2 for [Uz| > Uy
Dlzﬁ; D2:4—Az; 7,~0 for U;~Us,. (2.21)
S So

In counter-current flow, each of the layers is dragged by the other one opposite to its
flow direction, therefore:

44 . 4A,
S S+ S C 51+ S

(2.22)



A value of F; > 1 can be introduced in egs. (2.21) to account for a possible augmenta-
tion of f; due to irregularities at the free interface. However, due to the lower density
(hence velocity) difference and lower surface tension encountered in liquid-liquid sys-
tems, the interface appears less roughened compared to gas-liquid systems. The main
issue here concerns the decision as to which of the liquids actually dominates the inter-
facial interactions. In case of a perturbed interface, the effects of drop entrainment and
the consequential mixing at the interface, rather than the wave phenomenon, have to be
considered.

Introducing non-dimensional variables (length normalized by D, area by D? and ve-
locities by superficial velocities Uy s, Uas, see Table 2.1), the various geometric parameters
and the non-dimensional velocities U 1, [72 are all functions of the phases distribution an-
gle over the tube wall, ¢g and the interface curvature ¢*. Given the flow regime in the
two-layers (C1,2 and nq 2 in eq. (2.20) are prescribed), the general relation stated by the
dimensionless form of the combined momentum equation (2.19) is:

f(x3, @, Y, ¢, ¢0) =0 ; Flow monogram (2.23)

The three non-dimensional parameters of the solution x2,Y and @, which evolve through
the normalization of the combined momentum equation, are given by:

o _ 205/D|UgsD/va| ™" pa|Uss| Uss _ (=dP/dz)ss
201/D|U18D/V1|7n1p1|U13| Uls (7dP/dZ>1g

v — (p2 — p1)gsin B _ (p2—p1)gsinf o= Q1 Ui
201/D|U15D/1/1)|7n1p1‘U15|U15 (—dP/dZ)lS ’

(2.24)

_@_Ubs

It is worth noting that for co-current flow Ui, Uss are positive in case of downward
flow and are negative both for upward flow, whereas, for counter-current flow Uy, is neg-
ative, (the light phase flows upward). Therefore, concurrent flows correspond to positive
X? with Y > 0 for down-flow and Y < 0 for up-flow. Countercurrent flows correspond to
negative X2 with Y < 0. The number of non-dimensional parameters, which eventually
define the flow monogram, depend on the flow regime in both phases. In particular, for
horizontal laminar (L-L) flows, Y = O,x? = (1Q)~!, and as in the exact solution, the
two-fluid flow monogram yields: ¢g = ¢q (é, I, ¢*); while for horizontal turbulent (T-T)
flows, the solution is also dependent on fluids density ratio, whereby: ¢¢ = ¢0(@, Iy P, Px).
For mixed flow regime in the two layers, more information is needed, which includes the
superficial Reynolds number of either one of the phases. In all cases, the closure relation
for the interfacial curvature introduces two-additional non-dimensional parameters, the
Eotvos number and the wettability angle.

Results of the two-fluid model are demonstrated in Figure (2.6) (see also Brauner et
al, 1998). The height of water climbing on the wall, hy = 0.5(1—cos ¢g), and the location
of the oil water interface on the tube centerline, hg = 0.5[1 — cos ¢ + sin pgctg(d*/2)],
can be computed once ¢y and ¢* are known. The latter can be determined by combining
the solution of the two-fluid flow equations, as represented by the flow monogram for
specified oil and water flow rates, with the interface monogram for Fop = 10,a = 0.
Fig. 2.6 (a and b) shows a comparison between the experimental data for hy and hg and
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the predicted values. The gap between hy and h, indicates the extent of water climbing
over the wall surface. The height of the water film increases with increasing the water
rate or reducing the oil rate, whereby the flow configuration gradually approaches a fully
eccentric core-annular configuration. Given the flow geometry, the pressure drop can be
computed by either of egs. (2.18). Figure 2.6c demonstrates that the values predicted
for the pressure drop are also in a reasonable agreement with the experimental data
indicating a water lubrication effect.

1.0 T T T T T T T T T
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Figure 2.6 ‘Location of the oil-water interface and pressure drop in oil-water system-
comparison of the TFM results with Valle and Kvandal (1995)
experimental data (i = 2.26, 5 = 0.792, Eop = 10, glass tube, a = 0°).

Superficial Water Velocity, U,g [m/s]

2.5 Two-Plate model (TPM)

Another simple model that can be useful to analyze the characteristics of laminar strati-
fied concurrent and countercurrent inclined flows, however, with a plane interface, is the
flow between two parallel plates. For this simple geometry the solution of the Stokes equa-
tions (egs. 2.1) can be easily solved to obtain the velocity profiles. Using mass balances
on the two fluids results in the following relations (Ullman et al., 2002a):

y_ ORI+ 2) & Gi= DA =) =B =20) + = DGy
1 R — Ry + (1 — h)JiQ
B dP/0z — pigsin3 1 3(1 = k)2 = 4h(1 — h)Q — h2hQ (2.26)
(—dP/d2)1s  AR7(1—R)2[(1+2h) + (i — (4 — h) — 3h7Q '
where Y = % d (—dP/dz)1s = 12u1Q1/H? is the superficial frictional pres-

sure drop for single phase flow of the lighter phase. Given the parameters Y, g(= p1/p2)
and é(: Q1/Q2), eq. (2.25) can be solved for the in situ holdup of the heavier phase
h = h/H, which in turn can be substituted in eq. (2.26) to obtain P. The total pres-
sure drop is composed of the gravitational (hydrostatic) pressure drop and the frictional
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pressure drop (dP/dz):

AP - - ~
() = loalt (= lgsing = o1 + (= p)ilgsing (221
g
iz ), (—dP/dz)1,
The solution for the holdup vs. the flow rates is demonstrated in Figure 2.7a. This
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Figure 2.7 Holdup in concurrent and counter current stratified flow predicted via the
TPM: (a) Effect of Y, (b,c). Triple solution regions in downward/upward
concurrent flows. (d) Experimental verification of multiple holdups.

figure shows the TPM model predictions for the variation of the holdup curves as the
inclination parameter changes form a negative to a positive value for a gravity dominated
liquid-liquid system (Fop >> 1) of it = 0.68, p = 0.95. For counter-current flows (Q < 0)
double holdups are always predicted. Indeed, two-different holdups were observed in
experiments on liquid-liquid counter-current stratified flows in inclined columns. These
were found to be well predicted by the TPM and TFM models double solutions (Zamir,
2002). Point F represents the ultimate flooding conditions for a specified Y, as there
is no solution for counter-current flow beyond this point. In concurrent flow, @ > 0,
Figure 2.7a shows that multiple (triple) holdups are predicted by the model in a limited
range of operational conditions. Triple solutions for the upward flow (Y < 0) are typically
obtained for small positive value of X2 = (ﬁ@)_l corresponding to high flow rates of the
light phase and/or low flow rates of the heavy phase (see the detailed picture inserted
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in the figure). This figure clearly shows that triple solutions for the holdup are obtained
also in downward flows (Y > 0). The triple solutions in downward flows are in the range
of relatively high X2 and correspond to relatively high holdups of the heavy phase. These
characteristics of the holdup curve in inclined flows are obtained also in the exact solution
for laminar flow in inclined pipes (Goldstein,2002) and via the TFM. However, these are
much easier to analyze using the TPM. _

In view of Figure 2.7a, given a specified value of Y and /i, the range of @ corresponding
to multiple solutions is bounded by the values of @ where dQ/dh = 0. Using eq. (2.25)
for calculation of this derivative yields:

1— (i —1)2h* + 2(5% + 25 — V)R® + (20 — DA
2h(h — 1)3[1 + (i — 1)2h* — 2(fi — 1)(3fi — 2)h3 + 2(212 — 61 + 3)h2 + 4(ji — 1)h]
(2.29)
Equations (2.29) and (2.25) can be easily solved simultaneously to yield the X2 vs. YV
relationship that forms the boundaries of multiple solutions regions for a given liquid-
liquid system (given ft). The effect of the viscosity ratio on the range of triple solution in
upward concurrent flow is shown in Figure 2.7c in terms of Y/X? vs. 1/X2. Figure 2.7b
is actually its mirror image and represents the ranges where triple solution exists in
concurrent downward flows. Figures 2.7(b,c) demonstrate the complete similarity between
upward and downward concurrent flows. They also show that there is a minimal X? (or
minimal 1/X?) for concurrent downward (or concurrent upward) flows for which triple
solutions can be obtained.

The identification of the parameter space associated with multiple solutions in the ex-
act solution of the Stokes equations (2.1) for pipe geometry, or even in the TFM, requires
a tedious search. However, the multiple solutions parameter space in the three models
is similar (Goldstein,2002). Hence, the TPM is in fact a useful simple tool for analyzing
inclined stratified flows. This model has been used to design an experimental set-up for
concurrent upward oil-water flow in the range where multiple configurations are predicted
(Gat, 2002). It was verified that multiple holdups are obtained in the experiments (Fig-
ure 2.7d), and are not just artifact of the models. Multi-holdups are obviously associated
with multi-value pressure drops and other flow characteristics. Therefore, in the range
of operational conditions where multiple solutions are suspected, the modelling and de-
sign of two-phase flow systems should be approached with extra care. Computational
codes usually provide only one solution for specified operational conditions. Therefore,
it is necessary to make sure that this solution indeed corresponds to a relevant, physical
configuration. Moreover, the possibility of other relevant configurations should be exam-
ined. The procedure for using the TPM for identifying the multiple holdups region for
turbulent pipe flows of either one of the layers or in both is detailed in Ullmann et al.,
(2002D).

2.6 Conclusion

The basic configuration in liquid-liquid pipe flow is two-layers separated by a curved
interface, rather than a plane interface. Accounting for the interface curvature may have
significant effects on the predicted holdup and pressure drop. Exact solutions exist only
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for laminar flows. However, the interface curvature can be handled also in the framework
of the two-fluid model, which is a useful and simple tool for practical applications. In
this model attention must be paid to the closure laws used for the wall and interfacial
shear stresses. The two-plates model is a complementary simple tool for analyzing other
aspects of liquid liquid inclined flows. In particular, the multi-holdup regions and the
characteristic velocity profiles.

3 Core-Annular Flow

One of the flow patterns which appears most attractive from the view point of pressure
loss reduction and power saving in the transport of viscous material is that of core
annular flow (CAF). The viscous liquid (e.g. heavy crude oil or emulsion, waxy oils)
forms the core phase, which is surrounded and lubricated by an immiscible low viscosity
liquid (such as water) as the annular phase. A schematic description of CAF is shown in
Figure 3.1. A stable CAF is a fully developed flow pattern, where the core and annular
phases are distinct and continuous. The continued interest in core-flow resulted in many
experimental and theoretical studies, which have been reviewed by Oliemans (1986),
Oliemans and Ooms (1986) and Joseph and Renardy (1992). Core flow experiments
are summarized in Table 1.2. These experiments proved that if stable core flow can be
maintained, the pressure drop is almost independent of the oil viscosity and only slightly
higher than for flow of water alone at the mixture flow rate. This flow pattern is promoted
by minimizing the density difference between the oil and the lubricating aqueous phase,
using additives and surface active agents for controlling and minimizing the emulsification
of water into the oil, using hydrophilic pipe material to keep the oil from sticking to the
wall and injecting the liquids into the pipe already in this desired configuration.

Figure 3.1  Schematic description of core-annular flow configuration.

Due to density difference between the core and annular liquids, the core may stabilize
in an off-center position resulting in an eccentric core flow. A steady eccentric core flow
is feasible when the overall vertical components of the viscous forces are in a dynamic
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equilibrium with the buoyancy force (due to the density differential). Stabilizing hydro-
dynamic forces may evolve due to core eccentricity and interfacial waviness (Ooms et
al., 1984, 1985, Oliemans and Ooms, 1986). The development of a wavy core interface
is believed to be a necessary condition for core flow stabilization. However, a critical
(minimal) oil superficial velocity and water/oil ratio are required to maintain the core
at a sufficiently ’safe’ eccentricity, to avoid contamination of the upper tube wall by the
waxy oil core. Below a critical oil velocity, a transition to stratified flow takes place with
excursion of the pressure drop. The prediction of core-flow boundaries is discussed in
Section 5.

3.1 Exact solution for laminar CAF

Models of laminar CAF are relevant for practical applications in particular for the case
of CAF of highly viscous oils. The solution of the Stokes equations (2.1) for eccentric core
annular flows in horizontal pipes was obtained in terms of Fourier Series in the bipolar
coordinate system (Figure 3.2a). When dealing with eccentric core-annular flow, the tube
wall is represented by & = 7y, while the two-fluid interface coincides with £ = ~.. Hence,
the eccentric core-annular configuration in the x-y domain maps into a semi-infinite strip
in the (¢,&) domain defined by:

Annular phase : Yo <E<7.; 0<¢<27

Core phase : Ye<E<oo; 0<¢p<2m (3.1)

_ chl)fEQ(fc*l) R

.= h 1 (€ . =

Ye = C€OS [ 57 i & R,

[+ D)+ B 1) ¢/R

— costt | & ; E= 2
o o™t [EE02 B v/ (32

where R, is the core radius and e is the core (dimensional) eccentricity. Given the core
eccentricity, e, and diameter, R, the solution yields the non-dimensional velocity profiles
for the core (u.)and annular (u,) phases (Bentwich et al., 1970), which can be used to
compute the dimensionless wall shear stress and interfacial shear stress profiles:

~ U, (R, e _ - R? [(—0P e =
Ua,czUL;:U<—c - >; M:%; UR:E(W) ;TaaTiva(Rcyenu)
(3.3)

Integration of the velocity profiles over the phases flow cross section yields:

.~ _ . dP.  (-9PJdz) _dP. ~ _ _
0. Q(Rc, e 1) ; a7~ (P02 d7(RC7€aM) (3.4)
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Figure 3.2  Coordinate systems used to solve the Stokes equations for core flow.
(a) Eccentric core-bipolar coordinates. (b) Fully eccentric core-unipolar
coordinates.

For concentric core, the solution for eccentric core converges to the simple explicit
solution obtained by Russel and Charles, 1959:

~ 1
A, A
== -1+ <1 + ’i)
1-A. & Q
dP. 1
s == ~ — (3.5)
iz~ 1+ 2(A;" — )/
which for highly viscous concentric core, g < 1 yields:
~, o~ 1 dP.  71(2Q + 1)2
D=4, = AR+ 17 (3.6)

20+1 dZ 10

This solution indicates that in the limit of very viscous core flow, the pressure drop re-
duction factor achieved by the lubricating annular phase is proportional to i (dP./dZ —
0asu—0).

But the solution for eccentric core-annular flows fails in the other extreme of fully
eccentric core. In this limit, both ~, and v, are zero and the annular phase domain degen-
erates to a line, & = 0. The same problem arises when the bipolar coordinates are applied
to curved stratified flows. In the limit of a fully eccentric core, the annular phase domain
degenerates to an infinite line (¢ = 27, for a core of the upper phase, ¢ = 0 for a core of
the lower phase). Thus, the bipolar coordinate system is not appropriate for solving the
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flow equations in the limit of a fully eccentric core. When the limit of the fully eccentric
core-annular configuration is approached, calculations become tedious. The difficulties
have been explained in Rovinsky et al (1997). Typically, the cut-off frequency of spectral
functions (needed for carrying out the Fourier integrals in the bipolar coordinate system)
is less than 50. However, when a configuration of a fully eccentric core is approached, the
cut-off frequency increases by several orders of magnitude. This introduces convergence
problems, thus increasing dramatically the computational effort and time. To handle the
geometry of a fully eccentric core, a ‘unipolar’ coordinate system (Fig. 3.2b) has been
introduced in Rovinsky et al (1997). Circles of constant 71 are orthogonal to circles of
constant ro and all circles are tangent to the single T'P. In this coordinate system, the
annular phase is described by an infinite strip and a solution for the velocity profiles can
be worked out in the form of Fourier integrals. The velocity profiles have been integrated

to yield @ = % = @(Rmﬁ) ; and ‘fg = % = ‘;—%(Ec,ﬁ). Given @ and g, the

equations are solved to yield R, and then the pressure drop, the velocity profiles, as well
as wall and interfacial shear stresses profiles for the limit case of fully eccentric core flow
were obtained.

Comparison of the analytical solutions for concentric core flow and fully eccentric
core flows can be used to evaluate the maximal effect of the core eccentricity on the
annular flow characteristics. A detailed discussion has been presented in Rovinsky et al.,
(1997). Here only some of the results obtained for the effects of core eccentricity are
briefly reviewed. Given a flow rate of the viscous phase @Q.( and f), the introduction of
a small amount of the less viscous phase (low Q,/Q.) affects initially a decrease of the
two-phase pressure drop, where % = % < 1. However, eventually, increasing
the flow rate of the lubricating phase yields an increase of the pressure drop, where the
pressure drop factor exceeds the value of 1.0. The lubrication region is defined by the
following range of the Martinelli parameter:

0<x?= LQG < 1; Concentric core
Helde
0 < x? <0.65; Fully eccentric core (3.7)

Thus, the lubrication region is scaled with u.; given the flow rate of the viscous phase,
Q., the range of the flow rates of the less viscous phase, which yields a lubricating effect,
increases with increasing the oil viscosity. The potential for pressure drop reduction and
power saving in core flows increases with increasing the core viscosity. But, increasing the
core eccentricity reduces the potential of pressure drop reduction in lubricated core flow.
Figure 3.3c shows that the pressure drop in concentric core-flow is always lower than
that obtained with a fully eccentric core. Note that the pressure drop ratio is also the
ratio of the pressure drop reduction factor that can be achieved in these two extremes.
In concentric core flows, the pressure reduction factor is proportional to ji, while with a

fully eccentric core, the pressure drop reduction factor is bounded (for concentric core:
db,
dz

— 0 as it — 0, while for fully eccentric core: Cg} — 0.025, see Figure 3.3a).
Obviously, the results shown in Figure 3.3 for a fully eccentric core flow provides an

upper bound for the effect of core eccentricity.
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Figure 3.3  The effect of core eccentricity on the potential of pressure drop reduction
and power saving in laminar core flow (Rovinsky et al,1997).

The increase of the pressure drop in eccentric core flow evolves from the reduction of
the annular-phase holdup and the increase of the wall shear stress. In fact, in concentric
viscous core flow, the average velocity of the viscous core phase, U, always exceeds the
average velocity of the lubricating annular phase, U,: The ratio U../U, approaches a value
of 2 for thin annular layer or i < 1. But, when the core approaches a fully eccentric
position, it is slowed down (due to the proximity of the tube wall). Consequently, for
eccentric core flow, the annular phase velocity may exceed the core phase velocity (for
it < 1, the annular phase is the faster phase). As a result, given the flow rates, the viscous
core holdup in concentric core flow represents a lower bound for that obtained with the
core at eccentric position: (Ac)con/(Ac)ece < 1. However, in the lubrication zone (where
(dP./dZ) < 1), the effect of the core eccentricity on the holdup is moderate (< 20%).

For the opposite case of viscous annulus, p,/ue > 1, the effect of core eccentricity on
the flow characteristics is moderate. Generally, (Ac)con/(Ac)ece < 15 (Ue)eon/(Ue)ece >
1; (dP/dz)con/(dP/dz)ecc > 1. The effect of the core eccentricity on the pressure drop
is most pronounced around y? = /1@ = 10, but is limited to about 35% for g > 1.

3.2 Two-Fluid model for CAF

A simple practical model for general annular concurrent liquid-liquid flow, which is not re-
stricted to laminar flow regimes, can be obtained using the two-fluid approach (Brauner,
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1991). The combined momentum equation for the core (¢) and annular liquid (a) (ob-
tained after eliminating the pressure drop) reads (see Figure 3.1):

ﬁ |:7'a + g_zj + (pa = pc)gsin =0 (3.8)
where 8 > 0 and 3 < 0 for downward and upward flow, respectively. In core flow p. = p,
and p, = pw, while for the inverted configuration p, = p, and p. = py. The wall shear
stress 7, and interfacial shear stress 7; are expressed in terms of the phases average
velocities u,, ue. and the corresponding friction factors f,, f;. The appropriate structure
for these closure relations has been identified as (Brauner, 1997):

1 .D(1-DHU,|
Ta = _faang ; fa = Ca p(—C) (39)
2 Ha
1 peD.U. e
Ti = ifi(Uc_can)Uc i fi=FiCe T (310)

where ¢; = u;/U, and u; is the interfacial velocity. For laminar annular phase ¢; = 2,
while for turbulent annular phase ¢; >~ 1.15 <+ 1.2. The constants C, . and n, . are set
according to the flow regime in each phase (C = 16, n = 1 for laminar flow and
C = 0.046, n = 0.2 for turbulent flow). The coefficient F; denotes possible augmen-
tation of the interfacial shear due to interfacial waviness. However, in core-flow, the
liquids interface is characterized by long smooth waves and appears less roughened than
in annular gas-liquid flows. Also, as the velocities of the two liquids in core flow are
comparable, the modelling becomes even less sensitive to the estimation of the interfacial
friction factor, and F; can_be set to 1. Using mass balances on the annular and core

phases, U, = gcc U, = g: = ﬁ, results in the following non-dimensional

equation for the core diameter:

I
D2’

(1— DD [1 - D2(1 + ci@)} —X24Y(1-D2P=0 (3.11)
The dimensionless parameters are Q, X2 (Martinelli parameter) and Y

_ CaReg» Q* _ (dP/dz)as . , 1
©(dP[dz)es T 2

_ (Pa — pe) .DgSinﬂ 1
CeRee™ p (dP/dz)cs

X2
Pe Uc25 OcRecienc

(3.12)

where p = p./p, and Regs, Re.s are the superficial Reynolds numbers of the annular and
core liquids respectively. Obviously the physical solution for l~)c is in the range 0 < l~)c <1
and the corresponding core holdup is A. = D?2. After solving eq. (3.8) for D.., the pressure
gradient can be obtained by adding the momentum equations for the core and annular
phases:

dP,  (—dP/dz) X2 Py

dz N (—dP/dz)cs B (1- ﬁg)Q - Ap

(3.13)

where p,, is the mixture density; p,, = pcﬁg + pa(1— 52)
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For viscous oils, the flow in the core is laminar. Fortunately, for the case of horizontal
laminar core (with either laminar or turbulent annular phase), simple explicit solutions
for the in situ hold-up 52, and the resulting pressure drop are obtained. These are
summarized in Table 3.1. Note that the solution obtained for laminar-laminar core flow

via the above two-fluid model is identical to the exact solution obtained by Russel and
Charles (1959).

For highly viscous oils, p./jq >> 1(X? — 0), therefore the predicted insitu holdup
is practically determined by the flow rates ratio and flow regime in the annular phase.
The data and the model indicate that the water in situ holdup exceeds the input water
cut by a few percent (e.g. Figure 12 in Brauner, 1998). Results of pressure drop in CAF
are of the order of pressure loss for flow of water at the mixture flow rate (e.g. Figure 13
in Brauner, 1998). Both theory and data indicate that for each oil superficial velocity,
there exists an optimum input water-cut (which yields minimum pressure drop) in the
range of water-cut of Uys/Uy,, = 0.08 = 0.12 (compared to an optimal water-cut of 1/3
in L-L flows concentric core flows, e.g Russel and Charles, 1959).

Table 3.1 Core Diameter and Pressure Drop for Laminar Core

Laminar core - Laminar core -
Laminar annulus (L-L)|Turbulent annulus (L-T)
= = 02 08 =
X2 — ta . Q 0.016 (%) QReY? or 2046 (%) (,Z_:> Re2SOMS
ci 2 1.15+1.2
D2 4Q-(141/Q)'/2Q 14Qci /20— (144X2/Q%c3) /2]
¢ 142Q-1Q 1+Qei+ X2
~ . S~ 2 ~ 9 2
i 142Q-7Q 2 14e;Q-X
dP/dZ| G [kﬁﬂuﬁ/é)“z] X {éci/%xu@c?/ux?ﬂ/?}

3.3 Conclusion

The Two-fluid model for CAF is a simple practical tool for evaluating the potential
pressure drop reduction and power saving in concentric CAF. However, the predicted
pressure drop via this model may underestimate measured values in CAF operation.
Possible reasons for deviations are the increase of the wall friction due to surface irreg-
ularities, fouling of pipe walls by a wavy core interface at high oil rates, and eccentric
(rather than concentric) core flow, as discussed in Section 3.1. Accounting for these ef-
fects in the framework of the two-fluid model requires appropriate modifications of the
closure laws used for the wall and/or interfacial shear stresses. The exact solutions for
eccentric laminar CAF and numerical studies for the case of turbulent lubricating phase
(e.g. Huang et al.,1994) can be used to test the validity of such closure laws.
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4 Dispersed Flow

A dispersion of two immiscible liquids, where one of the liquids forms a continuous phase
and the other is dispersed in it, is a flow pattern often observed in liquid-liquid systems.
There are water-in-oil (w/o0) and oil-in-water (o/w) dispersions. Emulsion is a stable dis-
persion, which usually involves the presence of surfactants that inhibit coalescence of the
dispersed droplets. High viscous oil content emulsions are considered a lubricated regime
of flow, since a dramatic decrease in the fluid viscosity and pressure drop can be achieved
by emulsifying the oil into a continuous water phase, (e.g. McAuliffe, 1973, Pilehvari et
al., 1988). Multiple emulsions (e.g. o/w/o, oil drops dispersed in aqueous droplets that
are in turn dispersed in a continuous oil phase) can also be formed. Dispersions will
always form in motions of two immiscible liquids which are sufficiently intense. However,
relatively dilute dispersions can be also obtained at low velocities as a result of the entry
device used to introduce the two liquids into the flow tube. In fact, dispersed flow is the
basic flow pattern in upward vertical and off-vertical inclined flows.

For fully developed flow, the total pressure gradient, dP/dz is the sum of the frictional
pressure gradient, dPy/dz and the gravitational pressure gradient, dP;/dz

pmUn,
D

(—dP/dz) = (—dPy/dz) + (—dP,/dz) = 2fn, — pmgsin g (4.1)
where the z coordinate is attached to the direction of the continuous phase flow, 3 > 0
for downward inclination, and the mixture density p,, = pa€q + pe(1 — €q) is calculated
based on the in situ holdup of the dispersed phase, €¢4. The friction factor, f,, is evaluated
based on the mixture Reynolds number DU, py, / tir - These require models for the in situ
holdup and the mixture apparent viscosity, f.,,. The presence of droplets in a continuous
fluid may affect the effective viscosity of the dispersion due to droplets interactions and
modification of the continuous phase momentum transfer characteristics.

4.1 In-situ holdup

In vertical and off-vertical inclined systems the static head is a major contributor to
the total pressure gradient. Therefore, good estimates for the in situ holdup and the
corresponding mixture density are needed.

The simplest approach is the homogeneous model which neglects a possible difference
between the in situ velocities of the two liquid phases (slippage). When the dispersed
droplets move at the velocity of the surrounding continuous phase, (U, = Uy = U,,), the
in situ holdup is determined by the input volumetric flow rates of the two liquids:

o Uds . ch

C:]-_ = — m = s cs 4.2
o, € €4 i U, Uas + U, (4.2)

€d

However, due to the density difference, drops of the dispersed phase tend to move at a
different velocity than the continuous phase. The slippage between the phases was found
to be negligible for Dw/o in viscous oils or for fine Do/w and Dw/o (e.g. Hassan and
Kabir, 1990, Flores et al., 1997). For these flow regimes, the homogeneous model for
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estimating eg4, eq. (4.2) is applicable even for inclined and vertical systems. However,
when water forms the continuous phase and for low mixture velocities, relatively large
oil droplets (bubbles) are formed, which may show a significant slippage.

The Zuber-Findlay (1965) drift flux model can be used to model the flow of oil-in-
water dispersions. The average velocity of the dispersed drops, Uy is expressed in terms
of the mixture velocity U,, and a drift velocity ug:

— UCS
1—e¢4

Ug=C,U,, +uq = Uds/ed ;o U (4.3)
where C, is a distribution parameter, which accounts for the droplets velocity and con-
centration profiles. Typically, C, = 1 for uniform droplet concentration, C, > 1 when the
droplets tend to flow at the center and C, < 1 when the droplets concentration is higher
near the wall. The drift velocity, ug4 is evaluated based on the terminal rise (settling)
velocity of a single droplet in the continuous phase, (uoo) and corrected for the effect of
the swarm of drops:

Ud = Uoo(l —€q)™ | sin B |; 0<ng <3 (4.4)

The value of n, depends mainly on the droplets size. For large drops (of the order of
the tube diameter) ng ~ 0, whereas for liquid-liquid dispersions ng = 1.5 + 2.5 was
recommended by Hassan and Kabir (1990) and Flores et al., (1997).

Equations (4.3) and (4.4) yield an implicit algebraic equation for €4:

ch o ]-_Coed 7iuoo
UdS a Coed C(O Uds

This equation is applicable both for concurrent and counter current flows: U,s/Ugs > 0(<
0) for concurrent (counter current) flows, respectively. The sign of u, /Uqgs depends on the
direction of u. with respect to Ugs. Note that in counter-current flows wo. /Ugs > 0 both
for HPD and LPD modes (see Figure 1.3). For ug # 0, eq. (4.5) predicts the existence of
these two different modes in counter-current dispersed flows.

The drop shape characterization map given in Clift et al., (1978) (see Figure 16 in
Brauner, 1998) can be used to extract the drop velocity w.. The graphical relation
corresponds to Req = Rey(M, Eog), where Req = % i M = % i Fog =
gd®|Ap|

(1—eq)™ | sinf | (4.5)

and d is the drop diameter. Recommended correlations u., are also summarized
in this reference. A widely used equation for u., is the Harmathy’s (1960) model for
distorted drops:

2 (4.6)

which suggests o, is independent of the drop diameter. It reflects an increase of the drag
coefficient with an increase of the effective cross section of a distorted drop. For large
drops, d/D = O(1), us should be corrected for the reduction of the drop velocity due to
pipe wall effects (Clift et al., 1978). For d/D ~ 1 (large bubble or slug) and Fo, < 0.125,
Ueo A 0, (Zukowski, 1966). Note that in concurrent flows, the sign of u, is to be adjusted
according to the sign of the buoyant force due to Ap = (pg — p.)gsin 8 with respect to
the mixture flow direction. In counter-current flows, the sign of u, is the same as Uys.

A4
Uy = 1.53 {gal p'] ,
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4.2 Viscosity of emulsions

When the slippage between the dispersed and the continuous phase is significant, or
in coarse dispersions, the mixture viscosity is normally taken as the viscosity of the
continuous phase, i, = p.. On the other hand, a fine dispersion, or an emulsion, can
be treated as a pseudo-homogeneous fluid of a viscosity f,,, when Re.(d/D)?pq/pe <
1,Re. = pUpD/pe (e.g. Baron et al., 1953). Models for estimating the drops size are
given in Section 4.4.

The viscosity of emulsion p,, is defined as the ratio between the shear stress (7) and
the shear rate (¥). The viscosity of the emulsion is proportional to the viscosity of the
continuous phase .. However, the emulsion viscosity depends upon several other factors,
which include the volume fraction of the dispersed phase (e4), the droplets size (d) and
viscosity (pq), the shear rate (%), temperature (T), the emulsifying agent used and its
concentration (e.g Sherman, 1968, Schramm, 1992). At low to moderate holdup of the
dispersed phase, emulsions generally exhibit Newtonian behavior.

The emulsion viscosity is affected mainly by the viscosity of the continuous phase and
increases with increasing the holdup of the dispersed phase. Following Einstein’s relation
(1906) for the viscosity of suspensions in extreme dilution:

x _ Hm

He

1 = (142.5¢1); eq <1, (4.7

other models/correlations which relate the emulsion viscosity to the volume fraction of the
dispersed phase have been proposed in the literature, in the form of p* = f(e4) or In pu* =
f(eq). These include empirical fitting constants. A summary of various correlations for
p* is given in Brauner, 1998, Tables 3a and 3b. In the presence of emulsifiers and/or
impurities, the dispersed droplets behave like rigid particles and the emulsion viscosity is
independent of the dispersed phase viscosity. In their absence, however, possible internal
circulation within the droplets results in some decrease of the emulsion viscosity with
reducing the dispersed phase viscosity. For high emulsion concentrations, the empirical
correlations use a reduced dispersed phase concentration, €4/é, , where €4 represents the
maximum attainable dispersed phase concentration at phase inversion. This introduces
in the correlations effects of additional parameters, such as emulsifier concentration, flow
field and droplets sizes.

At high dispersed phase concentrations (approaching phase inversion conditions)
emulsions behave as non-Newtonian shear-thinning (pseudoplastic) fluids (e.g. Pal, 1990).
The relation between the shear stress and shear rate is modeled by the power law equa-
tion, (in terms of two constants k and n):

T=—ky[y*']; n<1 (4.8)

which indicates that the apparent emulsion viscosity ., = 7/ decreases with increasing
the shear rate. Concentrated emulsions can also exhibit a viscoelastic behavior.
The viscosity of emulsions decreases with increasing the temperature, u,, = Ae
where T is the absolute temperature and A, B are constants dependent upon the spe-
cific emulsion and shear rate. Due to the sensitivity of the oil viscosity to temperature

-B/T
)

28



variations, the viscosity of Dw/o and the associated pressure drop are mostly affected
by temperature.

Emulsion rheology may vary between different oils and emulsifiers. Even oils of similar
properties may exhibit a different emulsion rheology. Therefore, it is recommended to
experimentally study the rheology of the emulsion used in a particular application.

4.3 Friction factor

Given the mixture properties, one can apply the single phase flow equations. For lam-
inar flow of Newtonian fluid - the friction factor is obtained from the Hagen-Poiseuille
equation:

16 mUm D
;. Re, = Pm¥m?

Ifm = ;
m Re,, Hm

< 2100 (4.9)

For turbulent flow of Newtonian fluids, the friction factor can be obtained from the
Moody diagram, or calculated from one of the experimental correlations suggested in the
literature. For instance, in smooth tubes, the Blasius correlation is applicable:

0.079
fin = oz ¢ 300 < Reyy < 100,000 (4.10)

For rough walls, the Colebrook (1939) equation yields:

1 k* 1.26
_ — _ -y A1
VFm 4logio (3.71 Rem\/fm) (4.11)

where k* = k/D is the nondimensional wall roughness scale. An explicit approximation
to eq. (4.11) can be used (Zigrang and Sylvester, 1985):

1 k* 4518 6.9 e\t
= _4] — — —1 —_— 4.12
NG ©810 l3.71 Ren, 8 (Rem + (3.7) (412)
For dense emulsions that behave as non-Newtonian pseudoplastic fluid, the frictional
pressure drop can be estimated using Dodge and Metzner (1959) correlations:

16 . pmUE ™ DY
== ; Rép=—7"—75
Ré, k/(8)"'—1

fm

laminar flow, Ré,, < Rér_r

(4.13)

1 4 o, 04
NG~ = (n')075 log[Rén fl " /%] — iz

wheren' =n <1, k' =k (%)n and n, k are the constants of the power-law model for

the emulsion viscosity (eq. 4.8). The laminar-turbulent transitional Reynolds number is
24n

given by Réj_r = 6464 % (e.g. Hanks and Christeansen, 1962).

The variation of the pressure drop with the liquids flow rates is, however controlled
by the phase inversion phenomenon (e.g. Figure 15 in Brauner, 1998). A sudden increase

turbulent flow, Ré,, > Rér_r
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in the apparent dispersion viscosity (up to one order of magnitude higher than the single
phase oil viscosity) occurs where the external phase invert from oil to water (or vice
versa). When water forms the continuous phase, the mixture viscosity approaches the
single phase water viscosity. The increase of the apparent mixture viscosity at phase
inversion (compared to the pure oil viscosity) seems to be moderated with increasing
the oil viscosity. The conditions under which phase inversion takes place are discussed in
Section 4.5.

4.4 Drops sizes

The mechanisms of drop formation and their characteristic size are important for analyz-
ing the hydrodynamic and transport phenomena in the flow of liquid-liquid dispersions.
The main breakup mechanisms involve high shear stresses, turbulence in the continuous
phase and rapid acceleration (Taylor, 1934, Kolmogorov, 1949, Hinze, 1955, 1959). The
surface force which resists deformation and breakup is mainly due to surface tension
and also due to internal viscous force (in the case of viscous drop). In dense dispersions,
droplets coalescence and additional factors introduced when a swarm of droplets interact
must be taken into account. These lead to an increase of the drop size.

External flow Internal flow

ollision frequency
ontact force, F flattening
0 (film radius, a)
. . film drainage _>ﬁlm rupture__ fl
ontact time, t; (film thickness, h) ( h=he) confluence

Figure 4.1 Conceptual framework for coalescence modeling (Chesters, 1991).

A substantial effort has been made to model the phenomenon of droplets coalescence
in dense dispersions. Reviews of existing frameworks for analysis of droplets interactions
with themselves and with the surrounding fluid can be found in Chesters (1991), Tsouris
and Taularides (1994). Coalescence actually involves a number of coupled sub-processes
(see Figure 4.1). Some are governed by the external flow field, due to the flow of the
continuous phase (e.g. frequency of drops collisions, force and duration of collisions).
These provide the boundary conditions for the internal flow (i.e. drop deformations, film
drainage and rupture of the interfaces). However, the relationships that have been pro-
posed for the various sub-processes involved include unknown parameters and therefore,
at this time, they cannot be readily applied to general liquid-liquid flow systems.

In dilute dispersions, however, the characteristic drop size is governed by the drop
breakup mechanism. In the following, models for evaluating the maximal drop size asso-
ciated with the various breakup mechanisms and some extensions to dense dispersions
are briefly reviewed. The maximum drop size, dy.x provides an estimate to the drop
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volume-surface mean size (the Sauter mean diameter) dss = Y n;d3?/ > nid? ~ dmax/ka
with kg ~ 1.5 + 3 (see also Azzopardi and Hewitt, 1997).

Shear flow — Drops deformation and splitting under the action of viscous shear (Cou-
ette flow and plane hyperbolic flow) was studied by Taylor (1934). The critical Weber
number, defined based on the maximum velocity gradient in the flow field, We..;; =
teYmaxdmax /0, was found to vary with g/ .. It increases for pg/pe > 1 or pg/pe < 1.
For pg/pe > 20 and Couette flow, breakup of drops was not observed. This evidence
implies that it is difficult to disperse fluids of high viscosity ratio by the action of viscous
shear.

For the case of viscous continuous phase, where p14/p. < 1, the model of Taylor (1934)
and Arivos (1978) for breakup of long slender droplets in an axisymmetric straining
motion can be used to estimate the drop size. When applied to laminar pipe flow, where
the average value of % is given by 4 = 4U,,,/D, this model suggests that the drop size
depends on the capillary number of the continuous phase, u.Up,/o:

Ao o 1 1/6 o 1 1/6 i
X — 0.296— e =0.074 = ; — <1 4.14
D pe YD (M) treUm (ud) He #14

Turbulent flow — Most of the models for predicting the size of bubbles or drops in a
turbulent flow field are based on the Kolmogorov (1949)-Hinze (1955) model for emul-
sification in a turbulent flow field. Using dimensional arguments, they showed that the
splitting of a drop depends upon a critical Weber number, which yields the maximal
drop size, dmax that can resist the stress due to dynamic pressure of turbulent eddies (7).
According to Hinze (1955):

Weerit = Thmax _ C[1+ F(On)] (4.15)

o
where C'is a constant, On is the Ohnesorge (viscosity) number (ratio between the internal
viscosity force and the interfacial force); On = ﬁ and F' is a function that goes
to zero as On — 0. For pipe flow of a dilute dispersion, this model yields the maximal
drop/bubble size, dyax in terms of the critical Weber number of the continuous phase,
We. = p.U2D/o and the wall friction factor, f (e.g. Kubie and Gardner, 1977):

s dmax _ _
(dmax) :( . > = 0.55We 00 f04 < e < 0.1D (4.16)

where ¢ is the Kolmogorov microscale and 0.1D represents the inertial subrange scale
(length scale of energy containing eddies).

The Hinze model is applicable for dilute dispersions. It suggests that the maximal
drop size, (dpmaz)o, can be evaluated based on a static force balance between the eddy
dynamic pressure and the counteracted surface tension force (considering a single drop
in a turbulent field). An extension of this model for dense dispersions was suggested
by Brauner (2001). The idea is that in dense dispersions, where local coalescence is
prominent, the maximal drop size, (dmaz)e, is evaluated based on a local energy balance.
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In the dynamic (local quasi-steady) breakage/coalescence processes, the turbulent kinetic
energy flux in the continuous phase should exceed the rate of surface energy generation
that is required for the renewal of droplets in the coalescing system. This energy balance
yields:

7 dmax A chgD —0-6 Pm —04 €d 0.6
(dm“””)e:(T)fQ'mH( a) [pcaed)f} (1) (17)

where Cp is a tunable constant, Cy = O(1). In dilute systems, the energy balance is
trivially satisfied for any finite drop size (as the rate of surface energy generation vanishes
for ¢4 — 0) thus, (dimaz)e < (dmaz)o- However, this is not the case in the dense system,
where (dmaz)e > (dmaz)o. Thus, given a two-fluid system and operational conditions, the
maximal drop size is taken as the largest of the two values:

i = M { () (o) ) (@13

Correlations for the friction factor in smooth or rough conduits can be used in egs. (4.16)
and (4.17). For instance, the Blasius equation (f = 0.046/Re., Re. = p.DU./ ;) yields:

dmax —
( 5 > = 1.88We_"CRe? % . (4.19)
5 B € 0.6 p —0.4
(dmax> = 7610 We 00ReO0S (L) |p 4 Pd_©d : (4.20)
€ 1—e€4 pel—e€q

Egs. (4.18) to (4.20) are the H-model in Brauner (2001), which is applicable provided
1.82Re; %7 < dypax < 0.1 and Re, > 2100.

If the viscosity of the dispersed phase is much larger than that of the continuous
phase, the viscous forces due to the flow inside the drop also become important and
the effect of the On number in eq. (4.15) may turn to be non-negligible. Kolmogorov
(1949) found that when pq/p. > 1, these viscous forces can be neglected only when
dmaz > Uk (va/ l/C)S/ 4. A correlation for dy,x, which accounts for viscous forces in the
dispersed and continuous phase was suggested by Paul and Sleicher (1965):

chczdmaX (/’LCUC)O.S _ C 1 + 0.7 (/‘dUc>O‘7
[0}

o o

with C' = 38 + 43. This correlation indicates no effect of the pipe diameter. Kubie and
Gardner (1977) showed that a major part of Sleicher and Paul (1965) data correspond
to drops that are larger than the scale of energy containing eddies (= 0.1D for pipe
flow). It was argued that for dyax > 0.1D, the turbulent dynamic pressure force in Kol-
mogorov/Hinze analysis should be evaluated based on the fluctuating turbulent velocity
(~ 1.3u* in pipe flow, Hughmark, 1971). In this case, the correlation that evolves for
dmax (instead of eq. (4.16)) reads:

(4.21)

max C 2D 71
dmax _ | g <&> FL: dpae > 0.1D (4.22)
D o
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Accordingly, for dpax > 0.1, eqs. (4.19 - 4.20) are replaced by the K-Model in Brauner
(2001):
(Jmax) = 30We; ' Re®? ; dppax > 0.1 (4.23)
0

(meax) = 174CKxWe, ' Re? ( & ) ; (4.24)
€ 1-— €d

where C = O(1). However, in D, ,, of viscous oils, or in systems of low surface tension,
additional stabilizing force due to the drop viscosity has to be considered, which affects
an increase of dpax with pg. According to Hinze (1955), the effect of the dispersed phase
viscosity is represented by the Ohnesorge number. For a non-vanishing On, the r.h.s. of
eqs. (4.16) to (4.20) and (4.22)-4.24) are augmented by the term [1+ F(On)]%°. Instead,
the correction suggested by Davies (1987) can be applied by multiplying the R.H.S. of
these equations by (1 + K,uqul/0)*¢, with K,, = O(1), where v/, is the characteristic
turbulent fluctuation velocity in the continuous phase.

Accelerated Drops — Drops deformation and breakup due to rapid acceleration of drops
bursting into a stream of a second fluid is the main mechanism for pneumatic atomization
and has been studied extensively in the literature (e.g. Hinze, 1955, Clift et al., 1978,
Brodkey, 1969, Cohen, 1991). This mechanism can be relevant to the formation of liquid
dispersions in the entry region of the pipe, in particular, when nozzles are used for
injection of the liquid, or for drop entrainment from the interface between a slow and a fast
moving layers (as in wavy stratified flow). The following power-law empirical correlation
for We,;+ is often used to evaluate dpax:

pcAUE dmax
g

Weeriy = =12 (14 1.0770n"°) (4.25)
When AU, is set to the initial velocity difference (between the drop and the continuous
phase), eq. (4.25) may underestimate dmax. Modified correlations which consider the
breakup time and velocity history are given in the literature (see review by Azzopardi
and Hewitt, 1997).

Rising (settling) drops — Even in a stagnant fluid (U. — 0), there is a limit to the size to
which a bubble or a drop can reach while rising (or falling) freely through it. In the ab-
sence of external field disturbances, drop breakup has been attributed to Rayleigh-Taylor
instability. Grace et al., (1978) showed that for pg/pe > 0.5, dmax = 44/0/9 | pec — pa |
provides a reasonable estimate for the maximal drops size. For pg/p. < 0.5, it provides
a lower bound to dyax. Combining the Rayleigh-Taylor instability and Kelvin-Helmholtz
instability (Kitsch and Kocamustafaogullari, 1989), the following equation was obtained
for dmax of rising (falling) drops in stagnant fluids:

c 16
g J9lpe=pal _
g 2+3p*
+p*

1405 [4.5 () - 035 (%

1/2

)2‘27 (11 202503
(4.26)
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where p* = 0.993p4/p. and the Morton number, M < 16. Equation (4.30) predicts the
experimentally observed increase of dpyax with increasing M. Eq. (4.26) (with a lower
numerical coefficient) represents the scale of highly deformable drops/bubbles in vertical
and horizontal flows (Brodkey, 1969, Brauner and Moalem Maron, 1992c).

4.5 Phase inversion

The phase inversion refers to a phenomenon where with a small change in the operational
conditions, the continuous and dispersed phase spontaneously invert. For instance, in
oil-water systems, a dispersion (emulsion) of oil drops in water becomes a dispersion
(emulsion) of water drops in oil, or vice versa.

The phase-inversion is a major factor to be considered in the design of oil-water
pipelines, since the rheological characteristics of the dispersion and the associated pres-
sure drop change abruptly and significantly at or near the phase inversion point (Pan et
al (1995), Angeli and Hewitt (1996), Arirachakaran et al (1989)). Also, the corrosion of
the conduit is determined to a large extent by the identity of the phase that wets it.

The inversion point is usually defined as the critical volume fraction of the dispersed
phase above which this phase will become the continuous phase. Studies have been carried
out in batch mixers, continuous mixers, column contractors and pipe flow, in attempt to
characterize the dependence of the critical volume fraction on the various system param-
eters, which include operational conditions, system geometry and materials of construc-
tion. These have been reviewed by Yeo et al., 2000. In flow systems, phase inversion will
not always occur as the holdup (say of water) is varied continuously from 0 to 1. It will
occur only if U, is high enough to have a good mixing of the liquids in both the pre-
and post inversion dispersions.

Similarly to observations made in stirred tanks, also in pipe flows, data on dispersion
inversion indicate a tendency of a more viscous oil to form the dispersed phase. It was
found that the water-cut required to invert a dispersion decreases as the oil viscosity, t,
increases. Based on the experimental results of various investigators on phase inversion,
Arirachakaran et al (1989) proposed the following correlation for the critical water-cut,
éI .

el = (U—W) = 0.5 — 0.11081log,( (1to/ptr) ; pir = ImPa - s (4.27)
Un/;
The trend is similar to that indicate by the Yeh et al (1964) model for the phase inversion
point: €l = m The later was developed with reference to a configuration of
laminar flow in stratified layers, however, its validity was tested against the critical holdup
data obtained in a flask (dispersion prepared by manual vigorous shaking of specified
volumes of an organic and water phases).

Since phase inversion is a spontaneous phenomenon, it was proposed that its predic-
tion can be based on the criterion of minimization of the total system free energy, (e.g.
Luhning and Sawistowski 1971, Tidhar et al., 1986, Decarre and Fabre, 1997, Brauner
and Ullmann, 2002). Under conditions where the composition of the oil and water phases
and the system temperature are invariant with phase inversion, only the free energies
of the interfaces have to be considered. The application of this criterion is, however, de-
pendent on the availability of a model for characterizing the drop size in the initial and
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post-inversion dispersions, both are usually dense. This approach was recently followed
by Brauner and Ullmann (2002).

According to this approach, when a dispersion structure (say D,y ) is associated with
higher surface energy than that obtained with an alternate structure (say Dy, /o), it will
tend to change its structure, and eventually to reach the one associated with the lowest
surface energy. Hence, the phase inversion is expected under the critical conditions where
both D,y and Dy, are dynamically stable and the sum of surface energies obtained
with either of these two configurations are equal.

Based on these considerations, the critical oil holdup can be obtained in terms of the
liquid-solid surface wettability angle, a;, and the Sauter mean drop diameter in pre-and
post inversion dispersions (Brauner and Ullmann, 2002):

o [0/d32]w /0 + GO cOsS (4.28)
¢ o/dss)w/o + [0/ds2]o/w '

where s represents the surface wetted area per unit volume (s = 4/D for pipe flow),
0 < a < 90° corresponds to a surface which is preferentially wetted by water (hydrophilic
surface), whereas for 90° < o < 180° the oil is the wetting fluid (hydrophobic surface).
The Sauter mean drop size can be scaled with reference to the maximal drop size, dss =
dmax/kq. Using such a scaling, models for dp,ax in coalescing, dense D, Jw Or Dy /o can
be used in eq. (4.28) to evaluate the critical oil holdup at phase inversion. Applying the
H-Model of Brauner (2001), eq. (4.20) yields:

0.6 0.08 0.4 0.6
~ ~ o PwlUm D Pw €
do = 7.61 _— —_— — — 4.2
o = T01CH <waU3~L> < How ) <Pm) (1—€)02 (4.29)
0.6 0.08 0.4 0.6
s ~ o PoUnmD Po (1—e)
e = T0LCH (poDUﬁ) < o ) (pm> €’ (430

where d, and d, represent the maximal drop size in D,y and Dy, respectively. Under
conditions where the oil-water surface tension in the pre-inversion and post-inversion
dispersions is the same (no surfactants or surface contaminants are involved), (kq), Jw =
(kd)w/o and solid-liquid wettability effects can be neglected (a = 90° or s — 0, as in
large diameter pipes, where d,, dy, < D), eqs. (4.28 - 4.30) yield:

I p° 4
© =717 50 (4.31)
where 7 is the kinematic viscosity ratio, I = v, /vy
Equation (4.31) provides an explanation for the observation made in many exper-
imental studies, that the more viscous phase tends to form the dispersed phase. For
a given holdup, and in the case of viscous oil, the characteristic drop size in D,y is
larger than in the reversed configuration of Dy /.. Hence, a larger number of oil drops
must be present in order that the surface energy due to the oil-water interfaces would
become the same as that obtained with the water dispersed in the oil. Therefore, with
p%t > 1, el > 0.5, and €] — 1 as pir%* > 1. The larger is the oil viscosity, the wider is
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the range of the oil holdup, 0 < ¢, < ¢!, where a configuration of oil drops dispersed in
water is associated with a lower surface energy. In this range of holdups, the flow pattern
will be D, /y, if the operational conditions are in range a the dynamic stability criterion
is satisfied. Whereas, D/, will be obtained in the range of e! <e, <1, provided such a
dispersion is dynamically stable (see boundaries 4 and 5, Section 5.1). Thus, when only
the liquids’ interfacial energy is involved, and the hydrodynamic flow field is similar in
the initial and post inversion dispersions, the details of the flow field and the system
geometry are not required for predicting the critical holdup at inversion.

Figure 4.2 shows a comparison of the critical oil holdup predicted via eq. (4.31), with
experimental data of phase inversion in pipe flow which were used by Arirachkaran et
al (1989) to obtain their experimental correlation, eq. (4.27) (line 2 in Figure 4.2). A
lower variance is however obtained by correlating the data using the form of eq. (4.31).
It is worth noting that for high critical oil holdup, corresponding to phase inversion of
highly viscous oil dispersions, the water-in-oil dispersion is, in fact, dilute. It was shown
by Brauner and Ullmann (2002) that in this range, if dy, is modelled by eq. (4.19) (rather
than by eq. (4.20)), the critical oil holdup becomes practically independent on the viscos-
ity ratio, in agreement with experimental findings. This phase inversion model was shown
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Figure 4.2 The critical oil-cut for phase inversion in pipe- flow - comparison of mod-
els/correlations predictions with experimental data: (1)Eq. (4.31); (la)
Eq. (4.28), dilute Dw/o Cq = 1); 2)Eq. (4.27); 3) el = /ii/(1++/F),
(4) Best fit e} = %22 /(1 + i®*)

to be useful for explaining various experimentally observed features related to phase in-
version in pipe flow and in static mixers. These include the effects of the liquids physical
properties, liquid/surface wettability (contact angle), the existence of an ambivalent re-
gion and the associated hysteresis loop in pure systems and in contaminated systems
(Brauner and Ullmann, 2002). Impurities or surfactant, and even entrained air bubbles,
may have prominent effect on the critical holdup. Therefore, in many applications it is
practically impossible to predict the conditions for phase inversion.
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4.6 Conclusion

From the practical point of view, the main issue in predicting the pressure drop in homo-
geneous liquid-liquid dispersed flow is the modelling of the effective(apparent) mixture
viscosity, ;. To this aim, the first decision to be made concerns the identity of the
continuous phase. This decision is related to the phase inversion phenomenon. The sec-
ond decision concerns the appropriate model to represent the variation of u., with the
holdup in the particular system under consideration. The latter depends on the extent
of mixing (emulsification) of the dispersed phase, which is a result of a combined effect
of many factors (e.g. flow field, liquids physical properties, impurities and/or surfactant,
liquid/wall wetting). This factors affect also the critical conditions for phase inversion.
In any case, at the phase inversion point the liquids must be at intimate contact and
models for emulsion viscosity are applicable to evaluate the pressure drop peak. However,
so far, there are no general models or correlations for predicting the effective mixture
viscosity for the variety of systems and operational conditions and much empiricism is
still involved.

5 Flow Patterns Boundaries

Flow patterns characterization and transitions are usually related to the common parame-
ters, which include the phases flow rates and physical properties. However, in dealing with
liquid-liquid systems, the wide ranges of physical properties encountered generate a sort
of ambiguity as to how to characterize liquid-liquid systems. It has been shown that it is
beneficial to preliminary classify the system according to whether Fop > 1 or Eop < 1
(Brauner, 1998). Large Eotvos (gravity dominated) systems exhibit a similarity to gas-
liquid systems, whereby density difference and inclination control flow pattern bound-
aries. On the other hand, in small Fop (surface tension dominated) systems, inclination
does not play a role, whereas liquids wettability with the pipe material, entry conditions
and start-up procedure are important. In this section some general guidelines for esti-
mating the flow pattern that can be expected under specified operational conditions are
outlined.

5.1 Horizontal Systems of Eop >> 1

Generally, these systems correspond to liquids with a finite density difference and suf-
ficiently large tube diameter. In such systems the stratified flow configuration can be
obtained in horizontal and slightly inclined tubes for some range of sufficiently low lig-
uids flow rates. Models suggested for predicting flow patterns transition and guidelines
for constructing flow patterns map for such systems are illustrated with reference to
Figure (5.1).

1. Transition from (S) to (SM) or (SW) — This boundary defines transition from smooth
stratified flow (S) to stratified flow with waves/mixing at the interface, (SW or SM,
Figure 1.1b). The transitional criterion evolves from a linear stability analysis carried out
on the transient formulation of the two-fluid model, and corresponds to the long-wave
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neutral stability boundary. It is given by (Brauner and Moalem Maron, 1993, Brauner,
1996).

Ji+l+J,=1 (5.1)

P1 U12 s 6/2 Crn 2 C’!' n
J=— — =1 —-1H({1-2 5.2.1
"= Ap Dycosh (1—e)? ( 0, I C 72 (5:2.1)

2
P2 U225 6/2 Crn Crn

Jo=—— —==— = -1 —1(1-2 5.2.2
>~ Ap Dgcosf3 € Us 02— 1) Us ( )

P (Ul — U2)2 451
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Figure 5.1 The construction of a flow pattern map for horizontal oil-water flow,
Eop > 1 comparison of models prediction Trallero (1995) data.

All flow variables in egs. (5.2) (phases velocities Uy, Us, wall shear stresses 71,72, 7;
flow cross-sectional area A1, As and wetted perimeters Si, 53, S;) are those obtained for
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steady smooth stratified flow corresponding to superficial phases velocities Uy, Uas (see
Section 2.4 and Figure 2.1). For Eop > 1, a plane interface can be assumed (¢* = 7),
whereby the flow geometry is determined by the lower layer depth, h. The shape factors
1,72 (assumed constant) account for the velocity profiles in the two layers. For plug
flow 71 = 72 = 1 and y > 1 corresponds to a layer with a significant velocity gradient.
Equation (5.1) represents a generalized stability criterion, which includes the Kelvin-
Helmholtz mechanism and ‘wave sheltering” mechanism. The destabilizing terms are due
to the inertia of the two liquids (Jq,J2 terms) and due to the dynamic interaction of
the growing waves with turbulence in the faster layer, Jj. For laminar stratified layers
Jp, = 0. Otherwise a correlation for C}, is needed, but it is available only for gas-liquid
systems. In liquid-liquid systems, the J;, term may be less significant (since the velocity
difference is much smaller), and the stability criteria has been applied assuming Jj = 0
(Brauner and Moalem Maron, 1992a, 1992b).

Criterion (5.1) defines the combinations of Ujs and Uss which corresponds to the
evolution of interfacial disturbances (SW) and thus, possible entrainment of drops at the
liquids layer interface (SM). This boundary is denoted by 1 in Figures 5.1 and 5.2, and is
shown to predict the conditions for the evolution of interfacial disturbances in horizontal
and inclined flows. Note that, in these Figures, the oil and water correspond to the lighter
and heavier layer, respectively, Uis = U,s and Uss = Usys.
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Figure 5.2  Effect of tube inclination on the SS boundaries. Experiment e SS o SW A
elongated oil drops (Gat, 2002).

2. Upper bounds on patterns involving stratification — Outside the region of stable (smooth)
stratified flow (boundary 1) the flow pattern is stratified wavy flow with drop entrainment
at the interface. The rate of droplet entrainment increases with increasing the liquids flow
rates and various flow patterns which still involve stratification may develop (see Figures
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1.1c to 1.1h). The stratified flow configurations are confined to a domain at whose bound-
aries the two-fluid formulation (for stratified configuration) becomes ill-posed (Brauner
and Moalem Maron, 1991,1992d Brauner, 1996). The condition for ill-posedness is given
by:

paUsy2(v2 = 1) + iUy — 1) — (12U2 — 1 U1)* + (5.3)
D
+ E[(Pz — p1)gcos B — Cpp(Uy — Ua)*S; (AT + A71)] <0

- ~ D(dAy/dh .
where ps = 1+ Z—jﬁ—; ,pr=1+ %ﬁ—’;‘ , P12 = m. The ill-posedness boundary

is indicated in Figure 5.1 by the two branches, 2w for a faster lower water layer and
20 for a faster upper oil layer. As shown in the figure, the ill-posedness boundary is
always located in the region of amplified interfacial disturbances since the stable smooth
stratified zone, which is confined by the stability boundary 1, is always a sub-zone of
the well-posed region. Boundary 2w in Figure 5.1 was obtained with v; = 1.1 for low
Uis, which was gradually reduced to v; = 1 for higher oil rates where both layers are
turbulent and Uy ~ Us.

As shown in Figure 5.1 boundary 2w marks the location of SM to Do/w&w transition.
The auxiliary lines, which provide useful information on the flow pattern that can be
expected are the locus of h/D = 0.5; the locus of laminar/turbulent transition in the
lower (water) layer LTw, laminar/turbulent transition in the oil layer, LTo (evolution of
enhanced dispersive forces in either the water or oil layer) and the locus of U, = Uy, EU.
Figure 5.1 points out an important difference between liquid-liquid systems and gas-liquid
systems. In oil-water systems, the densities of the fluids are similar and therefore, the line
of equal layers’ velocity divide the zone of stable stratification into two regions, either
faster oil layer or faster water layer. Entrainment of oil drops into the water layer takes
place when Uy, > U, (left to the equal velocity curve, EU), whereas entrainment of water
drops into the oil layer is associated with U, > U, (right to the EU curve). The dispersion
of water drops into the oil layer is enhanced by transition to turbulent oil layer. However,
as long as the water and oil flow rates are within the region where the transient stratified
flow equations are well-posed (below curve 2w and below curve 20), the flow patterns
may involve a certain stratification, where in the upper layer, the oil forms the continuous
phase and in the lower layer water is the continuous phase. It is worth noting that in
contrast to gas-liquid systems, the entrained drops (water into oil, or oil into water) do
not posses sufficient momentum to penetrate through the dense continuous phase and
impinge on the tube walls. Therefore, the onset of drops entrainment in liquid-liquid
systems is usually not associated with the formation of liquid film on the tube surface
and the consequential transition to annular flow.

3w. Transition to Do/w&w — For Uy, > U, and outside boundary 1, the fragmentation
of oil drops from the wavy oil-water interface is due to the inertia forces exerted by the
faster water flow and is represented by the eq. (4.25) with AU, = Uy — U,. A dispersion
of the entrained oil drops is stable provided dyax < deri¢. The critical drop size, de.i; is

taken as: p J p
crit . co _cb
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where d., represents the maximal size of drop diameter above which drops are deformed
(Broodky, 1969):

s dey 0.4 1/2 0.224
doy = 27 — { C— 2} = e (5.5.1)
D | pc — pa | gcos ' D (cos 3)1/2Eo}!
ApgD? : < 45°
8 0-18] ; |B|>45°

and d is the maximal size of drop diameter above which buoyant forces overcome
turbulent dispersive forces in the continuous phase and therefore, migration of the drops
towards the tube walls takes place (Barnea, 1987):

s _dg 3 pe fUZ 3. p Uz
dep = = Fre; Fro=—°“— 5.6
"D 8 | Ap | Dg cosﬂ 8”7 Apg " " Dgcos 8 (5:6)

with (8 denoting the inclination angle to the horizontal (positive for downward incli-
nation). Equation (5.6) is relevant only in shallow inclinations and in case of turbu-
lent flow in the faster (water) layer (U, = U,,). Moreover, in oil-water systems, where
Ap/p. < 1 dcb > dw, and in most practical cases dcm = dw is used. In this case, the
following transitional criterion evolves from egs.(4.25) and (5.5.1) (Brauner, 2000):

oApg cos 3 1/4
2

1/2
AU, = U, — U, > 4.36 { } {1 +1.443 (Nyg cos 5’)0'4} (5.7)

c

where N,4 is the viscosity number of the dispersed oil phase, N,q = ”: 0297 L = o, Pd =

Doy Pe = Pw. The constant coefficient (4.36) in eq. (5.7) may require some tuning when
applied to a specific two-fluid system. According to this model, drops entrainment takes
place when the velocity gap between the continuous (water) layer and the layer which is
being dispersed (oil) exceeds a threshold value. This threshold value is given by the r.h.s.
of eq.(5.7) and is independent of the tube diameter. For instance, a typical low viscosity
oil-water system would be p, ~ 1gr/em? Ap = 0.1p. and o = 30dyne/cm, which yields
a velocity gap of 0.3m/s that is required for significant entrainment. Boundary 3w in
Figure 5.1 corresponds to eq. (5.7). It is worth noting that this figure is typical to low
viscosity oil. For highly viscous oils (up > 1 poise), the threshold value for the onset
entrainment of oil drops into water increases (due to Nyq >> 1) in eq. (5.7). Also, the
line of equal velocities of the oil and water layers is shifted to higher oil flow rates.
Consequently, the zone outside the neutral stability boundary (up to boundary 2w may
partially (or entirely) correspond to wavy stratified flow (SW), rather to stratified mixed
flow (SM).

In systems which are not absolutely dominated by gravity (Fop ~ 1), the Do/w&w
pattern can be obtained instead of a continuous oil layer even for a small velocity gap.
This can happen with a hydrophilic tube surface and when the largest oil drop that can
occupy the upper part of the tube is smaller than the critical drop size. The criterion
suggested for this transition (Brauner and Moalem Maron, 1992b,1992¢):

1/2
Ajcosf < md? /4 i dei =C {L}

Ao (5.8)
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provided the resulting Uy5(= U,s) and Uss(= Uys) are within the regions of stable strat-
ification (below boundary 2w). While this criterion is irrelevant for predicting the flow
patterns data in Figures 5.1, it is shown to predict the appearance of Do/w&w at low wa-
ter and oil flow rates in upward inclined tubes (Figure 5.2e,f) and the gradual vanishing
of the stratified flow pattern with increasing the upward inclination.

30. Transition to Do/w&w — For U, > U,, and outside boundary 1, eq.(4.25), and thus
eq.(5.7), is applied with AU, = U, — Uy, pta = pw, Pd = pw and p. = p,. This yields
the critical velocity gap for dispersing the water layer into the oil layer. For the system
studied in Figure 5.1, boundary 3o (not shown) is similar to 2o.

In systems of Fop = O{1} and hydrophobic tube surface, eq. (5.8) with As replacing
A; signals transition to Dw/o&o due to capillary effects.

4. Transition to Do/w — A homogeneous oil-in-water dispersion (emulsion) can be main-
tained when the turbulence level in the continuous water phase is sufficiently high to
disperse the oil phase into small and stable spherical droplets of dpax < derir- Apply-
ing this criterion using the extended Hinze model, eqgs. (4.18 to 4.21) with egs. (5.4 to
5.6), yields a complete transitional criteria to dispersed flows (H-Model, Brauner, 2001).
When the fluids flow rates are sufficiently high to maintain a turbulence level where
Amax < deo and dpmax < dep, spherical nondeformable drops are formed and the cream-
ing of the dispersed droplets at the upper or lower tube wall is avoided. Thus, the fully
dispersed flow pattern can be considered as stable. In these equations U, = U,,,U.s =

2
Uwss Uds = Ussy pe = pw and pie = jiy. Hence, We, = % ; Re. = 2Yn and
€4 = Uys/U,,. For instance, if d..;t = d.s, the transitional criterion reads:
1/2yv17 0.6 1 _0.08
CleayEop™We,PRe; ™ > 1 (5.9)

The variation, C.,) with the dispersed phase holdup evolves from the H-model equations.

Curve 4 in Figure 5.1 predicts the transitional boundary from Do/w&w to Do/w.
In systems of Eop ~ 1, the K-model (egs. 4.23 and 4.24) replaces the H-model in the
evaluation of dyax (Brauner, 2001).

5. Transition to Dw/o — A homogeneous water-in-oil dispersion (emulsion) develops
when turbulence level in the continuous oil phase is sufficiently high to disperse the
water phase into stable small droplets. In this case egs.(4.18 to 4.20) and (5.4 to 5.6) are
applied with U. = Uy, Ues = Uy, Ugs = Uys, pe = po and pie = po. Hence, € = Uys/Upn

and We, = % ;' Re. = 2Yn Tn systems of Fop ~ 1, eqs. (4.23 - 4.24) replace

Vo

eqs. (4.19 - 4.20) for the evaluation of Jmax. Boundary 5 in Figure 5.1 corresponds to
the predicted transition to Dw/o. It is worth noting that for the critical flow rates
along boundary 4, the mixture Reynolds number is already sufficiently high to assure
turbulent flow in the water. However, when a viscous oil forms the continuous phase, the
locus of the transition to Dy, /, may be constrained by the minimal flow rates required for
transition to turbulent flow in the oil (Re. = 2100 along boundary LT,,). The required
turbulent dispersive forces exist only beyond the LT, boundary, which therefore forms
a part of the Dy, transitional boundary.
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6. Transition from Do/w to Dw/o - This transition is associated with the phase inversion
phenomena discussed in Section 4.5. Boundary 6 in Figure 5.1 was obtained by eq. (4.31).
The phase inversion model is applicable for predicting this transition when the oil and
water flow rates are sufficiently high to sustain both a homogeneous Do/w and Dw/o.
As shown in Figure 5.1, boundaries 4 and 5 indeed define an ambivalent range where
either of the oil or water phase can be homogeneously dispersed. It is the phase inversion
phenomenon which eventually defines the boundaries of Do/w and Dw /o.

7. Core flow boundaries — In highly viscous oils, the laminar regime extends to high oil
flow rates. In the absence of turbulent dispersive forces in the oil phase, it is possible to
stabilize a viscous oil core which is lubricated by water annulus. The region were stable
CAF is feasible is: (a) outside the boundaries of stable stratification (outside 2w and
20), hence, sufficiently high oil rate (and water cut) to overcome the float-up tendency
of the lighter oil core; (b) in the CAF configuration, the difference between the velocity
of the oil in the core (U. = U,) and the water velocity in the annulus (U, = Uy),
should not exceed the threshold value which would result in entrainment of the water
film into the oil core. The threshold value is given by the r.h.s. of eq. (5.7), with p. = p,
(Nyg = pd Apg/p2o® < 1 and can be ignored). The core annular model in section 3.2
can be used to evaluate U, and U,. However, since for turbulent water film, the slip
between the phases is only few percents of the core velocity, this condition constrains the
CAF only at high U,s; (c) water cut should not exceed a threshold value which results
in disintegration of the oil core into oil globes by a thick wavy water annulus. Favorable
conditions for wave bridging are A,/A. > 1. Using the annular flow model (Section 3.2)
yields the flowing criterion for avoiding transition from core flow to oil slugs:

UOS UCS /'(‘a

U.. = .. > ; +2; laminar core-laminar annulus (5.10)
U('€ —_ a .
Ud > 2.875 x 10 ?’u—Regf +1.15; laminar core-turbulent annulus

as /"LC

These criteria were shown to provide reasonable estimations of the oil and water flow rates
where core flow is stable (see Figures 19 and 20 in Brauner,1998). The minimal water-cut
needed to avoid stratification decreases with increasing the the oil core viscosity.

It is worth emphasizing the evolution of annular flow due to pure dynamical effects
in systems of Fop > 1 (as in gas-liquid horizontal flows) is unlikely for oils of relatively
low viscosity. Stabilization of the core requires sufficiently high velocity of the core phase:
high mixture velocity and high input cut of the core phase. Under such conditions (and
with low oil viscosity), dispersive forces are dominant and emulsification of the potential
annular phase into the core phase results in a fully dispersed (emulsion) of the annular
liquid within the core liquid and destruction of the CAF configuration.

5.2 Systems of Eop < 1

Such systems exhibit flow patterns which are similar to microgravity systems (Brauner,
1990). The tube diameter is smaller than d..;; and in view of criterion (5.8) stratified
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flow will not be obtained even for low oil and water rates. The drift velocity of drops
is negligible and the tube inclination has no effect on the flow patterns. Also, different
flow patterns may result by changing the liquids/wall wettability properties (changing
the tube material or the start-up procedure).

In hydrophilic tube, for low oil flow rate and high water cut, the flow pattern is oil
droplets dispersed in water. With increasing the oil rate, enhanced droplets coalescence
yields larger spherical oil drops (bubbles) with d ~ D. This transition usually occurs for
in situ oil holdup of about 0.15+0.25 corresponding to Q L= WS == — =~ 0. 17-+0.33.
For larger oil in situ holdup, the large spherical bubbles coalesce to form elongated oil
bubbles (oil slugs). This transition takes place when the oil in situ holdup approaches
the maximal volumetric packing, €, ~ 0.4 <+ 0.5 corresponding to @ ~1-+1.5.

The slug/annular transition takes place for sufficiently low water cut, where stable
thin water annulus can be maintained. This boundary can be calculated by eq. (5.10). For
low viscosity oil and high oil rates, the oil core is turbulent. When the turbulent dispersive
forces are sufficiently high to disperse the water annulus, transition to Dw /o takes place.
It should be noted that in systems of Fop < 1, derit = dee > D. Therefore, d.,;; is scaled
by D (e.g., derit ~ D/2 jand the Kl-model in Brauner, 2001 is used to calculate the
transition to Dw/o (boundary 5), or Do/w (boundary 4)). The entrainment of the water
film due to the inertia of the core phase should also be considered. The corresponding
critical velocity difference is given by eq. (5.7), with AU, = U, — Uy, = U.—U,, (using the
CAF model in section 3.2 to calculate the velocity difference). The locus of Do/w to Dw/o
transition at high oil and water rates is obtained by the phase inversion model (eq. 4.28).
The application of these criteria for predicting flow pattern transition in systems of low
Fop was demonstrated in Brauner,1998.

In a hydrophobic tube, there is evidence that for low oil water rates and high water
cut inverted annular flow (Andreini, et al., 1997) with oil flowing in the annulus can be
obtained (instead of Do/w). This flow pattern can be maintained as long as the level
turbulence in the water core, as well as its inertia, are not sufficiently high to disperse the
oil annulus. Also, the oil holdup in the annulus must be sufficiently low to avoid blockage
of the water core (A./A, > 1, Ac, A, calculated via the annular flow model, Section 3.2).

5.3 Vertical upward systems

The construction of a flow pattern map for vertical upward oil-water flows is demonstrated
in Figures 5.3 and 5.4. The basic flow configuration for low superficial oil velocity is
Do/w. For low water rates, the oil is dispersed in the water in the form of relatively
large bubbles. The criterion of €, > 0.25 is usually suggested to mark transition from
small spherical bubbles to large oil bubbles and slugs (e.g., Harsan and Kabir, 1990).
The locus of ¢, = 0.25 (as predicted via eq. (4.5) and (4.6)) is indicated by boundary
8. With increasing the water rate, transition to fine Do/w (o/w emulsion) takes place,
which is predicted by transition 4. Similarly, the transition to fine Dw/o (w/o emulsion)
takes place for sufficiently high oil superficial velocities (transition 5) which are higher
than that required for establishing turbulent flow in the oil as a continuous phase (right
to boundary LT,,). The phase inversion model yields the boundary between Do/w and
Dw /o (transition 6).

44



The unstable region of churn flow is obtained for low water rates and intermediate oil
rates. The oil flow rate is too high to sustain a stable configuration of Do/w. Large oil
bubbles (of the order of d ~ d.;;) coalesce and tend to form an oil core surrounded by a
water annulus (CAF). Boundary 7 in Figure 5.3 is the locus of D, = 0.5 as predicted by
the CAF model for vertical upward flow (a thinner core results in transition to oil bubbles
dispersed in water). However, the oil velocity is too low to meet the dynamic requirements
for stabilization of oil dominated flow patterns, namely, oil forms the continuous phase as
in CAF flow or Dw/o. For stable CAF, the oil superficial velocity should be sufficiently
high to suspend large water drops, d ~ D (say d = D/2), which are occasionally formed,
whereby:

X . p 1/2 9 \1/2
1 d2 2 > = d3 " — . s _Fo > _ 11
871' CDPOUOS = 67T (P po) ; or Uo: ApgD o 3CfD (5 )
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Figure 5.3 The construction of a flow pattern map for ~ Figure 5.4 Flow pattern map for vertical upward
vertical oil-water system-comparison with Flores etal, ~ flow of water and highly viscous oil (py=601 cp)-
(1997) data. comparison with Bai et al, (1992) data.

Boundary 9 in Figure 5.3 has been obtained by eq. (5.11) with Cp = 0.44. Tt is
worth noting that criterion (5.11) is similar to that of flow reversal of the annular film,
which is frequently used to estimate flooding conditions, as well as transition to annular
flow in upward gas-liquid systems. Condition (5.11), however, introduces the effect of the
oil viscosity (and drop size) through the variation of Cp. It is worth emphasizing that
with relatively low viscosity oils (as is the case in Figure 5.3) the CAF configuration is
eventually not obtained. The potential water annulus is dispersed into the oil phase to
form the Dw/o pattern. The annular pattern in upward vertical flow has been observed
only for highly viscous oils. The size of oil bubbles and slugs increases with the oil
viscosity and for sufficiently large oil-cut, a continuous oil core surrounded by a water
film may be formed (see Figure 5.4). Oil core flow lubricated by a water annulus was
obtained for sufficiently high oil cut (instead of the churn regime observed with low
viscosity oils). The core interface is wavy and water rate should be kept higher than a
threshold value to prevent oil sticking on the tubes wall. Indeed, with highly viscous oils
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(Req = poUssd/po < 1 and Cp = 24/Rey) condition (5.11) is satisfied already for low
oil velocities and the region of churn flow in Figure 5.3 is occupied by the CAF in Figure
5.4. As shown, the core flow region in Figure 5.4 can be estimated using the CAF model
(Section 3.2) for calculation the core phase holdup. It extends from D, ~ 0.5 (transition
to slug flow) to D, = 0.95 (oil sticks to the wall).

5.4 Conclusion

The first step in the construction of a flow pattern map for a liquid liquid system is
its classification according to its Eotvos number, to either being gravity dominated or
surface tension dominated system. The guidelines and criteria for flow pattern transitions
as outlined above, were found useful for estimating the flow pattern map for these two
types of liquid liquid systems. However, these have still to be tested in view of more data
in the variety of liquid-liquid systems, pipe diameters, materials and inclinations.
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Table 1.1.1 Summery of Experimental Systems of Liquid -Liquid Horizontal Flow

/Authors D [em] Hof Mt | Dol P 4 Additional Observed Flow
,«/ pipe material dyne/cm| Measurements Patterns
Russell et al. 2.03 20.13 |0.840 dpP/dl SM, Do/w, Bo

(19359) Cellulose £,
Acetate-Butyrate
Charles et al 2.64 629 1 44 dp/dl Do/w, ANw,
(1961) Cellulose 168 1 45 £y SLo, Bo
Acetate-Butyrate] 65 1 30
Guzhov et al. 3.94 21.8 |0.898 44.8 dP/dl SM, Dw/o, Do/w
(1973) Steel Do/w & w,
Dw/o & o/w
Malinowsky 3.84 3.33 |0.850| 223 dp/dl SM, Dofw, Dw/o
{1975) Steel Dw/o & olw
Laflin & 3.84 4.12 10.830[ 223 dP/d! SM, Dofw, Dwio
Oglesby Steel Dwio & o/w
(1976)
Oglesby 4.1 32 [0.859] 30.1 dP/dl Do/w, Dwfo
(1979) Steel 61 [0.863] 294 Dw/o & o/w
167 [0.870] 354
Cox {1985) 508 1.54 10756 Eu S, Dofw
Acrylic Do/w & w
Scott (1585) 5.08 1.54 [0.756 £ S, ofw
Acrylic Dofw & w
Stapelberg & 2.38 30 10.852| 50 dp/idl SM,
Mewes 5.9 Do/w & w
(1950) Acrylic ,glass Dwio & olw
Fujii et al 25 615 (098 29 dp/dl Bo, Bw, SLo,
(1994) Acrylic o SLw, ANe
Valle & 3.75 2.55 [0.792] 373 dP/dl, &, S, SM
Kvandal Glass (Conductivity & Dofw & w
(1595) sampling probes)| Dw/o & o/w
Trallero 5.08 29.7 (0.832] 36 dp/dl S, §M
(1995) Acrylic Ew Do/w & w
Do/w,Dwio
Dw/o & ofw
Dwio & w
Nadler & 59 18-35|0.848 dP/dl 5, SM
Mewes Perspex Phase continuity Dofw & w
{1997) {Conductivity Do/w, Dw/o
probe) Dw/o & o/w
Dw/o & w

Vedapuri ef 10.12 2 £ SM, Dw/o & ofw

al. (1997) Plexi-glass isokinetic probe
Beretta er of 0.3 59, 10.87,137.4, 36, dp/dl Do/w, SLo, Bo,

(1997) Borosilicate | 51.3, [0.89,] 31.5 ANw
glass 71.2 | 0.87
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Table 1.1.1 Continued

Kurban er al 2.43, 2.4 1.6 0.803] 17 dp/dl S, SM, Dw/o
(1997) St. steel {Conductivity &
Acrylic [mpedance probe)
Andreini et af 0.3,06 362, [0.886, dprdl Do/w, SLo,
(1997 Borosilicate | 920, 10.889, PLo, ANw
glass, Steel, 1307 |0.893
Copper, PYC
Valle & Utvik 7.62 1 |0.741 dp/dl Do/w , Dw/o, 8
(1997) Steel (Conductivity
probe}
Hapanowicz 1.2 40 [ 1.2 Do/w, Dw/o,
et o (1997) 1.6 40 10.915 Dw/o&o,
2.2 Dofwéw,
Glass Dw/o&w, §,
DANo, PL,
Foam
Angeli & 243,24 1.6 |0.803| 17 dp/dl S, Do/w, Dw/o,
Hewitt (1998) St. steel (Conductivity and| Do/w &w,
Acrylic Impedance probe) Dw/o &o,
Dw/o &o/w
Soleimani 2.43 1.6 [0.803 dP/dl, g, SM,
(1999 St. steel Phgse distribution| Dw/o &ofw
(High Frequency
Impedance probe
& Gamma
Densiometer)
Angeli & 243,24 1.6 |0.803] 17 £y S, Do/w, Dw/o,
Hewitt (2000) St. steel (Conductivity and] Do/w &w,
Acrylic Impedance probe)] Dw/o &o,
Dw/o &o/w
Lovick ef al. 3.8 5.25 |0.828( 44.7 dP/dl, g, S8, SM
{2000) Stainless Steel {conductivity | Do/w, Dw/o
probe)
Fairuzov 36.35 5.07 |0.853 Volume fraction S
etal Steel {Multi-Point Dolw & w
{2000) Sampling Probe)
Simmons & 6.3 1.12510.684] 10 Drop size, SM,
Azzopardi PVC velocity & Dw/o & w,
{2001) distribution Dwio
{Par-Tec 300C,
Malvern 2600)
Angeli et al. 3.8 5.25 10.828| 44.7 dp/di SW, Do/w,
(2002} Stainless Steel Phase distribution| Dw/o &o/w,
(Impedance Dw/o
probe,
conductivity
probe)
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Table 1.1.2 Summery of Experimental Systems of Liquid -Liquid Core Annular Flow

Authors D [em] Core Fluid Annulus | pu/ py |p/pw| © Additional
pipe material Fluid dyne/cm |Measurements
Charles et 2.64 20.6% CTC in Marcol GX| Water 6.3 1 44 dpP/dl
al (1961) Cellulose  {18.7% CTC in Wyrol J Water 16.8 1 45
Acetate-Butyrate|16.7% CTC in Teresso 85| Water 65 1 30
Kruyer et |1.35, 3.19, 10.24 lubricating oil Water [36, 28, 6,| 0.86 dP/di
al (1967) |Copper, Acrylic, 17 0.86
Steel, Aluminum 0.83
0.85
Sinclair [1.905, 2.54, 6.35
1970) Humble Fractol oil, water,|Sea Water| 1000 |0.94
emulsifier
Hasson & 1.26 water Kerosene-| 1.2 1.02 [ 17-17.5 |film thickness
Nir (1970) Glass Perchloroe
thylene
Hasson et 1.26 water Kerosene-| 1.2 1.02 | 17-17.5 breakup
al (1970) Glass Perchloroe mechanism
thylene
Hasson 0.9 water Kerosene 1.6 ]0.803] 17 Heat transfer
(1978) | Stainless Steel " & coefficients,
scaling |
Wu et al 5.08 Zuata crude oil water 2200, |0.992 dp/dl
(1986) Transparent 10000 10.997, specific
energy
consumption
Oliemans | 5.08, 20.32 oil water 2584 |0.97 dprdl
(1986) Perspex Ew
Wave
characteristic
Guevara et 20.3 viscous hydrocarbon water upto |0.995 dp/dl
al (1988) | Stainless Steel 110,000 water fraction
Anon 20.27 Zuata crude oil water | 3,000 - dp/dl
(1988) | Stainless Steel 100,000 water fraction
Baieral 0.9525 oil 0.4% 601 10.906| 8.54 dp/dl
(1992) Glass Sodium €w
Silicate in
Water
Miesener| 5.08,20.32 fuel water 13-25 [0.96-] 20-50 dp/dl
al (1992) crude water 30-42 {0.97 Wave
0.98- characteristic
0.99
|Arney et al] 1.59 waxy crude oil water 600 (0985 -- dp/dl
(1993) Glass No. 6 fuel oil water 2700 [0.989] 26.3 Ew
Ho & Li 19,73 10%v/v ECA polyamine | 2%w/w |109,091 {0.836 dp/dl
(1994) surfactant in diesel KClin Annular size
water
Andreini ef] 0.3,0.6 Miplar water 562, 920, 0.886, dp/dl
al (1997) | Borosilicate 1307 (0.889,
glass, Steel, 0.893
Copper, PVC

49



Table 1.2 Summer

of BExperimental Systems of Liguid -Liquid Inclined Flow

Authors @] D [em] Lo Lol PoPe| © Additional | Observed Flow
pipe material dyne/cm | Measurement Patterns
/r s
Sodt & Knudsen|  -60 1.89 0.98 40 dp/dl Doiw
(1972) Brass 8.6 -- Ew
180 13
Mukhopadhyay [£30 to £90 3.81 5-6 0.850 dp/dl
(1977) Lexan E
/ |Mukherjee et al [+30 to £90 3.81 5-6 [0.832) 223 dp/dl Do/w & wlo
(1981) Lexan Ew
Hill & Qolman [+30 to +90|15.2, 21.6, 11.4] 1.6 [0.80% 17 dp/dl Bo, §
(1981} Steel, Acrylic £y
Cox (1985) -15,-30 5.08 1.54 |0.756] £ S, Do/w
Plexiglass Do/w & w
Scott (1985) | +15,+30 5.08 1.54 |0.756| Tw S, Do/w
Plexiglass Doiw & w
Vigneaux ef al |+25 to +90 20 0.741 Phase Do/w
(1988) distribution
(Impedance
probe)
Zavarch et al | +85 and 18.41 2.46 |0.783 Bo, dispersed
(1988) +75 Acrylic bubbly
Tabeling ez al |+15 to +90 20 5 |0.782
(1991)
Ding etal  |+30, +45, 16.51 0.811 Ew
{1994) +60, +90 | Transparent
Kurban (1997) T+ 7.79 45 10.863 S, SM,
Stainless Steel Doiw & w,
Dwio & o
Vedapuri et a! +2 10.16 2,%6 € Semi-segragated
(1987) Acrylic Semi-dispersed
Flores (1997) |45,60,75,9 5.08 20 10.858 33.5 dP/dt Do/w CT, Do/w
0 Acrylic Euw PS, VFDo/w
(conductivity Dw/o CC,
probe) VFDw/o,
Churn TF
Hassan & Kabir [+45, +75, |  6.24,12.7 1.6 0.801 17 Eur Bo, Bw, SLo,
(1959} +85 Plexiglass SLw
Alkaya et al  |0,40.5,%1, 5.08 18 0.854] 36 dp/dl S, SM
(2000) 12 45 Acrylic Ew
Angeli ef af. 0,+5 38 5.2510.828 44.7 dp/dl 8, Do/w, Dw/o,
(2002) Stainless Steel Phase Do/w &wlo
distribution
(Impedance
probe,
conductivity
probe)
Gat (2002) 0-x30 1.44 9.7 10.835 32 £ S, W, Bo, SLo
Glass
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Table 1.3 Summery of Experimental Systems of Liquid -Liquid Vertical Upflow

Authors D [cm] Ko/ Hw! Po/Pw c Additional
pipe material dyne/cm| Measurements
Govier et al 2.64 0936 0.780 | 35.3 dp/dl
(1961) Cellulose 20.1 | 0.851 50.2 Ew
Acetate-Butyrate] 150 | 0.880 | 49.8
Brown & 2.64 21.5 | 0.850 | 50.34 dp/dl, e
Govier Cellulose Bubble size &
(1961) |Acetate-Butyrate velocity
Vigneaux et 20 0.741 Phase distribution
al (1988) (Impedance probe)
Zavareh et al 18.41 246 | 0.783 52.2 dp/dl
(1988) Acrylic Ew
Hasan & 6.35,12.7 1.544 | 0.756 Ew
Kabir (1990)] Plexiglass
Flores (1997) 5.08 20 | 0.858 | 335 dP/dl
Acrylic Ew
Hamad et al 7.78 1.6 | 0.803 17  |Drop size, velocity
(2000) Perspex ** |& distribution (dual
optical probe)
Simmons & 6.3 1.125 | 0.684 10  |Drop size, velocity
Azzopardi PVC & distribution
(2001) (Par-Tec 300C,
Malvern 2600)
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