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1 General Description of Liquid-Liquid Flows: Flow Patterns

Flows of two immiscible liquids are encountered in a diverse range of processes and
equipments. In particular in the petroleum industry, where mixtures of oil and water are
transported in pipes over long distances. Accurate prediction of oil-water flow charac-
teristics, such as flow pattern, water holdup and pressure gradient is important in many
engineering applications. However, despite of their importance, liquid-liquid flows have
not been explored to the same extent as gas-liquid flows. In fact, gas-liquid systems rep-
resent a very particular extreme of two-fluid systems characterized by low-density ratio
and low viscosity ratio. In liquid-liquid systems the density difference between the phases
is relatively low. However, the viscosity ratio encountered extends over a range of many
orders of magnitude. Table 1.1 summarizes experimental studies reported in the liter-
ature on horizontal oil-water pipe flows, while studies on inclined and vertical systems
are summarized in Table 1.2 and 1.3. (The tables can be found at the end of the end
of this article before the bibliography). These tables reflect the wide range of physical
properties encountered. Moreover, oils and oil-water emulsions may show a Newtonian or
non-Newtonian rheological behavior. Therefore, the various concepts and results related
to gas-liquid two-phase flows cannot be readily applied to liquid-liquid systems.

Diverse flow patterns were observed in liquid-liquid systems. In most of the reported
studies the identification of the flow pattern is based on visual observations, photo-
graphic/video techniques, or on abrupt changes in the average system pressure drop. In
some recent studies, the visual observation and pressure drop measurements are backed-
up by conductivity measurements, high frequency impedance probes or Gamma den-
sitometers for local holdup sampling, or local pressure fluctuations and average holdup
measurements (see Tables 1.1 to 1.3). The flow patterns can be classified into four basic
prototypes: Stratified layers with either smooth or wavy interface; Large slugs, elongated
or spherical, of one liquid in the other; A dispersion of relatively fine drops of one liquid
in the other; Annular flow, where one of the liquids forms the core and the other liquid
flows in the annulus. In many cases, however, the flow pattern consists of a combination
of these basic prototypes.

Sketches of various possible flow patterns observed in horizontal systems are given
in Figure 1.1. Stratified flow with a complete separation of the liquids may prevail for
some limited range of relatively low flow rates where the stabilizing gravity force due to
a finite density difference is dominant (Figure 1.1a). It is possible that one of the layers is
discontinuous, and the flow structure is stratified layers of a free liquid and a dispersion
of the other liquid (Figure 1.1c-d). With increasing the flow rates, the interface displays a



wavy character with possible entrainment of drops at one side or both sides of the interface
(Figure 1.1b, 1.1e-g). The entrainment process increases with increasing the flow rates.
When the lighter and heavier phases are still continuous at the top and bottom of the
pipe, but there is a concentrated layer of drops at the interface, a three layer structure is
formed (Figure 1.1h). Eventually, for sufficiently high water flow rate, the entire oil phase
becomes discontinuous in a continuous water phase resulting in an oil-in-water dispersion
or emulsion (Figure 1.1i). An emulsion is a stable dispersion. Vice versa, for sufficiently
high oil flow rate, the water phase may be completely dispersed in oil phase resulting
in a water-in-oil dispersion or emulsion (Figure 1.1j). It is also possible for oil-in-water
and water-in-oil dispersions to coexist. Impurities and high mixture velocities may yield
a foam like structure of intensively intermixed oil and water, possibly with occasional
appearance of clusters of one of the liquids.
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There are operating conditions under which an oil-in-water dispersion will change to
water-in-oil dispersion. This phenomena is referred in the literature as phase inversion
and is associated with an abrupt change in the frictional pressure drop (see Figure 15 in
Brauner, 1998). 1

Under certain conditions, the oil and water may stabilize in annular-core configuration
(Figures 1.1k-`). The flow of a viscous oil in a core, which is lubricated by a water film in
the annulus (core flow), is most attractive from the viewpoint of pressure drop reduction
in transportation of highly viscous oils. With increasing the water rate, the viscous core
breaks up to either large slugs and bubbles, (Figure 1.1q) or into oil dispersion flowing in
a continuous water phase (Figure 1.1i or q). It is possible to have also “inverted” annular
flow with the oil flowing in the annulus (Figures 1.1` or n). Comparison of experimental
flow pattern maps reported in the literature for horizontal oil-water systems of relatively
low viscosity ratio, µo/µw < 100 and ∆ρ/ρw ≥ 0.1 (shown in Brauner, 1998, Figure 2)
indicated a general similarity between the sequence of the observed flow patterns and
the stratified flow boundaries, but differences in the classification of the various dispersed

1 A copy of this reference can be downloaded from http://www.eng.tau.ac.il/∼brauner/LL-Flow
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flow regimes and the associated transitional boundaries. However, some of the reported
transitional boundaries actually represent gradual changes in the dispersions structure
and the associated pressure drop, and are therefore susceptible to subjective judgment
and variations. When the water is the continuous phase, oil viscosity seems to have a
minor effect on the flow patterns. However, the oil viscosity affects the location of the
phase inversion from Dw/o to Do/w. The input water-cut, Uws/Um required to invert
the dispersion decreases with increasing the oil viscosity. Core flow (water annulus) is
usually not obtained in oil-water systems of relatively low oil viscosity and relatively high
∆ρ.

As in gas-liquid systems, the flow pattern depends on the liquids flow rates and
physical properties, tube diameter and inclination. However, due to the relatively low
density differential between the two-fluids, the role of gravity in liquid-liquid systems
diminishes. Therefore, wall-wetting properties of the liquids and surface tension forces
become important and may have a significant effect on the flow pattern. For instance,
in stratified flow the interface between the liquid phase is not necessarily planar. The
common assumption of a plane interface (Fig. 1.2a) is appropriate for horizontal gas-liquid
systems, which are dominated by gravity. In fact, systems of low density differential as
oil-water systems, resemble reduced gravity systems and capillary systems, where surface
forces become important. The wetting liquid tends to climb over the tube wall resulting
in a curved (concave or convex) interface (Fig. 1.2b or h). Stratified flows with curved
interfaces in liquid-liquid systems have been obtained both experimentally (Valle and
Kvandel, 1995, Angeli et al., 2002, Gat, 2002) and in numerical simulations (Ong et
al., 1994). The possible stratified flow configurations extend from fully eccentric core
of the upper phase (Fig. 1.2c) to fully eccentric core of the lower phase (Fig. 1.2g).
Hydrodynamic forces may also cause the core phase to detach from the wall surface
to form an eccentric core-annular configuration. However, due to a density differential
between the core phase and the annular phase, the core usually stabilizes in an eccentric
position (Fig. 1.2d or f) rather than in a concentric position (Fig. 1.2c). Break-up of the
top (or bottom) wall film due to the float-up tendency of light (or heavier) core phase
results in stratification of the fluids.

The occurrence of annular flow in liquid-liquid systems is therefore more frequently
encountered in oil-water systems of low density differential, ∆ρ and small diameter tubes.
These systems are characterized by a small non-dimensional Eotvös number, EoD =
∆ρgD2

8σ ¿ 1 and resemble micro-gravity systems. In such systems, an annulus of the
wetting phase (surrounding a core of the non-wetting phase) is a natural configuration
which complies with surface tension forces and wall-adhesion forces. However, for specified
operational conditions, different flow patterns may result by changing the tube material
(hydrophobic or hydrophilic). The start-up procedure (oil flowing in the pipe and then
introducing water or vice versa), which affects the effective liquids-wall adhesion, or entry
conditions (type of nozzle used to introduce the two-liquids) are also important factors
in controlling the flow pattern.

In vertical upward flow and low oil viscosities, the observed flow patterns typically
include oil drops, bubbles or slugs in water, transitional flow (TF, churn), water drops
in oil and oil-in-water or water-in-oil emulsions (see Figure 5.3, Section 5). The physical
interpretation of flow patterns transitions is similar to that described for vertical gas-
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liquid systems. However, the clearly defined bullet-shaped bubbles that characterize slug
flow in gas-liquid slug flow are normally not observed in oil-water systems. The churn flow
is characterized as intermittent flow of complex and irregular structures of continuous
oil phase (oil-dominated) and continuous water phase (water-dominated). The drops size
decreases with increasing the mixture velocity, and for high velocity the liquids, either
homogeneous Dw/o or Do/w of fine droplets are formed.

The organized flow pattern data on inclined liquid-liquid systems in the literature is
rather limited (see Table 1.2). In large EoD systems, a considerable drift between the
lighter oil phase and water phase exists at low mixture velocities. Under such conditions,
even a moderate inclination from the vertical affects intermittency in the flow with regions
of back-flow of the heavier phase (Vigneau et al., 1988 and Flores et al., 1997, Figure 7
shown in Brauner, 1998). It is to be noted that the stratified pattern typically vanishes
for steeper upward inclinations than ≈ 30o, compared to gas-liquid systems where the
stratified flow vanishes already for shallow upward inclinations.
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Counter-current liquid-liquid flow is frequently encountered in the process industry.
Figure 1.3 shows a schematic description of the flow patterns obtained in a column in
counter-current flow of relatively low flow rates (Ullmann, et al., 2001). In a vertical
column (Figure 1.3a), the basic flow pattern is dispersed flow, with either the heavy
phase dispersed in the light phase (light phase dominated, LPD), or the light phase
dispersed in the heavy phase (heavy phase dominated, HPD). These two configurations
of dispersed flow can be simultaneously obtained in the column, separated by an interface.
The latter can be placed at any position along the column by manipulating the resistance
at the heavy phase outlet. With a sufficiently low (high) resistance, the flow pattern in
the entire column is LPD (HPD), respectively. In systems of EoD À 1, the phases tend
to segregate with a slight off-vertical positioning of the column (Figure 1.3b). The two
configurations obtained in this case correspond to stratified-dispersed flow both in the
HPD (Do/w&o) and in the LPD (Dw/o&w) zones. Further inclining the tube results in
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a complete segregation of the phases. In an inclined tube (Figure 1.3c), the basic flow
pattern in both zones is stratified flow with either a wavy or smooth interface. The flow
in the HPD (LPD) zone corresponds to a thick (thin) layer of the heavy phase flowing
counter-currently to a thin (thick) layer of the light phase. Similarly to the operation of
a vertical column, the location of the interface between these two zones can be controlled
by adjusting the resistance at the heavy phase outlet. Thereby, the entire column can be
occupied by either one of these two flow configurations, or by both of them.

The various flow patterns are associated with different pressure drop, in situ holdup,
heat transfer coefficient and other related phenomena, such as fouling and corrosion of the
pipe. Therefore, generalized models which attempt to cover the whole range of different
liquid properties and different flow patterns (e.g. Charles and Lillelcht, 1966, Theissing,
1980) can only be approximate. The accepted approach today consists of predicting
the flow pattern under specified operational conditions (see Section 5) and applying an
appropriate model (see Sections 2,3,4).

2 Stratified Flow

Stratified flow is considered a basic flow pattern in horizontal or slightly inclined liquid-
liquid systems of a finite density differential, since for some range of sufficiently low flow
rates, the two liquids phases tend to segregate. The modeling of liquid-liquid stratified
flows requires the consideration of additional aspects in comparison to gas-liquid stratified
flows. Due to the variety of physical properties that may be encountered, it is not a priori
evident which of the phases is the faster (for specified operational conditions). Therefore,
the ambiguity concerning the appropriate closure law for representing the interfacial shear
is even greater than in the case of gas-liquid flows. Multiple solutions can be obtained
for specified operation conditions in co-current and counter-current inclined flows, which
are relevant in practical applications. Moreover, as a result of the relatively low density
difference, surface tension and wetting effects become important, and the interface shape
(convex, concave, plane) is an additional field that has to be solved.
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The stratified flow configuration and coordinates are illustrated in Figure 2.1. A
configuration of a curved interface is associated with a different location of the triple
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point (TP) and thus, with a variation in the contact area between the two fluids and
between the fluids and the pipe wall. Depending on the physical system involved, these
variations can have prominent effects on the pressure drop and transport phenomena. On
the other hand, the feasibility of obtaining exact solutions for stratified flows is restricted
to laminar-laminar flows, which are of limited relevance to practical applications of gas-
liquid two phase flows. However, laminar flow in both phases is frequently encountered
in liquid-liquid systems.

Given the location of the fluids interface, the 2-D velocity profiles in steady and
fully developed axial laminar flow of stratified layers, u1(x, y), u2(x, y) are obtained via
analytical or numerical solutions of the following Stokes equations (in the z direction, see
Figure 2.1):

µ1

(
∂2u1

∂x2
+

∂2u1

∂y2

)
=

∂P1

∂z
− ρ1g sinβ ; µ2

(
∂2u2

∂x2
+

∂2u2

∂y2

)
=

∂P2

∂z
− ρ2g sinβ (2.1)

The required boundary conditions follow from the no-slip condition at the pipe wall and
continuity of the velocities and tangential shear stresses across the fluids’ interface. For
a given axial pressure drop, the solution for u1 and u2 can be integrated over the fluids
flow cross sections to yield the corresponding volumetric flow rates Q1 and Q2. From the
practical point of view, we are interested in a solution for the pressure drop and flow
geometry (interface location) for given flow rates. However, the inverse problem is much
more complicated, since the shape of fluids interface is, in fact, unknown.

2.1 The interface shape

The location of the interface can be obtained by considering the Navier-Stokes equations
in the y and x directions:

∂Pj

∂y
+ ρj g cos β = 0 ;

∂Pj

∂x
= 0 ; j = 1, 2 (2.2)

Note that equations (2.2) yield ∂
∂y (∂Pj/∂z) = 0 and ∂

∂x (∂Pj/∂z) = 0. Thus, the pressure
gradient in the axial direction is the same for the two fluids (∂P1/∂z = ∂P2/∂z = dp/dz).
Integration of (2.2) in the y direction yields a linear variation of the pressure in this
direction due to the hydrostatic pressure:

P1 = P1i − ρ1(y − η)g cosβ ; P2 = P2i − ρ2(y − η)g cos β (2.3)

where P1i, P2i are the local pressures at either side of the fluids interface, at y = η(x). For
an axial, fully developed flow, the hydrodynamic stresses normal to the fluids interface
vanish. In this case, the equation for the interface location evolves from the condition of
equilibrium between the pressure jump across the interface and the surface tension force:

P2i − P1i =
σ

Ri
(2.4)
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where σ is the surface tension (assumed constant) between the two fluids and Ri is the
local radius of the interface curvature:

Ri =
{

d

dx

dη/dx

[1 + (dη/dx)2]1/2

}−1

= −
{

d

dη

dx/dη

[1 + (dx/dη)2]
1
2

}−1

(2.5)

The interfacial curvature in the axial direction is infinite. Equation (2.4) is the well-known
Laplace (1806) formula that can be put in the following form:

σ
d

dx

{
dη/dx

[1 + (dη/dx)2]
1
2

}
− (ρ1 − ρ2)ηg cos β = const = λ (2.6)

Equation (2.6) is a non-linear differential equation for η(x). Thus, for the flow field under
consideration, the position of the fluids interface can be obtained by solving the quasi-
static situation. The solution for η(x) should comply with the wettability condition at
the pipe wall and symmetry with respect to the y axis. It is also constrained by the fluids
in-situ holdup available in the flow.

The same differential equation (2.6) can be also obtained from the variational prob-
lem of minimizing the total system free energy (Bentwich, 1976, Gorelik and Brauner,
1999). Given the fluids holdup, the components of the free energy, that are subject to
variation with changes in the interface shape, are the potential energy in the gravity field
and the surface energy (due to the liquids contact with the pipe wall and the liquid-liquid
interface). The fact that the same differential equation evolves suggests that the formula-
tion of a variational problem that minimizes the system potential and surface energies is
consistent with the hydrodynamic equations for unidirectional and fully developed axial
flow. Hence, no other energies (such as the fluids kinetic energies) should be included in
the analysis. Equation (2.6) was solved numerically by Bentwich (1976) and analytically
by Gorelik and Brauner (1999) and Ng et al., (2001) in terms of elliptical integrals. The
analytical solution includes the shape of the interface, η(x) and the dimensionless cap-
illary pressure, Λ = 4λ/(∆ρg cosβD2), in terms of three dimensionless parameters: the
Eotvös number, EoD, the fluid/wall contact angle, α and the fluids holdup. The function
η(x) determines the geometry of the fluids distribution in the pipe cross section and con-
tact with the pipe wall, whereas Λ is required for calculation of the pressure distribution.

An important point to realize is, that in a pipe, the interface shape varies with the
fluids holdup. This is demonstrated in Figure 2.2 where the solutions for η(x) are given for
a constant Eotvös number and different fluids holdup. The case of α = 90o (Figure 2.2a)
corresponds to equal wettability of the two fluids. In this case, the interface is convex
for relatively low holdup of the lower phase, ε1 < 0.5 and concave for ε1 > 0.5. For the
particular case of ε1 = ε1p = 0.5, the interface is plane, since this configuration satisfies
the wettability condition at the solid wall. When the upper phase is the more wetting
phase (α > 90o), ε1p increases, as shown in Figure 2.2b (for α = 165◦, ε1p ' 0.996). The
value of ε2p = 1−ε1p approaches zero as α → π (ideal wettability of the lighter phase) and
the interface is convex independently of the fluids holdup. Similarly, ε1p → 0 as α → 0
and the interface is always concave. However, for partial wettability (α 6= 0, π), there
is a particular value of holdup, ε1p, where adhesion forces to the wall are just balanced
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at the triple point and the system behaves as pseudo gravitational - the interface is
plane independently of the Eotvös number. For ε1 6= ε1p the interface curvature increases
with reducing EoD. The dependence of the interface shape on the fluids holdup is a
basic difference between pipe flow and channel flow. In a rectangular cross section, the
interfacial shape is invariant with the fluids holdup, except for extremely low holdup of
one of the phases, where the interface shape may be constrained by the contact with
either the upper, or lower wall.

The variation of the TP point location with the holdup and the Eotvös number can
be studied in view of Figure 2.3. The location of the TP point corresponding to a plane
interface is given by the curve for EoD → ∞, when surface forces vanish. The other
extreme of no gravity force is described by the curve of EoD = 0. The figure shows that
the location of the TP (represented by φ0, see Figure 2.1) deviates from that predicted by
a plane interface (φP

0 ) already for EoD = 200. Figure 2.3a is for almost ideal wettability
of the upper phase (α = 1750). For this case ε2p → 0 and the interface is practically
convex for any non-vanishing value of the capillary number, φ0 < φP

0 . The effect of EoD

becomes less pronounced as α → 900 (Figure 2.3b).

2.2 Constant curvature approximation for the interface shape

Exact analytical solutions for the velocity profiles u1(x, y), u2(x, y) in laminar flows can
be obtained when the fluids interface can be described by a constant curvature curve. In
this case, the bipolar coordinate system can be applied to obtain a complete analytical
solution for the velocity profiles, distribution of shear stresses along the pipe wall and
fluids interface, axial pressure drop and in-situ holdup, in terms of prescribed flow rates
and fluids viscosities (Bentwich, 1964, Brauner et al.,1995, 1996a, Moalem Maron et
al., 1995). Otherwise, given the location of the interface η(x), numerical schemes must
be used for solving the Stokes equations (2.1)(see Ng et al., 2002). The assumption of
a constant curvature is trivially satisfied for a zero interfacial surface tension, where
Ri → ∞ in eq. (2.4). In this case, the interface is plane with a zero pressure difference
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across the interface, and the flow geometry can be described by the thickness of the
(lower) fluid layer, h (Figure 2.1). Analytical solutions for flow with a plane interface are
given in several publications (Semenov and Tochigin 1962, Bentwich 1964, Ranger and
Davis 1979, Brauner et al., 1996a). However, in view of eq. (2.6), the assumption of a
constant interfacial curvature is evidently also valid when the effect of the gravitational
field is negligible, as under microgravity conditions or when ρ2 ' ρ1, whereby EoD → 0.

In an attempt to bridge the gap between large and small Eotvös numbers, Brauner
et al., (1996b) modelled the shape of the interface by a constant characteristic interfacial
curvature. The appropriate characteristic interfacial curvature was derived by formulating
the variational problem of minimizing the sum of the system potential (Ep) and surface
energies (Es) with approximate configurations that are described by a priori unknown
constant curvature. The curvature and the location of the TP are subject to variations,
which are constrained by a prescribed holdup.

In case the interface is of constant curvature, the flow configuration can be described
in terms of two variables: φ0 and φ∗ (Fig. 2.1). The view angle of the interface from
a point on the upper wall, φ0 determines the distribution of the two phases over the
tube wall. The interface curvature is determined by φ∗, which is the view angle of the
two triple points (TP) from a point situated on the phases interface. Given φ0 and φ∗,
geometrical relationships yield the phases flow areas (A1 and A2) contact lengths with
the tube wall (S1 and S2) and interface length, Si (see Table 2.1). A plan interface
is described by φ∗ = π. Convex interfaces are described by φ∗ less than π, up to the
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limit of φ∗ = 0, φ0 = 0, which corresponds to a fully eccentric core of the lower phase
touching the tube bottom. Concave interfaces are described by φ∗ > π, up to the limit
of φ∗ = π φ0 = 2π, which corresponds to a fully eccentric core of the upper phase. It is
to be noted that φ∗ is always bounded between φ0 and φ0 + π.

Taking a configuration of plane interface as a reference (φ∗ = π and φ0 ≡ φP
0 ), the

expression obtained for the system free energy for curved interface reads:

∆Ẽ

L
=

∆Es + ∆Ep

LR3(ρ1 − ρ2)g cos β
=

[
sin3 φ0

sin2 φ∗
(ctgφ∗ − ctgφ0)

(
π − φ∗ +

1
2

sin(2φ∗)
)

+
2
3

sin3 φP
0

]
+ Eo−1

D

[
sin φ0

(π − φ∗)
sin φ∗

− sin φP
0 + cos α(φP

0 − φ0)
]

(2.7)

Table 2.1: Geometrical relationships for curved and plane interfaces

Curved interface, φ∗ 6= π Plane interface, φ∗ = π

Ã = A
D2 π/4 π/4

Ã2 = A2
D2

1
4

{
π − φ + 1

2
sin(2φ)−

(
sin φ0
sin φ∗

)2 [
π − φ∗ + 1

2
sin(2φ∗)

]}
1
2

[
π − φP

0 + 1
2

sin(2φP
0 )

]

Ã1 = A1
D2

1
4

{
φ0 − 1

2
sin(2φ0)− sin2 φ0

sin2 φ∗
[
φ∗ − π − 1

2
sin(2φ∗)

]}
1
4

[
φP

0 − 1
2

sin(2φP
0 )

]

S̃2 = S2
D

π − φ0 π − φP
0

S̃1 = S1
D

φ0 φP
0

S̃i = Si
D

(π − φ∗) sin(φ0)/ sin(φ∗) sin(φP
0 )

Ũ2 = U2
U2S

π/

{
π − φ0 + 1

2
sin(2φ0)−

(
sin φ0
sin φ∗

)2 [
π − φ∗ + 1

2
sin(2φ∗)

]}
π/

[
π − φP

0 + 1
2

sin(2φP
0 )

]

Ũ1 = U1
U1S

π/

{
φ0 − 1

2
sin(2φ0) +

(
sin φ0
sin φ∗

)2 [
π − φ∗ + 1

2
sin(2φ∗)

]}
π/

[
φP

0 − 1
2

sin(2φP
0 )

]

Given EoD, α and ε1 = A1/A, the equilibrium interface shape is determined by φ0 and φ∗

which correspond to a minimum of ∆Ẽ subject to the constraints:

ε1 =
1

π

{
φ0 − 1

2
sin(2φ0) +

(
sin φ0

sin φ∗

)2 [
π − φ∗ +

1

2
sin(2φ∗)

]}
; φ∗ 6= π

ε1 =
1

π

[
φP

0 − 1

2
sin(2φP

0 )

]
; φ∗ = π (2.8)

The particular φ∗ which corresponds to minimal energy is thus a function of the three
non-dimensional parameters φ∗ = φ∗(EoD, α, holdup) = φ∗(EoD, α, φ0). Note that in the ap-
proximate solution, the φ∗ only approximately satisfies the wettability condition. However, in
the extremes of EoD = 0 or EoD → ∞, (where also the exact interfacial shapes correspond to
a constant curvature) the approximate and exact solutions coincide.

φ∗(φ0, α) = π ⇒ plane interface; EoD →∞
φ∗(φ0, α) = (π − α) + φ0; EoD → 0 (2.9)
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The largest deviations of the approximate solution were obtained for EoD ' 0.5 ÷ 1 and
ideal wettability of either of the phases. However, Figure 2.4a shows that even in this range of
parameters, the approximate solution closely follows the exact solution in describing the effect
of the holdup on the curving of the interface. Figure 2.4b summarizes results for φo obtained
with various contact angles and shows that the comparison improve as α → π/2. The largest
deviations are for α → 180◦(or α → 0◦). However, for α = 135◦ (or 45◦) the differences between
the two solutions are already un-noticeable.
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Exact solution
Brauner at al (1996b) model

The results obtained for the interface shape, which corresponds to minimum energy of
eq. (2.7), have been used to construct the so-called ‘interface monograms’ (Fig. 9 in Brauner,
1998). Given the Eotvös number and the wall/phases adhesion properties as reflected by the
contact angle, a curve relating the interfacial curvature, φ∗, to the phases distribution angle
φ0, is obtained. Each point along an interface monogram is associated with a different holdup.
That form of the interface monogram can be conveniently combined with the solution of the
flow problem, where the phases in situ holdup is obtained via the solution of the flow equations
(see Figure 2.5 below).

2.3 Exact solutions of two-phase laminar pipe flow (LPF)

The appropriate coordinate system for solving the flow problem, for stratified flow with a curved
interface is the well-known bipolar coordinate system. Coordinate φ represents the view angle of
the two triple points (TP) from an arbitrary point in the flow domain (Figure 2.1). Coordinate
ξ relates to the ratio of the radius vectors r1, r2 (ξ = ln(r1/r2)). The pipe perimeter and the
interface between the fluids are isolines of coordinates φ, so that the upper section of the tube
wall bounding the lighter phase is represented by φo, while the bottom of the tube, bounding
the denser phase, is represented by φ = φ0 +π. The interface coincides with the curve of φ = φ∗.
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Thus, the two-phase domains map into two infinite strips in the (φ, ξ) domain and are defined
by:

Upper phase : −∞ < ξ < ∞ ; φ0 < φ < φ∗

Lower phase : −∞ < ξ < ∞ ; φ∗ < φ < φ0 + π (2.10)

Analytical solutions of the Stokes equations for horizontal stratified flow with an interface of
an arbitrary curvature were explored by Brauner et al., (1995, 1996a). In these studies, analytical
expressions in terms of Fourier integrals in the bipolar coordinate system were provided for the
velocity profiles (ũ1,2 = u1,2/UR and the distribution of shear stresses over the tube wall (τ1, τ2)
and free interface (τi) (see also Moalem Maron et al, 1995):

ũ2(φ, ξ) = 2 sin φ0{ sin(φ− φ0)

cosh ξ − cos φ
+2(1− 1/µ̃)

sin(φ∗ − φ0)

sin(φ∗)

∫ ∞

0

W2v(ω, φ) cos(ωξ)dω} (2.11)

ũ1(φ, ξ) = 2
sin φ0

µ̃
{ sin(φ− φ0)

cosh ξ − cos φ
+ 2(1− 1/µ̃)

sin(φ∗ − φ0)

sin(φ∗)

∫ ∞

0

W1v(ω, φ) cos(ωξ)dω} (2.12)

where: UR = D2

16µ2
(−∂P

∂z
), µ̃ = µ1/µ2, and the spectral functions are given by:

W2v(ω, φ) =
sinh[ω(φ∗ − π)]

ψ(ω) sinh(πω)

sinh[ω(φ− φ0)]

cosh[ω(φ∗ − φ0)]
(2.13)

W1v(ω, φ) =
sinh[ω(φ∗ − π)]

ψ(ω) sinh(πω)

sinh[ω(φ− π − φ0)]

cosh[ω(φ∗ − π − φ0)]
(2.14)

ψ(ω) = tanh[ω(φ∗ − φ0)] + tanh[ω(π + φ0 − φ∗)]/µ̃ (2.15)

Thus:
ũ1,2 =

u1,2

UR
= ũ(φ0, φ

∗, µ̃); τ̃ 1, τ̃ 2, τ̃ i = τ̃ (φ0, φ
∗, µ̂) (2.16)

where τ̃ = τ
τR

; τR = R
2

(− dp
dz

)
. Note that the velocity and shear stress scales used for normaliza-

tion include the unknown pressure drop. The phases flow rates are obtained by integrating the
phases velocities over the corresponding flow areas A1 , A2 (see Table 2.1). For a given pressure
drop and a viscosity ratio, the integration yields Q1 and Q2 as functions of (φ0, φ∗, µ̃, dp/dz).
The ratio of the two fluids flow rates, however, is independent of the system pressure drop;
q = Q1

Q2
= q(φ0, φ∗, µ̃). The corresponding pressure drop (normalized with respect to the su-

perficial pressure drop of the upper fluid) is
(

dP̃2
dZ

)
= (−dp/dz)

(dp/dz)2s
= dP̃2

dZ
(φ0, φ∗, µ̃). Therefore,

once the fluids viscosities and flow rates are known, the solution of the flow equations provide a
relationship between φ0 and φ∗:

φ0 = φ0(φ
∗) → Flow Monogram for specified µ̃ and q (2.17)

Once the interface curvature is also specified, for instance, a plane interface (φ∗ = π), the corre-
sponding φ0 can be obtained, and then the system pressure drop, dimensional velocity profiles
and shear stress profiles can be computed. However, the interfacial curvature should comply
with the continuity of normal stresses (pressure and surface tension forces) across the interface
and with solid/fluids adhesion forces (contact angle). Hence, the closure relationship needed for
the interfacial curvature is provided by the system ‘interface monogram’ φ∗ = φ∗(EoD, α, φ0)
as described in Section 2.2.

A convenient frame for obtaining a complete solution (which includes the interface curvature)
is via the construction of the system ‘operational monograms’ (Fig. 2.5). These monograms
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combine the system ‘interface monogram’ (dashed curves) with the system ‘flow monograms’.
The intersection points of the ‘interface’ and ‘flow’ monograms represent all stratified flows
solutions obtained for various Q2/Q1 ratios. Fig. 2.5 indicates that for a given physical system
parameters (µ̃, α, EoD) and operational conditions Q2/Q1, there exists a single solution (φ∗, φ0)
which determines the resulting flow characteristics. Fig. 2.5a shows that as EoD decreases,
the solutions for the flow configuration correspond to stratified flow with curved interfaces
(φ∗ 6= 1800). The interfacial curvature increases with decreasing EoD. Stratified configurations
with curved interfaces may also be obtained in systems of low Eotvös number with partial
wettability of the fluids (Fig. 2.5b for 0 < α < 180o). But, for EoD → 0 and ideal wettability
of either one of the phases (α = 0 or α = 1800 in Fig. 2.5) the solutions obtained correspond to
fully eccentric core-annular configuration, irrespective of the phases flow rates (and viscosities).
When the upper phase is the wetting phase, α = 0, the solution is φ0 = 1800, φ∗ = 3600, which
corresponds to a fully eccentric core of the upper non-wetting phase touching the upper tube
and surrounded by an annulus of the wetting phase. For α = 1800, the solution is φ0 = 0 and
φ∗ = 0, in which case the lower phase forms a fully eccentric core at the tube bottom, which is
surrounded by the upper wetting phase. Indeed, the occurrence of annular flow in liquid-liquid
system is more frequently encountered in oil-water systems of low density differential and small
diameter tubes, which are characterized by small Eotvös number.

Exact solutions of the Stokes equations (2.1) for inclined flows assuming a plane interface
between the fluids (φ∗ = π) were obtained by Masliyah and Shook, 1978, Biberg and Halvodsen,
2000 and Goldstein, 2002, (see Ullmann et al, 2004). These solutions are valid only for large
EoD systems.

2.4 The modified two-fluid (MTF) model

For laminar stratified flows, exact solutions of the Stokes equations can be obtained, which
include the characteristic interface curvature and all the details of the local and integral flow
characteristics. But, these analytical solutions still involve extensive computations. In many
practical situations, one of the phases (or both) is turbulent. Therefore, for practical applications,
there is a need for a model which can also handle turbulent flows and mixed flow regimes in
horizontal and inclined systems. To this end, the two-fluid model was used (Brauner and Moalem
Maron, 1989, Brauner et al., 1998). The model equations presented here are in a unified form
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that is applicable both to co-current and counter current stratified flows. The inclination angle,
β is always taken as positive. In co-current flow, the superficial velocities of the phases(U1s, U2s)
are both positive in case of downward flow and negative for the case of upward flow). Assuming
a fully developed flow, the integral forms of the momentum equations for the two fluids are (see
Figure 2.1):

−A1

(
dp

dz

)
+ τ1S1 − τiSi + ρ1A1g sin β = 0

−A2

(
dp

dz

)
+ τ2S2 + τiSi + ρ2A2g sin β = 0 (2.18)

Eliminating the pressure drop yields:

τ1
S1

A1
− τ2

S2

A2
− τiSi

(
1

A1
+

1

A2

)
+ (ρ1 − ρ2) g sin β = 0. (2.19)

The closure relations for the wall and interfacial shear stresses are the modified two-fluid (MTF)
closure relations derived in Ullmann et al (2004) based on the exact solutions obtained for fully
developed stratified laminar flow. It was shown that the single-phase-based closure relations for
the shear stressed must be augmented by appropriate correction factors, which account for the
interaction between the phases. The MTF closure relations were recently generalized to make
them applicable also for cases of turbulent flow in either or both of the phases (Brauner and
Ullmann, 2004).

The generalized expressions used for the wall shear stresses are:

τ1 = −1

2
ρ1f1|U1|U1 |F1|n1 sign(F1) ; U1 =

U1s

ε
; ε ≡ ε1 =

A1

A
(2.20.1)

τ2 = −1

2
ρ2f2|U2|U2 |F2|n2 sign(F2) ; U2 =

U2s

1− ε
(2.20.2)

The friction factorsf1 and f2 are based on the Reynolds number of the corresponding layer, each
flowing as a single phase in its own channel. In case of hydrodynamic-smooth wall surface, the
Blasius-type power law expressions for the wall shear stresses can be used:

f1 =
c1

Ren1
1

; f2 =
c2

Ren2
2

(2.21.1)

with:

Re1 =
ρ1|U1|D1

µ1
; D1 =

4A1

(S1 + Si)
(2.21.2)

Re2 =
ρ2|U2|D2

µ2
; D2 =

4A2

(S2 + Si)
(2.21.3)

Given the flow regime in the two phases the constants c1,2 and n1,2 are prescribed, (e.g. laminar:
c = 16, n = 1, turbulent: c = 0.046, n = 0.2) and the single-phase-based friction factors
f1, f2 can be calculated. The factors F1 and F2 represent corrections of the single-phase based
expressions for the wall shear stresses due the interaction between the two fluids flowing in
the same channel. It is worth emphasizing that the conventional TF closure relations assume
F1 , F2 ≡ 1. The hydraulic diameters D1, D2, (used to evaluate Re1 and Re2) are, however,
adjusted according to the relative velocity of the two phases: the interface is generally considered
as ’stationary’ (wetted) with respect to the flow of the faster phase and as ’free’ with respect
to the flow of the slower phase. In the MTF closure relations, the hydraulic diameters D1,
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D2, are calculated by considering the fluids interface as ’stationary’, for both phases regardless
their relative velocity. The effects of variations of the effective hydraulic diameters due to the
interaction between the phases are embodied in the F1 and F2 factors. These are given by:

F1 =
1 + U2

U1

[
g11X

2
(

1−ε
ε

)2 − (2ε)1−n2 g12

]

1 + U2
U1

X2
(

1−ε
ε

)2 (2.22.1)

F2 =

1 + U1
U2

[
g22

1
X2

(
ε

1−ε

)2

− (2 (1− ε))1−n1 g21

]

1 + U1
U2

1
X2

(
ε

1−ε

)2 (2.22.2)

The X2 is the Martinelli parameter, representing the ratio between the superficial frictional pres-
sure drops obtained in single phase flow of either of the phases, X2 = (−dpf/(dz)1s/(−dpf/dz)2s.
In terms of the superficial Reynolds number of the two phases Re1s, Re2s) and the power law
exponents n1,2 it is given by:

X2 =
(−dpf/dz)1s

(−dpf/dz)2s
=

c1

c2

Re−n1
1s

Re−n2
2s

ρ1

ρ2
|q| q ; q =

Q1

Q2
=

U1S

U2S
(2.23)

The g11, g12, g21, g22 in Eqs.(2.22) are functions of the dimensionless wetted perimeters
S̃1, S̃2 and S̃i in the pipe geometry (S̃ = S/D):

g11 =
S̃1

S̃1 + S̃i

; g22 =
S̃2

S̃2 + S̃i

;

g12 =
4

π + 2

S̃2

S̃2 + S̃1

; g21 =
4

π + 2

S̃1

S̃2 + S̃1

(2.24)

These functions were determined in Ullmann et al (2004) based on the closure relations expected
for τ1 and τ2 in some limiting cases of stratified laminar flows.

Equations (2.20) indicate that for F1 = 1 (or F2 = 1), the wall shear stress corresponds to
that obtained in single-phase flow of the lower (or upper) fluid in its own channel. Indeed, as
U1/U2 → 0 , Eq.(2.22.2) yields F2 → 1. In this case the interface can be considered as a wall with
respect to the upper phase and the wall friction factor can be modeled based on single-phase
correlations for the friction factor. This is a typical case in gas-liquid horizontal and upward
inclined systems, where the gas velocity is usually much higher than the liquid velocity. In such
cases of U2/U1 ≡ UG/UL >> 1, and when also X2 (1− ε)2 /ε2 >> 1, Eq. (2.22.1) renders
F1 → g11 = S1/(S1 + Si). As a result, F n1

1 modifies the hydraulic diameter D1 of the slower
heavier phase (embedded in f1) to 4A1/S1 (instead of 4A1/(S1+Si)as defined in Eq.(2.21.2). This
is equivalent to considering the interface as ’free’ for the calculation of D1, as commonly assumed
in cases of U2/U1 >> 1. Obviously, similar arguments apply for the opposite case of U2/U1 << 1,
where the heavier fluid is the faster, whereby F1 → 1 and F2 → g22 = S2/(S2 +Si). Evidently,
the numerator of Eqs.(2.22) indicates that these F-interaction terms may attain negative values.
Thus, these closure relations are capable of representing the occurrence of reversed wall shear
in cases of near-wall back-flow in inclined flows (see Ullmann et al, 2004).

For the interfacial shear, the generalized MTF closure relations are:

τi =

{− 1
2
ρ1f1|U1|(ci2U2 − U1)|Fi1|n1signFi1Fiw ; | Fi1 |n1>| Fi2 |n2

− 1
2
ρ2f2|U2|(U2 − ci1U1)|Fi2|n2signFi2Fiw ; | Fi1 |≤| Fi2 |n2 (2.25.1)
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with:

Fi1 =
1

1 + U2
U1

X2
(

1−ε
ε

)2 ; Fi2 =
1

1 + U1
U2

1
X2

(
ε

1−ε

)2 (2.25.2)

ci1 =

∣∣∣∣
2q

1 + q

∣∣∣∣
1−n2

; ci2 =

∣∣∣∣
2

1 + q

∣∣∣∣
1−n1

(2.25.3)

and Fiw is an empirical wave augmentation factor.

The first point worth noting concerns the structure of the closure relation for τi. The com-
monly used TF models ignore the two-phase interaction factor (Fi ≡ 1), and τi is evaluated
based on the wall shear stress of the faster phase, replacing its velocity head by the velocity
difference τi ∝ |U2 − U1| (U2 − U1). The MTF model suggests a different structure (see Ullamnn
et al, 2004); τi should be modeled based on a characteristic velocity difference times the faster
fluid velocity. The Fi represents a correction factor due to the interaction between the flows in
the two layers. Note that 0 < Fi1, Fi2 ≤ 1. The first form in Eq.(2.25.1) corresponds to the case
where the interfacial shear is dominated by the flow of the heavy phase, whereas the second form
corresponds to a dominance by the light phase. . The use of the first form with Fi1 is convenient
in case of a much faster heavier layer. In limiting cases of U2

U1
X2

(
1−ε

ε

)2
<< 1,Fi1 → 1, the inter-

facial shear stress is in fact dominated by the flow of the lower-layer. On the other hand, in the
opposite case of a much faster upper layer,Fi2 → 1, indicating that the interfacial shear stress is
dominated by the flow of upper layer. The latter is the typical case in gas-liquid systems, where
the interfacial friction factor is assumed to be the same as the wall friction factor of the gas
phase. However, the Fi−interaction factors (Eq.(2.25.2)), and the criterion used in Eq.(2.25.21)
for switching between the two alternative expressions for τi, suggest a matching between the
solutions obtained with the two models for the interfacial shear. The MTF closure relation for
the interfacial shear thus avoids the discontinuity and other ill-effects encountered in the TF
predictions (see Ullmann et al, 2003a).

Note that an empirical correction factor of Fiw > 1 can be introduced in Eqs. (2.25.1)
to account for a possible augmentation of the interfacial shear due to irregularities at the free
interface. However, due to the lower density (hence velocity) difference and lower surface tension
encountered in liquid-liquid systems, the interface appears less roughened compared to gas-liquid
systems. The main issue here concerns the decision as to which of the liquids actually dominates
the interfacial interactions. In case of a perturbed interface, the effects of drop entrainment
and the consequential mixing at the interface, rather than the wave phenomenon, have to be
considered.

For laminar stratified flow in both phases, n1 = n2 = 1, and X2 = µ̃q, where µ̃ = µ1/µ2.
In this case the closure relations given in Eqs.(2.20) to (2.25) reduced to those presented in
Ullmann et al (2004).

Equations (2.20) to (2.25) are substituted in Eq. (2.19). Introducing non-dimensional vari-
ables (length normalized by D, area by D2 and velocities by superficial velocities U1s, U2s, see

Table 2.1), the various geometric parameters and the non-dimensional velocities Ũ1, Ũ2 are all
functions of the phases distribution angle over the tube wall, φ0 and the interface curvature φ∗.
Given the flow regime in the two-layers (c1,2 and n1,2 in eq. (2.21) are prescribed), the general
relation stated by the dimensionless form of the combined momentum equation (2.19) is:

f(X2, q, Y, φ∗, φ0) = 0 ; Flow monogram (2.26)

The three non-dimensional parameters of the solution X2, q and Y = (ρ1−ρ2)g sin β
(−dpf /dz)2s

, which evolve

through the normalization of the combined momentum equation.
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It is worth noting that for co-current flow U1s, U2s are positive in case of downward flow
and are negative both for upward flow, whereas, for counter-current flow U2s is negative, (the
light phase flows upward). Therefore, concurrent flows correspond to positive X2 with Y > 0 for
down-flow and Y < 0 for up-flow. Countercurrent flows correspond to negative X2 with Y < 0.
The number of non-dimensional parameters, which eventually define the flow monogram, depend
on the flow regime in both phases. In particular, for horizontal laminar (L-L) flows, Y = O, X2 =
(µ̃q), and as in the exact solution, the two-fluid flow monogram yields: φ0 = φ0(q, µ̃, φ∗); while for
horizontal turbulent (T-T) flows, the solution is also dependent on fluids density ratio, whereby:
φ0 = φ0(q, µ̃, ρ̃, φ∗). For mixed flow regime in the two layers, more information is needed, which
includes the superficial Reynolds number of either one of the phases. In all cases, the closure
relation for the interfacial curvature introduces two-additional non-dimensional parameters, the
Eotvös number and the wettability angle. Once a solution has been obtained for the in-situ
holdup, the corresponding pressure drop can be calculated by either of Eqs. (2.18) or from their
sum. The total pressure drop is composed of the gravitational (hydrostatic) pressure drop, which
is determined by the holdup:

(
dpg

dz

)
= [ρ1ε + ρ2(1− ε)] g sin β = [ρ2 + (ρ1 − ρ2)ε] g sin β (2.27)

and the frictional pressure gradient,(−dpf/dz). The dimensionless frictional pressure gradient
is ,

∏
f and the dimensionless difference in the hydrostatic pressure gradient,

∏
g (compared to

single phase flow of the light phase) are given by:

∏
f = −dp/dz − (dpg/dz)

(−dpf/dz)2s

;
∏

g =
(dpg/dz)− (dpg/dz)2s

(−dpf/dz)2s

= Y ε (2.28)

The results of the MTF model for the test case of 5.50 are shown in Fig. 2.6 in comparison
to the LPF solution (Section 2.3). Both the holdup and the frictional pressure gradient are close
to the values obtained by the exact LPF solution in the countercurrent and co-current regions.
It is of interest to observe the detailed variation of the holdup and frictional pressure gradients
obtained at the vicinity of 1/X2 ≈ 0 corresponding to low flow rates of the light phase (see
the enlargements of this region on Fig. 2.6.3). The LPF yields triple solutions for co-current
down-flow, which are also well predicted by the MTF model.

For comparison, the results obtained with the commonly used single phase-based closures
for the shear stresses, while ignoring the interaction between the phases (assuming F1, F2 = 1
and Fi1, Fi2 = 1) are also depicted in Figure 2.6. As shown these yield poor prediction (see
Ullmann et al, 2004a), indicating the importance of inclusion of the interaction terms in the
closure relations for the shear stresses. Very good agreements between the results of the MTF
and LPF models for the holdup and pressure gradient are obtained also for horizontal flows and
with fluids of different viscosities, µ̃ 6= 1(see Figure 2.7).

In co-current inclined flows backflow can be encountered near the pipe walls. In upward
co-current flow, downward back-flow of the heavy phase can be obtained near the lower pipe
wall. Similarly, in co-current down-flow, upward backflow of the light phase may result adjacent
to the upper wall. Since in the commonly used TF closure relations, the wall and interfacial
shear stresses are represented in terms of the averaged velocities, the direction of the wall shear
stress may be erroneous. However, these situations can be handled by the MTF model, as the
F-interaction factors may attain negative values, and thus affect a change of the direction of the
wall shear stress (Ullmann et al, 2004c).

Multiple holdups are obtained in stratified flow models in some range of operational vari-
ables. Multiple (double) holdups are inherent in counter-current flows (Ullmann et al., 2003a), up
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to the flooding point, beyond which no solution is obtained. In co-current upward or downward
flows, however, multiple (triple) holdups correspond to a limited range of operational condi-
tions. The possibility of obtaining multiple holdups in co-current up-flow was recently verified
experimentally in (Ullmann et al. 2003b) where the procedure for mapping the multiple holdup
region was also discussed.

The effects of the viscosity ratio on the multiple-holdup regions obtained by the LPF exact
solution are summarized in Fig. 2.8. Fig. 2.8b is for upward flows, showing the multiple-holdup
boundaries in terms of Y/X2vs. 1/X2. The upper part of this figure (Fig. 2.8a) is actually a
mirror image of its lower part and represents the ranges where triple solution exists in co-current
downward flows in terms of Y vs. X2. Figure 2.8 demonstrates the complete similarity between
the LPF stratified flow solutions in upward and downward co-current flows. It clearly indicates
that there is a minimal X2 (or minimal 1/X2) for co-current downward (or co-current upward)
flows for which triple solutions can be obtained. It was shown in Ullmann et al (2004c) that the
regions of the multiple solutions in the MTF model practically coincide with those of the LDF
exact solution.

19



0.8

0.6

0.4

0.2

0.0

LPF and MTF

h
o
ld

u
p

m1/m2=10

LPFMTF
m1/m2=100

10

8

LPFMTF6

4

2

0
1086420

D
im

en
si

on
le

ss
 P

re
ss

ur
e 

G
ra

di
en

t,
 p

f

X2

b=0
Y=0

LPF and MTF

m1/m2=100

m1/m2=10

(a)

(b)

Results of the application of the two fluid model with curved interface are demonstrated in
Fig. (2.9) with reference to horizontal oil-water stratified flow (see also Brauner et al, 1998).
The height of water climbing on the wall, hf = 0.5(1− cos φ0), and the location of the oil water
interface on the tube centerline, h0 = 0.5[1 − cos φ0 + sin φ0ctg(φ∗/2)], can be computed once
φ0 and φ∗ are known. The latter can be determined by combining the solution of the two-fluid
flow equations, as represented by the flow monogram for specified oil and water flow rates, with
the interface monogram for EoD = 10, α = 0. Fig. 2.9 (a and b) shows a comparison between the
experimental data for hf and h0 and the predicted values. The gap between hf and ho indicates
the extent of water climbing over the wall surface. The height of the water film increases with
increasing the water rate or reducing the oil rate, whereby the flow configuration gradually
approaches a fully eccentric core-annular configuration. Given the flow geometry, the pressure
drop can be computed by either of eqs. (2.18). Figure 2.9c demonstrates that the values predicted
for the pressure drop are also in a reasonable agreement with the experimental data indicating
a water lubrication effect.
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2.5 Conclusion

The basic configuration in liquid-liquid pipe flow is two-layers separated by a curved interface,
rather than a plane interface. Accounting for the interface curvature may have significant effects
on the predicted holdup and pressure drop. Exact solutions exist only for laminar flows. However,
the interface curvature can be handled also in the framework of the two-fluid model, which is a
useful and simple tool for practical applications.

In the two-fluid model attention must be paid to the closure laws used for the wall and
interfacial shear stresses. A crucial issue in applying the two-fluid model to gas-liquid systems
is frequently the modeling of a correction factor, which accounts for the augmentation of the
interfacial shear due to the wavy liquid interface. However, in the general case of liquid-liquid
systems, inclined flows and counter-current flows, where velocities of the two-phases are of
comparable values, the main issue concerns is the decision as to which of the fluids actually
dominates the interfacial interaction, hence fi . Also, commonly used wall shear expressions are
also problematic for inclined flow, since they are incapable of representing reversed wall shear in
cases of backflow of one of the phases in the near wall region (e.g. downward flow of the liquid
phase near the wall in co-current upward gas-liquid flows).

The MTF closure relations for the shear stresses account for the interaction between the
phases. These closure relations were formulated in terms of the single-phase based expressions,
which are augmented by the two-phase interaction factors. The expressions obtained for the
wall shear are capable for representing the change in the direction of the wall shear-stress when
gravity driven backflow of either of the phases is encountered in the near wall region. The
MTF model predictions were tested against the exact solution for laminar pipeflow and against
experimental data in turbulent stratified flows. Very good results were obtained for the pressure
drop and holdup for a wide range of dimensionless parameters in co-current and counter-current
stratified flows.
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3 Core-Annular Flow

One of the flow patterns which appears most attractive from the view point of pressure loss
reduction and power saving in the transport of viscous material is that of core annular flow
(CAF). The viscous liquid (e.g. heavy crude oil or emulsion, waxy oils) forms the core phase,
which is surrounded and lubricated by an immiscible low viscosity liquid (such as water) as
the annular phase. A schematic description of CAF is shown in Figure 3.1. A stable CAF is a
fully developed flow pattern, where the core and annular phases are distinct and continuous.
The continued interest in core-flow resulted in many experimental and theoretical studies, which
have been reviewed by Oliemans (1986), Oliemans and Ooms (1986) and Joseph and Renardy
(1992). Core flow experiments are summarized in Table 1.2. These experiments proved that if
stable core flow can be maintained, the pressure drop is almost independent of the oil viscosity
and only slightly higher than for flow of water alone at the mixture flow rate. This flow pattern
is promoted by minimizing the density difference between the oil and the lubricating aqueous
phase, increasing the oil viscosity, using additives and surface active agents for controlling and
minimizing the emulsification of water into the oil, using hydrophilic pipe material to keep
the oil from sticking to the wall and injecting the liquids into the pipe already in this desired
configuration.

Due to density difference between the core and annular liquids, the core may stabilize in
an off-center position resulting in an eccentric core flow. A steady eccentric core flow is feasible
when the overall vertical components of the viscous forces are in a dynamic equilibrium with
the buoyancy force (due to the density differential). Stabilizing hydrodynamic forces may evolve
due to core eccentricity and interfacial waviness (Ooms et al., 1984, 1985, Oliemans and Ooms,
1986, Ooms and Poesio, 2003). The development of a wavy core interface is believed to be
a necessary condition for core flow stabilization. However, a critical (minimal) oil superficial
velocity and water/oil ratio are required to maintain the core at a sufficiently ’safe’ eccentricity,
to avoid contamination of the upper tube wall by the waxy oil core. Below a critical oil velocity,
a transition to stratified flow takes place with excursion of the pressure drop. The prediction of
core-flow boundaries is discussed in Section 5.
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3.1 Exact solution for laminar CAF

Models of laminar CAF are relevant for practical applications in particular for the case of CAF
of highly viscous oils. The solution of the Stokes equations (2.1) for eccentric core annular flows
in horizontal pipes was obtained in terms of Fourier Series in the bipolar coordinate system
(Figure 3.2a). When dealing with eccentric core-annular flow, the tube wall is represented by
ξ = γw, while the two-fluid interface coincides with ξ = γc. Hence, the eccentric core-annular
configuration in the x-y domain maps into a semi-infinite strip in the (φ, ξ) domain defined by:

Annular phase : γw < ξ ≤ γc ; 0 ≤ φ ≤ 2π

Core phase : γc < ξ < ∞ ; 0 ≤ φ ≤ 2π (3.1)

γc = cosh−1

[
(ξc + 1)− E2(ξc − 1)

2E

]
; ξc =

R

Rc

γw = cosh−1

[
(ξc + 1) + E2(ξc − 1)

2Eξc

]
; E =

e/R

1− 1/ξc
(3.2)

where Rc is the core radius and e is the core (dimensional) eccentricity. Given the core eccen-
tricity, e, and diameter, Rc, the solution yields the non-dimensional velocity profiles for the
core (uc)and annular (ua) phases (Bentwich et al., 1970), which can be used to compute the
dimensionless wall shear stress and interfacial shear stress profiles:

ũa,c =
ũa,c

UR
= ũ

(
Rc

R
,

e

R
, µ̃

)
; µ̃ =

µc

µa
; UR =

R2

4µa

(−dp

dz

)
; τ̃a, τ̃i, = τ̃(R̃c, ẽ, µ̃) (3.3)

Integration of the velocity profiles over the phases flow cross section yields:

Q̃ =
Qc

Qa
= Q̃(R̃c, ẽ, µ̃) ;

dP̃c

dZ
=

(−dp/dz)

(−dp/dz)cs
=

dP̃c

dZ
(R̃c, ẽ, µ̃) (3.4)
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For concentric core, the solution for eccentric core converges to the simple explicit solution
obtained by Russel and Charles, 1959:

εc

1− εc
= µ̃


−1 +

(
1 +

Q̃

µ̃

) 1
2

 ; εc =

Ac

A
= D̃2

c

dP̃c

dZ
=

1

ε2
c [1 + 2(ε−1

c − 1)µ̃]
(3.5)

which for highly viscous concentric core, µ̃ ¿ 1 yields:

D̃2
c = εc =

Q̃

2 + Q̃
;

dP̃c

dZ
=

(2 + Q̃)2

4µ̃Q̃
(3.6)

This solution indicates that in the limit of very viscous core flow, the pressure drop reduction
factor achieved by the lubricating annular phase is proportional to 1/µ̃ (dP̃c/dZ → ∞ as µ̃ →
∞).

But the solution for eccentric core-annular flows fails in the other extreme of fully eccentric
core. In this limit, both γc and γw are zero and the annular phase domain degenerates to a line,
ξ = 0. The same problem arises when the bipolar coordinates are applied to curved stratified
flows. In the limit of a fully eccentric core, the annular phase domain degenerates to an infinite
line (φ = 2π, for a core of the upper phase, φ = 0 for a core of the lower phase). Thus,
the bipolar coordinate system is not appropriate for solving the flow equations in the limit
of a fully eccentric core. When the limit of the fully eccentric core-annular configuration is
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approached, calculations become tedious. The difficulties have been explained in Rovinsky et al
(1997). Typically, the cut-off frequency of spectral functions (needed for carrying out the Fourier
integrals in the bipolar coordinate system) is less than 50. However, when a configuration of a
fully eccentric core is approached, the cut-off frequency increases by several orders of magnitude.
This introduces convergence problems, thus increasing dramatically the computational effort and
time. To handle the geometry of a fully eccentric core, a ‘unipolar’ coordinate system (Fig. 3.2b)
has been introduced in Rovinsky et al (1997). Circles of constant r1 are orthogonal to circles
of constant r2 and all circles are tangent to the single TP . In this coordinate system, the
annular phase is described by an infinite strip and a solution for the velocity profiles can be
worked out in the form of Fourier integrals. The velocity profiles have been integrated to yield

Q̃ = Qc
Qa

= Q̃(R̃c, µ̃) ; and dP̃c
dZ

= (−dp/dz)T P
(−dp/dz)cs

= dP̃c
dZ

(R̃c, µ̃). Given Q̃ and µ̃, the equations are

solved to yield R̃c and then the pressure drop, the velocity profiles, as well as wall and interfacial
shear stresses profiles for the limit case of fully eccentric core flow were obtained.

Comparison of the analytical solutions for concentric core flow and fully eccentric core flows
can be used to evaluate the maximal effect of the core eccentricity on the annular flow charac-
teristics. A detailed discussion has been presented in Rovinsky et al., (1997). Here only some of
the results obtained for the effects of core eccentricity are briefly reviewed. Given a flow rate of
the viscous phase Qc( and µ̃), the introduction of a small amount of the less viscous phase (low

Qa/Qc) affects initially a decrease of the two-phase pressure drop, where (dp/dz)
(dp/dz)cs

= dP̃c
dZ

< 1.
However, eventually, increasing the flow rate of the lubricating phase yields an increase of the
pressure drop, where the pressure drop factor exceeds the value of 1.0. The lubrication region is
defined by the following range of the Martinelli parameter:

0 < X2 =
µaQa

µcQc
< 1 ; Concentric core

0 < X2 < 0.65 ; Fully eccentric core (3.7)

Thus, the lubrication region is scaled with µc; given the flow rate of the viscous phase, Qc, the
range of the flow rates of the less viscous phase, which yields a lubricating effect, increases with
increasing the oil viscosity. The potential for pressure drop reduction and power saving in core
flows increases with increasing the core viscosity. But, increasing the core eccentricity reduces
the potential of pressure drop reduction in lubricated core flow. Figure 3.3c shows that the
pressure drop in concentric core-flow is always lower than that obtained with a fully eccentric
core. Note that the pressure drop ratio is also the ratio of the pressure drop reduction factor that
can be achieved in these two extremes. In concentric core flows, the pressure reduction factor
is proportional to 1/µ̃, while with a fully eccentric core, the pressure drop reduction factor is

bounded (for concentric core: dP̃c
dZ

−→ 0 as µ̃ →∞, while for fully eccentric core: dP̃c
dZ

−→ 0.025,
see Figure 3.3a). Obviously, the results shown in Figure 3.3 for a fully eccentric core flow provide
an upper bound for the effect of core eccentricity.

The increase of the pressure drop in eccentric core flow evolves from the reduction of the
annular-phase holdup and the increase of the wall shear stress. In fact, in concentric viscous core
flow, the average velocity of the viscous core phase, Uc always exceeds the average velocity of the
lubricating annular phase, Ua: The ratio Uc/Ua approaches a value of 2 for thin annular layer
or µ̃ À 1. But, when the core approaches a fully eccentric position, it is slowed down (due to
the proximity of the tube wall). Consequently, for eccentric core flow, the annular phase velocity
may exceed the core phase velocity (for µ̃ À 1, the annular phase is the faster phase). As a
result, given the flow rates, the viscous core holdup in concentric core flow represents a lower
bound for that obtained with the core at eccentric position: (Ac)con/(Ac)ecc < 1. However, in
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the lubrication zone (where (dPc/dZ) < 1), the effect of the core eccentricity on the holdup is
moderate (< 20%).

For the opposite case of viscous annulus, µa/µc > 1, the effect of core eccentricity on the
flow characteristics is moderate. Generally, (Ac)con/(Ac)ecc < 1 ; (Uc)con/(Uc)ecc > 1 ;
(dp/dz)con/(dp/dz)ecc > 1. The effect of the core eccentricity on the pressure drop is most
pronounced around X2 = (µ̃Q̃)−1 = 10, but is limited to about 35% for µ̃ ¿ 1.
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3.2 Two-Fluid model for CAF

A simple practical model for general annular concurrent liquid-liquid flow, which is not restricted
to laminar flow regimes, can be obtained using the two-fluid approach (Brauner, 1991, Ullmann
and Brauner, 2004).

The configuration of concentric inclined core annular flow (CAF) is described in Figure 3.
The flow rates are both positive in concurrent down-flow, both negative in concurrent up-flow,
whereas in countercurrent flows, the heavier phase flows downward (Qa > 0, Qc < 0 for ρa > ρc,
otherwise, Qa < 0, Qc > 0 with ρa < ρc). Equating the pressure drop in the core and annular
phases, a force balance in steady and fully developed annular flow reads:

τa
Sa

Aa
− τiSi

(
1

Ac
+

1

Aa

)
+ (ρa − ρc)g sin β = 0 (3.8)

The wall shear stress τa and interfacial shear stress τi are expressed in terms of the phases
average velocities Ua, Uc and the corresponding friction factors fa, fi. The structure of the closure
relations for the wall and interfacial shear stresses were identified based on the exact solution for
laminar CAF, (Ullmann and Brauner, 2004). The expression obtained for the interfacial shear
reads:

τi = −1

2
fiρc | Uc | (Uc − ciUa) (3.9)

where ciUa = ui is the interfacial velocity and fi is the interfacial friction factor. These are given
by:

fi = Fi
Cc

Renc
c

; Rec =
ρc | Uc | Dc

µc
; (3.9.1)

ci =
ui

Ua
= c0

i + Y Fci(εc) (3.9.2)

where

Fci(εc) = 4εc(1− εc)

[
1 +

(1 + εc)

2(1− εc)
ln εc

]
; εc =

Ac

A
= 1− εa = D̃2

c (3.9.3)

and Y is the dimensionless inclination parameter, which represents the ratio of the gravity head
and the frictional pressure drop of the annular phase, (−dpf/dz) as:

Y =
(ρa − ρc)g sin β

(−dpf/dz)as
(3.9.4)

For laminar annular phase c0
i = 2, while for turbulent annular phase c0

i ' 1.15 ÷ 1.2. The
constants Ca,c and na,c are set according to the flow regime in each phase (C = 16, n =
1 for laminar flow and C = 0.046, n = 0.2 for turbulent flow). Equation (3.9.2) indicates
that for horizontal laminar CAF ci = 2, independently of the viscosity ratio and holdup. For
inclined flows, the second term represents a correction that introduces the effect of gravity on
the interfacial velocity. It is worth noting that the effect of the gravity term is expected to be of
a minor significance in practical applications of low holdup of the annular phase, where εa << 1.

In case of small εa, limεa→0 Fci =
−ε3a
3

whereby ci ' 2− 1
3
ε3aY .

The coefficient Fi in Eq. (3.9.1) is introduced to account for possible augmentation of the
interfacial shear due to interfacial waviness. However, in core-flow, the liquids interface is char-
acterized by long smooth waves and appears less roughened than in annular gas-liquid flows.
Also, as the velocities of the two liquids in core flow are comparable, the modelling becomes
even less sensitive to the estimation of the interfacial friction factor, and Fi can be set to 1.

The structure of Eq. (3.9) is evidently similar to the expression obtained for τi in the stratified
flow geometry (Section 2.4). The interfacial shear stress is proportional to the velocity of the
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core phase times the velocity difference, and not the square of the core velocity (or the velocity
difference) as commonly assumed in closure relations for τi. For the wall shear stress:

τa = −1

2
faρa | Ua | Ua[1 + Y Fa(εa)] (3.10)

with

Fa(εa) = εa(1− εa)

[
2− εa +

2(1− εa)

εa
ln(1− εa)

]
(3.10.1)

fa =
Ca

Rena
; Rea =

ρa | Ua | Da

µa
= Reas ; Da =

4Aa

πD
= εaD (3.10.2)

Note that Rea ≡ Reas since Uaεa = Uas. In the case of horizontal flow, Y = 0, the effective wall
fraction factor reduces to that obtained in a single-phase flow of the annular phase. In case of
inclined flows, the Fa factor introduces the correction due to gravity. Here too, the correction is
of minor effect in practical applications of a thin annulus, εa << 1.

Using mass balances on the annular and core phases, Ũc = Uc
Ucs

= 1

D̃2
c

; Ũa = Ua
Uas

= 1

(1−D̃2
c)

,

and the above closure relations for the shear stresses in eq. (3.8) results in the following non-
dimensional equation for the core diameter:

Fi(1− D̃2
c)D̃nc−5

c

[
1− D̃2

c(1 +
ci

Q̃
)

]
− (1 + Y Fa)X2 + Y X2(1− D̃2

c)3 = 0 (3.11)

The dimensionless parameters are Q̃, X2 (Martinelli parameter) and Y (or Y X2):

Q̃ =
Ucs

Uas
; X2 =

CaRe−na
as

CcRe−nc
cs

(ρ | Q̃|Q̃)−1 =
(−dpf/dz)as

(−dpf/dz)cs
; Y X2 =

(ρa − ρc)g sin β

(−dpf/dz)cs
(3.12)

where ρ̃ = ρc/ρa and Reas, Recs are the superficial Reynolds numbers of the annular and core

liquids respectively. Obviously the physical solution for D̃c is in the range 0 < D̃c ≤ 1 and the
corresponding core holdup is Ãc = D̃2

c . After solving eq. (3.11) for D̃c, the pressure gradient
can be obtained by adding the momentum equations for the core and annular phases. The
dimensionless CAF frictional pressure gradient is given by:

dP̃c

dZ
=

(−dpf/dz)

(−dpf/dz)cs
=

X2

(1− D̃2
c)2

(3.13)

The gravitational pressure gradient can be obtained in terms of the mixture density; ρm =
ρcD̃

2
c + ρa(1− D̃2

c), (dpg/dz) = ρmg sin β.
It is worth emphasizing that using the above closure relations in the equations of the two-

fluid model reproduces the exact solution for the holdup and pressure drop in horizontal and
inclined laminar CAF, (e.g. Russel and Charles (1959) for horizontal CAF, see Ullmann and
Brauner, 2004). For viscous oils, the flow in the core is practically always laminar. Fortunately,
for the case of horizontal laminar core (with either laminar or turbulent annular phase), simple

explicit solutions for the in situ hold-up D̃2
c , and the resulting pressure drop are obtained. These

are summarized in Table 3.1. For highly viscous oils, µc/µa >> 1(X2 → 0), therefore the
predicted insitu holdup is practically determined by the flow rates ratio and flow regime in the
annular phase. The data and the model indicate that the water in situ holdup exceeds the input
water cut by a few percent (e.g. Figure 12 in Brauner, 1998). Results of pressure drop in CAF
are of the order of pressure loss for flow of water at the mixture flow rate (e.g. Figure 13 in
Brauner, 1998). Both theory and data indicate that for each oil superficial velocity, there exists
an optimum input water-cut (which yields minimum pressure drop) in the range of water-cut
of Uos/Um = 0.08÷ 0.12 (compared to an optimal water-cut of 1/3 in L-L flows concentric core
flows, e.g Russel and Charles, 1959).
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Table 3.1 Core Diameter and Pressure Drop for Horizontal Laminar CAF

Laminar core - Laminar core -
Laminar annulus (L-L) Turbulent annulus (L-T)

X2 = µa
µc
· Q̃−1 0.046

16

(
µa
µc

)
Re0.8

as

Q̃
or 0.046

16

(
µa
µc

)0.2 (
ρa
ρc

)0.8
Re0.8

cs

Q̃1.8

ci 2 1.15÷ 1.2

1− D̃2
c

1−1/(µ̃Fi)+[1+Q̃/(µ̃Fi)]
1/2

2+Q̃−1/(µ̃Fi)

c0i /2−χ2Q̃/Fi+
c0
i
2 [1+4χ2( Q̃

c0
i

)2/Fi]
1/2

c0
i
+Q̃−χ2Q̃/Fi

dPc/dZ χ2

(1−D̃2
c)2

χ2

(1−D̃2
c)2

3.3 Conclusion

The two-fluid model for CAF is a simple practical tool for evaluating the potential pressure drop
reduction and power saving in concentric CAF. However, the predicted pressure drop via this
model may underestimate measured values in CAF operation. Possible reasons for deviations
are the increase of the wall friction due to surface irregularities, fouling of pipe walls by a wavy
core interface at high oil rates, and eccentric (rather than concentric) core flow, as discussed
in Section 3.1. Accounting for these effects in the framework of the two-fluid model requires
appropriate modifications of the closure laws used for the wall and/or interfacial shear stresses.
The exact solutions for eccentric laminar CAF and numerical studies for the case of turbulent
lubricating phase (e.g. Huang et al.,1994) can be used to test the validity of such closure laws.

4 Dispersed Flow

A dispersion of two immiscible liquids, where one of the liquids forms a continuous phase and
the other is dispersed in it, is a flow pattern often observed in liquid-liquid systems. There are
water-in-oil (w/o) and oil-in-water (o/w) dispersions. Emulsion is a stable dispersion, which
usually involves the presence of surfactants that inhibit coalescence of the dispersed droplets.
High viscous oil content emulsions are considered a lubricated regime of flow, since a dramatic
decrease in the fluid viscosity and pressure drop can be achieved by emulsifying the oil into a
continuous water phase, (e.g. McAuliffe, 1973, Pilehvari et al., 1988). Multiple emulsions (e.g.
o/w/o, oil drops dispersed in aqueous droplets that are in turn dispersed in a continuous oil
phase) can also be formed. Dispersions will always form in motions of two immiscible liquids
which are sufficiently intense. However, relatively dilute dispersions can be also obtained at low
velocities as a result of the entry device used to introduce the two liquids into the flow tube. In
fact, dispersed flow is the basic flow pattern in upward vertical and off-vertical inclined flows.

For fully developed flow, the total pressure gradient, dP/dz is the sum of the frictional
pressure gradient, dPf/dz and the gravitational pressure gradient, dPg/dz

(−dP/dz) = (−dPf/dz) + (−dPg/dz) = 2fm
ρmU2

m

D
− ρmg sin β (4.1)

where the z coordinate is attached to the direction of the continuous phase flow, β > 0 for
downward inclination, and the mixture density ρm = ρdεd + ρc(1 − εd) is calculated based on
the in situ holdup of the dispersed phase, εd. The friction factor, fm is evaluated based on
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the mixture Reynolds number DUmρm/µm. These require models for the in situ holdup and
the mixture apparent viscosity, µm. The presence of droplets in a continuous fluid may affect
the effective viscosity of the dispersion due to droplets interactions and modification of the
continuous phase momentum transfer characteristics.

4.1 In-situ holdup

In vertical and off-vertical inclined systems the static head is a major contributor to the to-
tal pressure gradient. Therefore, good estimates for the in situ holdup and the corresponding
mixture density are needed.

The simplest approach is the homogeneous model which neglects a possible difference be-
tween the in situ velocities of the two liquid phases (slippage). When the dispersed droplets
move at the velocity of the surrounding continuous phase, (Uc = Ud = Um), the in situ holdup
is determined by the input volumetric flow rates of the two liquids:

εd =
Uds

Um
; εc = 1− εd =

Ucs

Um
; Um = Uds + Ucs (4.2)

However, due to the density difference, drops of the dispersed phase tend to move at a different
velocity than the continuous phase. The slippage between the phases was found to be negligible
for Dw/o in viscous oils or for fine Do/w and Dw/o (e.g. Hassan and Kabir, 1990, Flores et al.,
1997). For these flow regimes, the homogeneous model for estimating εd, eq. (4.2) is applicable
even for inclined and vertical systems. However, when water forms the continuous phase and
for low mixture velocities, relatively large oil droplets (bubbles) are formed, which may show a
significant slippage.

The Zuber-Findlay (1965) drift flux model can be used to model the flow of oil-in-water
dispersions. The average velocity of the dispersed drops, Ud is expressed in terms of the mixture
velocity Um and a drift velocity ud:

Ud = CoUm + ud = Uds/εd ; Uc =
Ucs

1− εd
(4.3)

where Co is a distribution parameter, which accounts for the droplets velocity and concentration
profiles. Typically, Co = 1 for uniform droplet concentration, Co > 1 when the droplets tend to
flow at the center and Co < 1 when the droplets concentration is higher near the wall. The drift
velocity, ud is evaluated based on the terminal rise (settling) velocity of a single droplet in the
continuous phase, (u∞) and corrected for the effect of the swarm of drops:

ud = u∞(1− εd)nd | sin β|; 0 < nd < 3 (4.4)

The value of nd depends mainly on the droplets size. For large drops (of the order of the tube
diameter) nd ' 0, whereas for liquid-liquid dispersions nd = 1.5 ÷ 2.5 was recommended by
Hassan and Kabir (1990) and Flores et al., (1997).

Equations (4.3) and (4.4) yield an implicit algebraic equation for εd:

Ucs

Uds
=

1− Coεd

Coεd
− 1

Co

u∞
Uds

(1− εd)nd | sin β| (4.5)

This equation is applicable both for concurrent and counter current flows: Ucs/Uds > 0(< 0) for
concurrent (counter current) flows, respectively. The sign of u∞/Uds depends on the direction
of u∞ with respect to Uds. Note that in counter-current flows u∞/Uds > 0 both for HPD and
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LPD modes (see Figure 1.3). For ud 6= 0, eq. (4.5) predicts the existence of these two different
modes in counter-current dispersed flows.

The drop shape characterization map given in Clift et al., (1978) (see Figure 16 in Brauner,
1998) can be used to extract the drop velocity u∞. The graphical relation corresponds to Red =

Red(M, Eod), where Red = u∞d
νc

; M =
gµ4

c|∆ρ|
ρ2

cσ3 ; Eod = gd2|∆ρ|
σ

and d is the drop

diameter. Recommended correlations u∞ are also summarized in this reference. A widely used
equation for u∞ is the Harmathy’s (1960) model for distorted drops:

u∞ = 1.53

[
gσ|∆ρ|

ρ2
c

]1/4

, (4.6)

which suggests u∞ is independent of the drop diameter. It reflects an increase of the drag
coefficient with an increase of the effective cross section of a distorted drop. For large drops,
d/D = O(1), u∞ should be corrected for the reduction of the drop velocity due to pipe wall
effects (Clift et al., 1978). For d/D ' 1 (large bubble or slug) and Eod < 0.125, u∞ ≈ 0,
(Zukowski, 1966). Note that in concurrent flows, the sign of u∞ is to be adjusted according to
the sign of the buoyant force due to ∆ρ = (ρd − ρc)g sin β with respect to the mixture flow
direction. In counter-current flows, the sign of u∞ is the same as Uds.

4.2 Viscosity of emulsions

When the slippage between the dispersed and the continuous phase is significant, or in coarse
dispersions, the mixture viscosity is normally taken as the viscosity of the continuous phase,
µm = µc. On the other hand, a fine dispersion, or an emulsion, can be treated as a pseudo-
homogeneous fluid of a viscosity µm, when Rec(d/D)2ρd/ρc < 1, Rec = ρcUmD/µc (e.g. Baron
et al., 1953). Models for estimating the drops size are given in Section 4.4.

The viscosity of emulsion µm is defined as the ratio between the shear stress (τ) and the
shear rate (γ̇). The viscosity of the emulsion is proportional to the viscosity of the continuous
phase µc. However, the emulsion viscosity depends upon several other factors, which include the
volume fraction of the dispersed phase (εd), the droplets size (d) and viscosity (µd), the shear
rate (γ̇), temperature (T ), the emulsifying agent used and its concentration (e.g Sherman, 1968,
Schramm, 1992). At low to moderate holdup of the dispersed phase, emulsions generally exhibit
Newtonian behavior.

The emulsion viscosity is affected mainly by the viscosity of the continuous phase and in-
creases with increasing the holdup of the dispersed phase. Following Einstein’s relation (1906)
for the viscosity of suspensions in extreme dilution:

µ∗ =
µm

µc
= (1 + 2.5εd); εd ¿ 1, (4.7)

other models/correlations which relate the emulsion viscosity to the volume fraction of the
dispersed phase have been proposed in the literature, in the form of µ∗ = f(εd) or ln µ∗ = f(εd).
These include empirical fitting constants. A summary of various correlations for µ∗ is given in
Brauner, 1998, Tables 3a and 3b. In the presence of emulsifiers and/or impurities, the dispersed
droplets behave like rigid particles and the emulsion viscosity is independent of the dispersed
phase viscosity. In their absence, however, possible internal circulation within the droplets results
in some decrease of the emulsion viscosity with reducing the dispersed phase viscosity. For high
emulsion concentrations, the empirical correlations use a reduced dispersed phase concentration,
εd/ε̂d , where ε̂d represents the maximum attainable dispersed phase concentration at phase
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inversion. This introduces in the correlations effects of additional parameters, such as emulsifier
concentration, flow field and droplets sizes.

At high dispersed phase concentrations (approaching phase inversion conditions) emulsions
behave as non-Newtonian shear-thinning (pseudoplastic) fluids (e.g. Pal, 1990). The relation
between the shear stress and shear rate is modeled by the power law equation, (in terms of two
constants k and n):

τ = −kγ̇
[
γ̇n−1] ; n < 1 (4.8)

which indicates that the apparent emulsion viscosity µm = τ/γ̇ decreases with increasing the
shear rate. Concentrated emulsions can also exhibit a viscoelastic behavior.

The viscosity of emulsions decreases with increasing the temperature, µm = Ae−B/T , where
T is the absolute temperature and A, B are constants dependent upon the specific emulsion
and shear rate. Due to the sensitivity of the oil viscosity to temperature variations, the viscosity
of Dw/o and the associated pressure drop are mostly affected by temperature.

Emulsion rheology may vary between different oils and emulsifiers. Even oils of similar prop-
erties may exhibit a different emulsion rheology. Therefore, it is recommended to experimentally
study the rheology of the emulsion used in a particular application.

4.3 Friction factor

Given the mixture properties, one can apply the single phase flow equations. For laminar flow
of Newtonian fluid - the friction factor is obtained from the Hagen-Poiseuille equation:

fm =
16

Rem
; Rem =

ρmUmD

µm
≤ 2100 (4.9)

For turbulent flow of Newtonian fluids, the friction factor can be obtained from the Moody
diagram, or calculated from one of the experimental correlations suggested in the literature. For
instance, in smooth tubes, the Blasius correlation is applicable:

fm =
0.079

Re0.25
m

; 300 ≤ Rem ≤ 100, 000 (4.10)

For rough walls, the Colebrook (1939) equation yields:

1√
fm

= −4 log10

(
k∗

3.71
+

1.26

Rem

√
fm

)
(4.11)

where k∗ = k/D is the nondimensional wall roughness scale. An explicit approximation to
eq. (4.11) can be used (Zigrang and Sylvester, 1985):

1√
fm

= −4 log10

[
k∗

3.71
− 4.518

Rem
log

(
6.9

Rem
+

(
k∗

3.7

)1.11
)]

(4.12)

For dense emulsions that behave as non-Newtonian pseudoplastic fluid, the frictional pressure
drop can be estimated using Dodge and Metzner (1959) correlations:

fm =
16

Rém
; Rém =

ρmU2−n′
m Dn′

k′(8)n′−1
; laminar flow, Rém ≤ RéL−T (4.13)

1√
fm

=
4

(n′)0.75
log[Rémf (1−n′/2)

m ]− 0.4

n′1.2
; turbulent flow, Rém > RéL−T
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where n′ = n ≤ 1, k′ = k
(

1+3n
4n

)n
and n, k are the constants of the power-law model for the

emulsion viscosity (eq. 4.8). The laminar-turbulent transitional Reynolds number is given by

RéL−T = 6464 n(2+n)
2+n
1+n

(1+3n)2
(e.g. Hanks and Christeansen, 1962).

The variation of the pressure drop with the liquids flow rates is, however controlled by
the phase inversion phenomenon (e.g. Figure 15 in Brauner, 1998). A sudden increase in the
apparent dispersion viscosity (up to one order of magnitude higher than the single phase oil
viscosity) occurs where the external phase invert from oil to water (or vice versa). When water
forms the continuous phase, the mixture viscosity approaches the single phase water viscosity.
The increase of the apparent mixture viscosity at phase inversion (compared to the pure oil
viscosity) seems to be moderated with increasing the oil viscosity. The conditions under which
phase inversion takes place are discussed in Section 4.5.

4.4 Drops sizes

The mechanisms of drop formation and their characteristic size are important for analyzing
the hydrodynamic and transport phenomena in the flow of liquid-liquid dispersions. The main
breakup mechanisms involve high shear stresses, turbulence in the continuous phase and rapid
acceleration (Taylor, 1934, Kolmogorov, 1949, Hinze, 1955, 1959). The surface force which resists
deformation and breakup is mainly due to surface tension and also due to internal viscous force
(in the case of viscous drop). In dense dispersions, droplets coalescence and additional factors
introduced when a swarm of droplets interact must be taken into account. These lead to an
increase of the drop size.

External flow

collision frequency

contact force,F

contact time,ti

Internal flow

flattening
(film radius, a)

film drainage
(film thickness, h)

film rupture
(h=hc)

confluence
F(t)

h

R
a

Figure 4.1  Conceptual framework for coalescence modeling (Chesters,1991)

A substantial effort has been made to model the phenomenon of droplets coalescence in dense
dispersions. Reviews of existing frameworks for analysis of droplets interactions with themselves
and with the surrounding fluid can be found in Chesters (1991), Tsouris and Taularides (1994).
Coalescence actually involves a number of coupled sub-processes (see Figure 4.1). Some are
governed by the external flow field, due to the flow of the continuous phase (e.g. frequency of
drops collisions, force and duration of collisions). These provide the boundary conditions for the
internal flow (i.e. drop deformations, film drainage and rupture of the interfaces). However, the
relationships that have been proposed for the various sub-processes involved include unknown
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parameters and therefore, at this time, they cannot be readily applied to general liquid-liquid
flow systems.

In dilute dispersions, however, the characteristic drop size is governed by the drop breakup
mechanism. In the following, models for evaluating the maximal drop size associated with the
various breakup mechanisms and some extensions to dense dispersions are briefly reviewed. The
maximum drop size, dmax provides an estimate to the drop volume-surface mean size (the Sauter
mean diameter) d32 =

∑
nid

3
i /

∑
nid

2
i ' dmax/kd with kd ' 1.5 ÷ 3 (see also Azzopardi and

Hewitt, 1997).

Shear flow – Drops deformation and splitting under the action of viscous shear (Couette flow
and plane hyperbolic flow) was studied by Taylor (1934). The critical Weber number, defined
based on the maximum velocity gradient in the flow field, Wecrit = µcγ̇maxdmax/σ, was found
to vary with µd/µc. It increases for µd/µc À 1 or µd/µc ¿ 1. For µd/µc ≥ 20 and Couette flow,
breakup of drops was not observed. This evidence implies that it is difficult to disperse fluids of
high viscosity ratio by the action of viscous shear.

For the case of viscous continuous phase, where µd/µc ¿ 1, the model of Taylor (1934) and
Arivos (1978) for breakup of long slender droplets in an axisymmetric straining motion can be
used to estimate the drop size. When applied to laminar pipe flow, where the average value of γ̇
is given by γ̇ = 4Um/D, this model suggests that the drop size depends on the capillary number
of the continuous phase, µcUm/σ:

dmax

D
= 0.296

σ

µcγ̇D

(
µc

µd

)1/6

= 0.074
σ

µcUm

(
µc

µd

)1/6

;
µd

µc
¿ 1 (4.14)

Turbulent flow – Most of the models for predicting the size of bubbles or drops in a tur-
bulent flow field are based on the Kolmogorov (1949)-Hinze (1955) model for emulsification in
a turbulent flow field. Using dimensional arguments, they showed that the splitting of a drop
depends upon a critical Weber number, which yields the maximal drop size, dmax that can resist
the stress due to dynamic pressure of turbulent eddies (τ). According to Hinze (1955):

Wecrit =
τdmax

σ
= C[1 + F (On)] (4.15)

where C is a constant, On is the Ohnesorge (viscosity) number (ratio between the internal
viscosity force and the interfacial force); On = µd√

ρddmaxσ
and F is a function that goes to zero

as On → 0. For pipe flow of a dilute dispersion, this model yields the maximal drop/bubble size,
dmax in terms of the critical Weber number of the continuous phase, Wec = ρcU

2
c D/σ and the

wall friction factor, f (e.g. Kubie and Gardner, 1977):

(
d̃max

)
o

=

(
dmax

D

)

o

= 0.55We−0.6
c f−0.4 ; `k ¿ dmax < 0.1D (4.16)

where `k is the Kolmogorov microscale and 0.1D represents the inertial subrange scale (length
scale of energy containing eddies).

The Hinze model is applicable for dilute dispersions. It suggests that the maximal drop
size, (dmax)o, can be evaluated based on a static force balance between the eddy dynamic
pressure and the counteracted surface tension force (considering a single drop in a turbulent
field). An extension of this model for dense dispersions was suggested by Brauner (2001). The
idea is that in dense dispersions, where local coalescence is prominent, the maximal drop size,
(dmax)ε, is evaluated based on a local energy balance. In the dynamic (local quasi-steady)
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breakage/coalescence processes, the turbulent kinetic energy flux in the continuous phase should
exceed the rate of surface energy generation that is required for the renewal of droplets in the
coalescing system. This energy balance yields:

(
d̃max

)
ε

=

(
dmax

D

)

ε

= 2.22C̃H

(
ρcU

2
c D

σ

)−0.6 [
ρm

ρc(1− εd)
f

]−0.4 (
εd

1− εd

)0.6

(4.17)

where C̃H is a tunable constant, C̃H = O(1). In dilute systems, the energy balance is trivially
satisfied for any finite drop size (as the rate of surface energy generation vanishes for εd → 0) thus,
(dmax)ε < (dmax)o. However, this is not the case in the dense system, where (dmax)ε > (dmax)o.
Thus, given a two-fluid system and operational conditions, the maximal drop size is taken as
the largest of the two values:

d̃max = Max
{(

d̃max

)
o

(
d̃max

)
ε

}
(4.18)

Correlations for the friction factor in smooth or rough conduits can be used in eqs. (4.16) and
(4.17). For instance, the Blasius equation (f = 0.046/Rec, Rec = ρcDUc/µc) yields:

(
dmax

D

)

o

= 1.88We−0.6
c Re0.08

c ; (4.19)

(
d̃max

)
ε

= 7.61C̃HWe−0.6
c Re0.08

c

(
εd

1− εd

)0.6 [
1 +

ρd

ρc

εd

1− εd

]−0.4

; (4.20)

Eqs. (4.18) to (4.20) are the H-model in Brauner (2001), which is applicable provided 1.82Re−0.7
c <

d̃max < 0.1 and Rec > 2100.
If the viscosity of the dispersed phase is much larger than that of the continuous phase,

the viscous forces due to the flow inside the drop also become important and the effect of the
On number in eq. (4.15) may turn to be non-negligible. Kolmogorov (1949) found that when
µd/µc À 1, these viscous forces can be neglected only when dmax À `k(νd/νc)

3/4. A correlation
for dmax, which accounts for viscous forces in the dispersed and continuous phase was suggested
by Paul and Sleicher (1965):

ρcU
2
c dmax

σ

(
µcUc

σ

)0.5

= C

[
1 + 0.7

(
µdUc

σ

)0.7
]

(4.21)

with C = 38÷ 43. This correlation indicates no effect of the pipe diameter. Kubie and Gardner
(1977) showed that a major part of Sleicher and Paul (1965) data correspond to drops that are
larger than the scale of energy containing eddies (≈ 0.1D for pipe flow). It was argued that for
dmax > 0.1D, the turbulent dynamic pressure force in Kolmogorov/Hinze analysis should be
evaluated based on the fluctuating turbulent velocity (' 1.3u∗ in pipe flow, Hughmark, 1971).
In this case, the correlation that evolves for dmax (instead of eq. (4.16)) reads:

dmax

D
= 1.38

(
ρcu

2
cD

σ

)−1

f−1 ; dmax > 0.1D (4.22)

Accordingly, for d̃max > 0.1, eqs. (4.19 - 4.20) are replaced by the K-Model in Brauner (2001):
(
d̃max

)
0

= 30We−1
c Re0.2

c ; d̃max > 0.1 (4.23)

(
d̃max

)
ε

= 174CKWe−1
c Re0.2

c

(
εd

1− εd

)
; (4.24)
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where CK = O(1). However, in Do/w of viscous oils, or in systems of low surface tension,
additional stabilizing force due to the drop viscosity has to be considered, which affects an
increase of dmax with µd. According to Hinze (1955), the effect of the dispersed phase viscosity
is represented by the Ohnesorge number. For a non-vanishing On, the r.h.s. of eqs. (4.16) to (4.20)
and (4.22)-4.24) are augmented by the term [1+F (On)]0.6. Instead, the correction suggested by
Davies (1987) can be applied by multiplying the R.H.S. of these equations by (1+Kµµdu′c/σ)0.6,
with Kµ = O(1), where u′c is the characteristic turbulent fluctuation velocity in the continuous
phase.

Accelerated Drops – Drops deformation and breakup due to rapid acceleration of drops
bursting into a stream of a second fluid is the main mechanism for pneumatic atomization and
has been studied extensively in the literature (e.g. Hinze, 1955, Clift et al., 1978, Brodkey, 1969,
Cohen, 1991). This mechanism can be relevant to the formation of liquid dispersions in the entry
region of the pipe, in particular, when nozzles are used for injection of the liquid, or for drop
entrainment from the interface between a slow and a fast moving layers (as in wavy stratified
flow). The following power-law empirical correlation for Wecrit is often used to evaluate dmax:

Wecrit =
ρc∆U2

c dmax

σ
= 12

(
1 + 1.077On1.6) (4.25)

When ∆Uc is set to the initial velocity difference (between the drop and the continuous phase),
eq. (4.25) may underestimate dmax. Modified correlations which consider the breakup time and
velocity history are given in the literature (see review by Azzopardi and Hewitt, 1997).

Rising (settling) drops – Even in a stagnant fluid (Uc → 0), there is a limit to the
size to which a bubble or a drop can reach while rising (or falling) freely through it. In the
absence of external field disturbances, drop breakup has been attributed to Rayleigh-Taylor
instability. Grace et al., (1978) showed that for µd/µc > 0.5, dmax = 4

√
σ/g|ρc − ρd| provides

a reasonable estimate for the maximal drops size. For µd/µc < 0.5, it provides a lower bound
to dmax. Combining the Rayleigh-Taylor instability and Kelvin-Helmholtz instability (Kitsch
and Kocamustafaogullari, 1989), the following equation was obtained for dmax of rising (falling)
drops in stagnant fluids:

dmax

√
g|ρc − ρd|

σ
=





16

1 + 0.5

[
4.5

(
ρ∗

1+ρ∗

)
− 0.35

(
2+3ρ∗
1+ρ∗

)2.27

(1 + M0.25)0.36

]





1/2

(4.26)

where ρ∗ = 0.993ρd/ρc and the Morton number, M ≤ 16. Equation (4.30) predicts the ex-
perimentally observed increase of dmax with increasing M . Eq. (4.26) (with a lower numerical
coefficient) represents the scale of highly deformable drops/bubbles in vertical and horizontal
flows (Brodkey, 1969, Brauner and Moalem Maron, 1992c).

4.5 Phase inversion

The phase inversion refers to a phenomenon where with a small change in the operational
conditions, the continuous and dispersed phase spontaneously invert. For instance, in oil-water
systems, a dispersion (emulsion) of oil drops in water becomes a dispersion (emulsion) of water
drops in oil, or vice versa.
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The phase-inversion is a major factor to be considered in the design of oil-water pipelines,
since the rheological characteristics of the dispersion and the associated pressure drop change
abruptly and significantly at or near the phase inversion point (Pan et al (1995), Angeli and
Hewitt (1996), Arirachakaran et al (1989)). Also, the corrosion of the conduit is determined to
a large extent by the identity of the phase that wets it.

The inversion point is usually defined as the critical volume fraction of the dispersed phase
above which this phase will become the continuous phase. Studies have been carried out in
batch mixers, continuous mixers, column contractors and pipe flow, in attempt to characterize
the dependence of the critical volume fraction on the various system parameters, which include
operational conditions, system geometry and materials of construction. These have been re-
viewed by Yeo et al., 2000. In flow systems, phase inversion will not always occur as the holdup
(say of water) is varied continuously from 0 to 1. It will occur only if Um is high enough to have
a good mixing of the liquids in both the pre- and post inversion dispersions.

Similarly to observations made in stirred tanks, also in pipe flows, data on dispersion inver-
sion indicate a tendency of a more viscous oil to form the dispersed phase. It was found that the
water-cut required to invert a dispersion decreases as the oil viscosity, µo increases. Based on
the experimental results of various investigators on phase inversion, Arirachakaran et al (1989)
proposed the following correlation for the critical water-cut, ε̇I

w:

ε̇I
w =

(
Uws

Um

)

I

= 0.5− 0.1108 log10 (µo/µr) ; µr = 1mPa · s (4.27)

The trend is similar to that indicate by the Yeh et al (1964) model for the phase inversion point:
εI
w = 1

1+(µo/µw)0.5 . The later was developed with reference to a configuration of laminar flow in

stratified layers, however, its validity was tested against the critical holdup data obtained in a
flask (dispersion prepared by manual vigorous shaking of specified volumes of an organic and
water phases).

Since phase inversion is a spontaneous phenomenon, it was proposed that its prediction
can be based on the criterion of minimization of the total system free energy, (e.g. Luhning
and Sawistowski 1971, Tidhar et al., 1986, Decarre and Fabre, 1997, Brauner and Ullmann,
2002). Under conditions where the composition of the oil and water phases and the system
temperature are invariant with phase inversion, only the free energies of the interfaces have to
be considered. The application of this criterion is, however, dependent on the availability of
a model for characterizing the drop size in the initial and post-inversion dispersions, both are
usually dense. This approach was recently followed by Brauner and Ullmann (2002).

According to this approach, when a dispersion structure (say Do/w) is associated with higher
surface energy than that obtained with an alternate structure (say Dw/o), it will tend to change
its structure, and eventually to reach the one associated with the lowest surface energy. Hence,
the phase inversion is expected under the critical conditions where both Do/w and Dw/o are dy-
namically stable and the sum of surface energies obtained with either of these two configurations
are equal.

Based on these considerations, the critical oil holdup can be obtained in terms of the liquid-
solid surface wettability angle, α, and the Sauter mean drop diameter in pre-and post inversion
dispersions (Brauner and Ullmann, 2002):

εI
o =

[σ/d32]w/o + s
6
σ cos α

[σ/d32]w/o + [σ/d32]o/w

(4.28)

where s represents the surface wetted area per unit volume (s = 4/D for pipe flow), 0 ≤ α < 90o

corresponds to a surface which is preferentially wetted by water (hydrophilic surface), whereas for
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90o < α ≤ 180o the oil is the wetting fluid (hydrophobic surface). The Sauter mean drop size can
be scaled with reference to the maximal drop size, d32 = dmax/kd. Using such a scaling, models
for dmax in coalescing, dense Do/w or Dw/o can be used in eq. (4.28) to evaluate the critical oil
holdup at phase inversion. Applying the H-Model of Brauner (2001), eq. (4.20) yields:

d̃o = 7.61C̃H

(
σ

ρwDU2
m

)0.6 (
ρwUmD

µw

)0.08 (
ρw

ρm

)0.4
ε0.6
o

(1− εo)0.2
(4.29)

d̃w = 7.61C̃H

(
σ

ρoDU2
m

)0.6 (
ρoUmD

µo

)0.08 (
ρo

ρm

)0.4
(1− εo)

0.6

ε0.2
o

(4.30)

where do and dw represent the maximal drop size in Do/w and Dw/o respectively. Under condi-
tions where the oil-water surface tension in the pre-inversion and post-inversion dispersions is
the same (no surfactants or surface contaminants are involved), (kd)o/w ' (kd)w/o and solid-
liquid wettability effects can be neglected (α = 90o or s → 0, as in large diameter pipes, where
do, dw ¿ D), eqs. (4.28 - 4.30) yield:

εI
o =

ρ̃ν̃0.4

1 + ρ̃ν̃0.4
(4.31)

where ν̃ is the kinematic viscosity ratio, ν̃ = νo/νw.

Equation (4.31) provides an explanation for the observation made in many experimental
studies, that the more viscous phase tends to form the dispersed phase. For a given holdup,
and in the case of viscous oil, the characteristic drop size in Do/w is larger than in the reversed
configuration of Dw/o. Hence, a larger number of oil drops must be present in order that the
surface energy due to the oil-water interfaces would become the same as that obtained with
the water dispersed in the oil. Therefore, with ρ̃ν̃0.4 > 1, εI

o > 0.5, and εI
o → 1 as ρ̃ν̃0.4 À 1.

The larger is the oil viscosity, the wider is the range of the oil holdup, 0 ≤ εo < εI
o, where

a configuration of oil drops dispersed in water is associated with a lower surface energy. In
this range of holdups, the flow pattern will be Do/w if the operational conditions are in range
a the dynamic stability criterion is satisfied. Whereas, Dw/o will be obtained in the range of
εI
o ≤ εo ≤ 1, provided such a dispersion is dynamically stable (see boundaries 4 and 5, Section

5.1). Thus, when only the liquids’ interfacial energy is involved, and the hydrodynamic flow field
is similar in the initial and post inversion dispersions, the details of the flow field and the system
geometry are not required for predicting the critical holdup at inversion.

Figure 4.2 shows a comparison of the critical oil holdup predicted via eq. (4.31), with ex-
perimental data of phase inversion in pipe flow which were used by Arirachkaran et al (1989)
to obtain their experimental correlation, eq. (4.27) (line 2 in Figure 4.2). A lower variance is
however obtained by correlating the data using the form of eq. (4.31). It is worth noting that
for high critical oil holdup, corresponding to phase inversion of highly viscous oil dispersions,
the water-in-oil dispersion is, in fact, dilute. It was shown by Brauner and Ullmann (2002) that
in this range, if dw is modelled by eq. (4.19) (rather than by eq. (4.20)), the critical oil holdup
becomes practically independent on the viscosity ratio, in agreement with experimental findings.

This phase inversion model was shown to be useful for explaining various experimentally
observed features related to phase inversion in pipe flow and in static mixers. These include the
effects of the liquids physical properties, liquid/surface wettability (contact angle), the existence
of an ambivalent region and the associated hysteresis loop in pure systems and in contaminated
systems (Brauner and Ullmann, 2002). Impurities or surfactant, and even entrained air bubbles,
may have prominent effect on the critical holdup. Therefore, in many applications it is practically
impossible to predict the conditions for phase inversion.
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4.6 Conclusion

From the practical point of view, the main issue in predicting the pressure drop in homoge-
neous liquid-liquid dispersed flow is the modelling of the effective(apparent) mixture viscosity,
µm. To this aim, the first decision to be made concerns the identity of the continuous phase.
This decision is related to the phase inversion phenomenon. The second decision concerns the
appropriate model to represent the variation of µm with the holdup in the particular system
under consideration. The latter depends on the extent of mixing (emulsification) of the dispersed
phase, which is a result of a combined effect of many factors (e.g. flow field, liquids physical
properties, impurities and/or surfactant, liquid/wall wetting). This factors affect also the critical
conditions for phase inversion. In any case, at the phase inversion point the liquids must be at
intimate contact and models for emulsion viscosity are applicable to evaluate the pressure drop
peak. However, so far, there are no general models or correlations for predicting the effective
mixture viscosity for the variety of systems and operational conditions and much empiricism is
still involved.

5 Flow Patterns Boundaries

Flow patterns characterization and transitions are usually related to the common parameters,
which include the phases flow rates and physical properties. However, in dealing with liquid-
liquid systems, the wide ranges of physical properties encountered generate a sort of ambiguity
as to how to characterize liquid-liquid systems. It has been shown that it is beneficial to pre-
liminary classify the system according to whether EoD À 1 or EoD < 1 (Brauner, 1998). Large
Eotvös (gravity dominated) systems exhibit a similarity to gas-liquid systems, whereby den-
sity difference and inclination control flow pattern boundaries. On the other hand, in small EoD

(surface tension dominated) systems, inclination does not play a role, whereas liquids wettability
with the pipe material, entry conditions and start-up procedure are important. In this section
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some general guidelines for estimating the flow pattern that can be expected under specified
operational conditions are outlined.

5.1 Horizontal Systems of EoD >> 1

Generally, these systems correspond to liquids with a finite density difference and sufficiently
large tube diameter. In such systems the stratified flow configuration can be obtained in hor-
izontal and slightly inclined tubes for some range of sufficiently low liquids flow rates. Models
suggested for predicting flow patterns transition and guidelines for constructing flow patterns
map for such systems are illustrated with reference to Figure (5.1).

1. Transition from (S) to (SM) or (SW) – This boundary defines transition from
smooth stratified flow (S) to stratified flow with waves/mixing at the interface, (SW or SM,
Figure 1.1b). The transitional criterion evolves from a linear stability analysis carried out on
the transient formulation of the two-fluid model, and corresponds to the long-wave neutral
stability boundary. It is given by (Brauner and Moalem Maron, 1993, Brauner, 1996).

J1 + J2 + Jh = 1 (5.1)

J1 =
ρ1

∆ρ

U2
1s

Dg cos β

ε′1
ε31

[(
Crn

U1
− 1

)2

+ (γ1 − 1)

(
1− 2

Crn

U1

)]
(5.2.1)

J2 =
ρ2

∆ρ

U2
2s

Dg cos β

ε′1
(1− ε1)3

[(
Crn

U2
− 1

)2

+ (γ2 − 1)

(
1− 2

Crn

U2

)]
(5.2.2)

Jh = Ch
ρ

∆ρ

(U1 − U2)
2

Dg cos β

4Si

πε1(1− ε1)D
; (5.2.3)

where:

Crn =

U1
ε1

∂∆F12
∂U1

− U2
(1−ε1)

∂∆F12
∂U2

− ∂∆F12
∂ε1[

1
ε1

∂∆F12
∂U1

− 1
(1−ε1)

∂∆F12
∂U2

] ; ε1 =
A1

A
; ε′1 =

dε1
d(h/D)

(5.2.4)

∆F12 = −τ2S2

A2
− τiSi

(
1

A2
+

1

A1

)
+ τ1

S1

A1
+ (ρ1 − ρ2) g sin β (5.2.5)

All flow variables in eqs. (5.2) (phases velocities U1, U2, wall shear stresses τ1, τ2, τi flow cross-
sectional area A1, A2 and wetted perimeters S1, S2, Si) are those obtained for steady smooth
stratified flow corresponding to superficial phases velocities U1s, U2s (see Section 2.4 and Fig-
ure 2.1). For EoD À 1, a plane interface can be assumed (φ∗ = π), whereby the flow geometry
is determined by the lower layer depth, h. The shape factors γ1, γ2 (assumed constant) account
for the velocity profiles in the two layers. For plug flow γ1 = γ2 = 1 and γ > 1 corresponds
to a layer with a significant velocity gradient. Equation (5.1) represents a generalized stability
criterion, which includes the Kelvin-Helmholtz mechanism and ‘wave sheltering’ mechanism.
The destabilizing terms are due to the inertia of the two liquids (J1, J2 terms) and due to the
dynamic interaction of the growing waves with turbulence in the faster layer, Jh. For laminar
stratified layers Jh = 0. Otherwise a correlation for Ch is needed, but it is available only for
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gas-liquid systems. In liquid-liquid systems, the Jh term may be less significant (since the ve-
locity difference is much smaller), and the stability criteria has been applied assuming Jh = 0
(Brauner and Moalem Maron, 1992a, 1992b).

Criterion (5.1) defines the combinations of U1s and U2s which corresponds to the evolution
of interfacial disturbances (SW) and thus, possible entrainment of drops at the liquids layer
interface (SM). This boundary is denoted by 1 in Figures 5.1 and 5.2, and is shown to predict
the conditions for the evolution of interfacial disturbances in horizontal and inclined flows. Note
that, in these Figures, the oil and water correspond to the lighter and heavier layer, respectively,
U2s ≡ Uos and U1s ≡ Uws.

2. Upper bounds on patterns involving stratification – Outside the region of stable
(smooth) stratified flow (boundary 1) the flow pattern is stratified wavy flow with drop en-
trainment at the interface. The rate of droplet entrainment increases with increasing the liquids
flow rates and various flow patterns which still involve stratification may develop (see Figures
1.1c to 1.1h). The stratified flow configurations are confined to a domain at whose boundaries
the two-fluid formulation (for stratified configuration) becomes ill-posed (Brauner and Moalem
Maron, 1991,1992d Brauner, 1996). The condition for ill-posedness is given by:

ρ̃2U
2
2 γ2(γ2 − 1) + ρ̃1U

2
1 γ1(γ1 − 1)− (γ2U2 − γ1U1)

2 + (5.3)

+
D

ρ12
[(ρ1 − ρ2)g cos β − Chρ(U2 − U1)

2Si(A
−1
1 + A−1

2 )] ≤ 0

where ρ̃2 = 1 + ρ2
ρ1

A1
A2

, ρ̃1 = 1 + ρ1
ρ2

A2
A1

, ρ12 = D(dA1/dh)ρ1ρ2
A1[ρ2+ρ1A2/A1]

. The ill-posedness boundary
is indicated in Figure 5.1 by the two branches, 2w for a faster lower water layer and 2o for a
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faster upper oil layer. As shown in the figure, the ill-posedness boundary is always located in
the region of amplified interfacial disturbances since the stable smooth stratified zone, which is
confined by the stability boundary 1, is always a sub-zone of the well-posed region. Boundary
2w in Figure 5.1 was obtained with γ2 = 1.1 for low U2s, which was gradually reduced to γ2 = 1
for higher oil rates where both layers are turbulent and U1 ' U2.

As shown in Figure 5.1 boundary 2w marks the location of SM to Do/w&w transition. The
auxiliary lines, which provide useful information on the flow pattern that can be expected are
the locus of h/D = 0.5; the locus of laminar/turbulent transition in the lower (water) layer
LTw, laminar/turbulent transition in the oil layer, LTo (evolution of enhanced dispersive forces
in either the water or oil layer) and the locus of Uo = Uw, EU . Figure 5.1 points out an
important difference between liquid-liquid systems and gas-liquid systems. In oil-water systems,
the densities of the fluids are similar and therefore, the line of equal layers’ velocity divide
the zone of stable stratification into two regions, either faster oil layer or faster water layer.
Entrainment of oil drops into the water layer takes place in the unstable region when Uw > Uo

(left to the equal velocity curve, EU), whereas entrainment of water drops into the oil layer is
associated with Uo > Uw (right to the EU curve). The dispersion of water drops into the oil layer
is enhanced by transition to turbulent oil layer. However, as long as the water and oil flow rates
are within the region where the transient stratified flow equations are well-posed (below curve 2w
and below curve 2o), the flow patterns may involve a certain stratification, where in the upper
layer, the oil forms the continuous phase and in the lower layer water is the continuous phase.
It is worth noting that in contrast to gas-liquid systems, the entrained drops (water into oil, or
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oil into water) do not posses sufficient momentum to penetrate through the dense continuous
phase and impinge on the tube walls. Therefore, the onset of drops entrainment in liquid-liquid
systems is usually not associated with the formation of liquid film on the tube surface and the
consequential transition to annular flow.

3w. Transition to Do/w&w – For Uw À Uo and outside boundary 1, the fragmentation of
oil drops from the wavy oil-water interface is due to the inertia forces exerted by the faster water
flow and is represented by the eq. (4.25) with ∆Uc = Uw −Uo. A dispersion of the entrained oil
drops is stable provided dmax < dcrit. The critical drop size, dcrit is taken as:

dcrit

D
= Min

(
dcσ

D
,

dcb

D

)
(5.4)

where dcσ represents the maximal size of drop diameter above which drops are deformed
(Broodky, 1969):

d̃cσ =
dcσ

D
=

[
0.4σ

|ρc − ρd|g cos β′D2

]1/2

=
0.224

(cos β′)1/2Eo
1/2
D

(5.5.1)

EoD =
∆ρgD2

8σ
; β′ =

{
|β| ; |β| < 45o

90− |β| ; |β| > 45o
(5.5.2)

and dcb is the maximal size of drop diameter above which buoyant forces overcome turbulent
dispersive forces in the continuous phase and therefore, migration of the drops towards the tube
walls takes place (Barnea, 1987):

d̃cb =
dcb

D
=

3

8

ρc

|∆ρ|
fU2

c

Dg cos β
=

3

8
f

ρc

∆ρg
Frc ; Frc =

U2
c

Dg cos β
(5.6)

with β denoting the inclination angle to the horizontal (positive for downward inclination).
Equation (5.6) is relevant only in shallow inclinations and in case of turbulent flow in the faster

(water) layer (Uc ≡ Uw). Moreover, in oil-water systems, where ∆ρ/ρc ¿ 1, d̃cb > d̃cσ, and in

most practical cases d̃crit = d̃cσ is used. In this case, the following transitional criterion evolves
from eqs.(4.25) and (5.5.1) (Brauner, 2000):

∆Uc ≡ Uw − Uo ≥ 4.36

[
σ∆ρg cos β′

ρ2
c

]1/4 {
1 + 1.443

(
Nvd cos β′

)0.4
}1/2

(5.7)

where Nvd is the viscosity number of the dispersed oil phase, Nvd =
µ4

d∆ρg

ρ2
d

σ3 , µd ≡ µo, ρd ≡
ρo, ρc ≡ ρw. The constant coefficient (4.36) in eq. (5.7) may require some tuning when applied
to a specific two-fluid system. According to this model, drops entrainment takes place when
the velocity gap between the continuous (water) layer and the layer which is being dispersed
(oil) exceeds a threshold value. This threshold value is given by the r.h.s. of eq.(5.7) and is
independent of the tube diameter. For instance, a typical low viscosity oil-water system would
be ρc ' 1gr/cm3 ∆ρ = 0.1ρc and σ = 30dyne/cm, which yields a velocity gap of 0.3m/s that
is required for significant entrainment. Boundary 3w in Figure 5.1 corresponds to eq. (5.7). It is
worth noting that this figure is typical to low viscosity oil. For highly viscous oils (µ0 > 1 poise),
the threshold value for the onset entrainment of oil drops into water increases (due to Nvd >> 1)
in eq. (5.7). Also, the line of equal velocities of the oil and water layers is shifted to higher oil
flow rates. Consequently, the zone outside the neutral stability boundary (up to boundary 2w
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may partially (or entirely) correspond to wavy stratified flow (SW), rather to stratified mixed
flow (SM).

In systems which are not absolutely dominated by gravity (EoD ' 1), the Do/w&w pattern
can be obtained instead of a continuous oil layer even for a small velocity gap. This can happen
with a hydrophilic tube surface and when the largest oil drop that can occupy the upper part
of the tube is smaller than the critical drop size. The criterion suggested for this transition
(Brauner and Moalem Maron, 1992b,1992c):

A2 cos β ≤ πd2
crit/4 ; dcrit = C

[
σ

∆ρg

]1/2

(5.8)

provided the resulting U2s(≡ Uos) and U1s(≡ Uws) are within the regions of stable stratification
(below boundary 2w). While this criterion is irrelevant for predicting the flow patterns data in
Figures 5.1, it is shown to predict the appearance of Do/w&w at low water and oil flow rates
in upward inclined tubes (Figure 5.2e,f) and the gradual vanishing of the stratified flow pattern
with increasing the upward inclination.

3o. Transition to Dw/o&o – For Uo À Uw and outside boundary 1, eq.(4.25), and thus
eq.(5.7), is applied with ∆Uc = Uo − Uw, µd ≡ µw, ρd ≡ ρw and ρc ≡ ρo. This yields the critical
velocity gap for dispersing the water layer into the oil layer. For the system studied in Figure
5.1, boundary 3o (not shown) is similar to 2o.

In systems of EoD = O{1} and hydrophobic tube surface, eq. (5.8) with A1 replacing A2

signals transition to Dw/o&o due to capillary effects.

4. Transition to Do/w – A homogeneous oil-in-water dispersion (emulsion) can be maintained
when the turbulence level in the continuous water phase is sufficiently high to disperse the oil
phase into small and stable spherical droplets of dmax < dcrit. Applying this criterion using the
extended Hinze model, eqs. (4.18 to 4.21) with eqs. (5.4 to 5.6), yields a complete transitional
criteria to dispersed flows (H-Model, Brauner, 2001). When the fluids flow rates are sufficiently
high to maintain a turbulence level where dmax < dcσ and dmax < dcb, spherical nondeformable
drops are formed and the creaming of the dispersed droplets at the upper or lower tube wall is
avoided. Thus, the fully dispersed flow pattern can be considered as stable. In these equations

Uc = Um, Ucs = Uws, Uds = Uos, ρc = ρw and µc = µw. Hence, Wec =
ρwDU2

m
σ

; Rec = DUm
νw

and εd = Uos/Um. For instance, if dcrit = dcσ, the transitional criterion reads:

C(εd)Eo
1/2
D We0.6

c Re0.08
c ≥ 1 (5.9)

The variation, C(εd) with the dispersed phase holdup evolves from the H-model equations.
Curve 4 in Figure 5.1 predicts the transitional boundary from Do/w&w to Do/w. In systems

of EoD ' 1, the K-model (eqs. 4.23 and 4.24) replaces the H-model in the evaluation of dmax

(Brauner, 2001).

5. Transition to Dw/o – A homogeneous water-in-oil dispersion (emulsion) develops when
turbulence level in the continuous oil phase is sufficiently high to disperse the water phase
into stable small droplets. In this case eqs.(4.18 to 4.20) and (5.4 to 5.6) are applied with
Uc = Um, Ucs = Uos, Uds = Uws, ρc = ρo and µc = µo. Hence, εd = Uws/Um and Wec =
ρoDU2

m
σ

; Rec = DUm
νo

. In systems of EoD ' 1, eqs. (4.23 - 4.24) replace eqs. (4.19 - 4.20)

for the evaluation of d̃max. Boundary 5 in Figure 5.1 corresponds to the predicted transition to
Dw/o. It is worth noting that for the critical flow rates along boundary 4, the mixture Reynolds
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number is already sufficiently high to assure turbulent flow in the water. However, when a
viscous oil forms the continuous phase, the locus of the transition to Dw/o may be constrained
by the minimal flow rates required for transition to turbulent flow in the oil (Rec = 2100 along
boundary LTm). The required turbulent dispersive forces exist only beyond the LTm boundary,
which therefore forms a part of the Dw/o transitional boundary.

6. Transition from Do/w to Dw/o - This transition is associated with the phase inversion
phenomena discussed in Section 4.5. Boundary 6 in Figure 5.1 was obtained by eq. (4.31).
The phase inversion model is applicable for predicting this transition when the oil and water
flow rates are sufficiently high to sustain both a homogeneous Do/w and Dw/o. As shown in
Figure 5.1, boundaries 4 and 5 indeed define an ambivalent range where either of the oil or water
phase can be homogeneously dispersed. It is the phase inversion phenomenon which eventually
defines the boundaries of Do/w and Dw/o.

7. Core flow boundaries – In highly viscous oils, the laminar regime extends to high oil
flow rates. In the absence of turbulent dispersive forces in the oil phase, it is possible to stabilize
a viscous oil core which is lubricated by water annulus. The region were stable CAF is feasible
is: (a) outside the boundaries of stable stratification (outside 2w and 2o), hence, sufficiently
high oil rate (and water cut) to overcome the float-up tendency of the lighter oil core; (b) in the
CAF configuration, the difference between the velocity of the oil in the core (Uc ≡ Uo) and the
water velocity in the annulus (Ua ≡ Uw), should not exceed the threshold value which would
result in entrainment of the water film into the oil core. The threshold value is given by the
r.h.s. of eq. (5.7), with ρc = ρo (Nvd = µ4

w∆ρg/ρ2
wσ3 ¿ 1 and can be ignored). The core annular

model in section 3.2 can be used to evaluate Uc and Ua. However, since for turbulent water film,
the slip between the phases is only few percents of the core velocity, this condition constrains
the CAF only at high Uos; (c) water cut should not exceed a threshold value which results in
disintegration of the oil core into oil globes by a thick wavy water annulus. Favorable conditions
for wave bridging are Aa/Ac > 1. Using the annular flow model (Section 3.2) yields the flowing
criterion for avoiding transition from core flow to oil slugs:

Uos

Uws
≡ Ucs

Uas
≥ µa

µc
+ 2 ; laminar core-laminar annulus (5.10)

Ucs

Uas
≥ 2.875× 10−3 µa

µc
Re0.8

as + 1.15 ; laminar core-turbulent annulus

These criteria were shown to provide reasonable estimations of the oil and water flow rates where
core flow is stable (see Figures 19 and 20 in Brauner,1998). The minimal water-cut needed to
avoid stratification decreases with increasing the the oil core viscosity.

It is worth emphasizing the evolution of annular flow due to pure dynamical effects in
systems of EoD À 1 (as in gas-liquid horizontal flows) is unlikely for oils of relatively low
viscosity. Stabilization of the core requires sufficiently high velocity of the core phase: high
mixture velocity and high input cut of the core phase. Under such conditions (and with low oil
viscosity), dispersive forces are dominant and emulsification of the potential annular phase into
the core phase results in a fully dispersed (emulsion) of the annular liquid within the core liquid
and destruction of the CAF configuration.

5.2 Systems of EoD ¿ 1

Such systems exhibit flow patterns which are similar to microgravity systems (Brauner, 1990).
The tube diameter is smaller than dcrit and in view of criterion (5.8) stratified flow will not
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be obtained even for low oil and water rates. The drift velocity of drops is negligible and the
tube inclination has no effect on the flow patterns. Also, different flow patterns may result by
changing the liquids/wall wettability properties (changing the tube material or the start-up
procedure).

In hydrophilic tube, for low oil flow rate and high water cut, the flow pattern is oil droplets
dispersed in water. With increasing the oil rate, enhanced droplets coalescence yields larger
spherical oil drops (bubbles) with d ' D. This transition usually occurs for in situ oil holdup

of about 0.15 ÷ 0.25 corresponding to Q̃ = Uos
Uws

= εo
1−εo

=' 0.17 ÷ 0.33. For larger oil in
situ holdup, the large spherical bubbles coalesce to form elongated oil bubbles (oil slugs). This
transition takes place when the oil in situ holdup approaches the maximal volumetric packing,
εo ' 0.4÷ 0.5 corresponding to Q̃ ' 2/3÷ 1.

The slug/annular transition takes place for sufficiently low water cut, where stable thin water
annulus can be maintained. This boundary can be calculated by eq. (5.10). For low viscosity oil
and high oil rates, the oil core is turbulent. When the turbulent dispersive forces are sufficiently
high to disperse the water annulus, transition to Dw/o takes place. It should be noted that in
systems of EoD ¿ 1, dcrit = dcσ > D. Therefore, dcrit is scaled by D (e.g., dcrit ' D/2 ,and
the K1-model in Brauner, 2001 is used to calculate the transition to Dw/o (boundary 5), or
Do/w (boundary 4)). The entrainment of the water film due to the inertia of the core phase
should also be considered. The corresponding critical velocity difference is given by eq. (5.7),
with ∆Uc = Uo − Uw = Uc − Ua (using the CAF model in section 3.2 to calculate the velocity
difference). The locus of Do/w to Dw/o transition at high oil and water rates is obtained by the
phase inversion model (eq. 4.28). The application of these criteria for predicting flow pattern
transition in systems of low EoD was demonstrated in Brauner,1998.

In a hydrophobic tube, there is evidence that for low oil water rates and high water cut
inverted annular flow (Andreini, et al., 1997) with oil flowing in the annulus can be obtained
(instead of Do/w). This flow pattern can be maintained as long as the level turbulence in the
water core, as well as its inertia, are not sufficiently high to disperse the oil annulus. Also, the oil
holdup in the annulus must be sufficiently low to avoid blockage of the water core (Ac/Aa ≥ 1,
Ac, Aa calculated via the annular flow model, Section 3.2).

5.3 Vertical upward systems

The construction of a flow pattern map for vertical upward oil-water flows is demonstrated in
Figures 5.3 and 5.4. The basic flow configuration for low superficial oil velocity is Do/w. For
low water rates, the oil is dispersed in the water in the form of relatively large bubbles. The
criterion of εo ≥ 0.25 is usually suggested to mark transition from small spherical bubbles to
large oil bubbles and slugs (e.g., Harsan and Kabir, 1990). The locus of εo = 0.25 (as predicted
via eq. (4.5) and (4.6)) is indicated by boundary 8. With increasing the water rate, transition
to fine Do/w (o/w emulsion) takes place, which is predicted by transition 4. Similarly, the
transition to fine Dw/o (w/o emulsion) takes place for sufficiently high oil superficial velocities
(transition 5) which are higher than that required for establishing turbulent flow in the oil as
a continuous phase (right to boundary LTm). The phase inversion model yields the boundary
between Do/w and Dw/o (transition 6).

The unstable region of churn flow is obtained for low water rates and intermediate oil rates.
The oil flow rate is too high for sustaining a stable configuration of Do/w. Large oil bubbles
(of the order of d ' dcrit) coalesce and tend to form an oil core surrounded by a water annulus

(CAF). Boundary 7 in Figure 5.3 is the locus of D̃c = 0.5 as predicted by the CAF model
for vertical upward flow (a thinner core results in transition to oil bubbles dispersed in water).
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However, the oil velocity is yet too low to meet the dynamic requirements for stabilization of oil
dominated flow patterns, namely, where the oil forms the continuous phase as in CAF flow or
Dw/o. For stable CAF, the oil superficial velocity should be sufficiently high to suspend large
water drops, d ' D (say d = D/2), which are occasionally formed, whereby:

1

8
πd2CDρoU

2
os ≥ 1

6
πd3 (ρw − ρo) ; or Uos

[
ρo

∆ρgD

]1/2

≥
(

2

3CD

)1/2

(5.11)
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Boundary 9 in Figure 5.3 has been obtained by eq. (5.11) with CD = 0.44. It is worth noting
that criterion (5.11) is similar to that of flow reversal of the annular film, which is frequently
used to estimate flooding conditions, as well as transition to annular flow in upward gas-liquid
systems. Condition (5.11), however, introduces the effect of the oil viscosity (and drop size)
through the variation of CD. It is worth emphasizing that with relatively low viscosity oils
(as is the case in Figure 5.3) the CAF configuration is eventually not obtained. The potential
water annulus is dispersed into the oil phase to form the Dw/o pattern. The annular pattern
in upward vertical flow has been observed only for highly viscous oils. The size of oil bubbles
and slugs increases with the oil viscosity and for sufficiently large oil-cut, a continuous oil core
surrounded by a water film may be formed (see Figure 5.4). Oil core flow lubricated by a water
annulus was obtained for sufficiently high oil cut (instead of the churn regime observed with
low viscosity oils). Indeed, with highly viscous oils (Red = ρoUosd/µo ¿ 1 and CD = 24/Red)
condition (5.11) is satisfied already for low oil velocities and the region of churn flow in Figure
5.3 is occupied by the CAF in Figure 5.4. The core interface is wavy and water rate should be
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kept higher than a threshold value to prevent oil sticking on the tubes wall. As shown, the core
flow region in Figure 5.4 can be estimated using the CAF model (Section 3.2) for calculation the
core phase holdup. It extends from D̃c ' 0.5 (transition to slug flow) to D̃c = 0.95 (oil sticks to
the wall).

5.4 Conclusion

The first step in the construction of a flow pattern map for a liquid liquid system is its classi-
fication according to its Eotvös number, to either being gravity dominated or surface tension
dominated system. The guidelines and criteria for flow pattern transitions as outlined above,
were found useful for estimating the flow pattern map for these two types of liquid liquid sys-
tems. However, these have still to be tested in view of more data in the variety of liquid-liquid
systems, pipe diameters, materials and inclinations.
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