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ABSTRACT

The techniques presented in introductory engineering textbooks for modeling and analysis
of experimental data nowadays are essentially the same as the ones that were presented
over 35 years ago. Considerable potential now exists for dramatic improvements in data
correlation and analysis because of the introduction of personal computers along with user-
friendly interactive software which performs linear and nonlinear regressions and vyields
standard statistical results. This article presents some basic statistical concepts which are
required to understand the results obtained from a regression package and demonstrates,
using an example of vapor pressure correlation the proper technique for modeling and
analysis of experimental data. Our experience and student performance has indicated
that a Ist-year course for engineering students can effectively introduce students to the
correlation and the modeling of experimental data. This capability can be given to students
during two lectures and a 1-hour computer laboratory period plus an appropriate assign-
ment, provided that an interactive regression package (Polymath or EZfit, for example) or
a spreadsheet program with multiple linear regression capabilities is available. @ 1996 John

Wiley & Sons, Inc.

INTRODUCTION

Chemical engineering students have been tradition-
ally taught modeling and analysis of experimental
data in the first introductory course of chemical en-
gineering. Anderson and Wenzel [1], in their classic
book from 1961, entitled this subject **Presentation
and correlation of data.’” Topics under this title in-
cluded fitting a straight line to data on rectangular,
semilogarithmic, and logarithmic coordinates; inter-
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polation using Lagrange polynomial: and the
method of least-squares regression for a second-
order polynomial. In the more recent textbook of
Felder and Rousseau [2], the subjects covered in
this area still fit a straight line on rectangular, semi-
logarithmie, and logarithmic coordinates and least-
squares regression for a straight line.

The question arises as to whether the methods
that were taught 35 years ago are still sufficient for
the data analysis needs of a chemical engineering
student or a practicing chemical engineer today. The
same question is probably valid for most other engi-
neering disciplines.

Over the years, many books have been published
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which deal with a statistical approach to modeling
and analysis of experimental data. These books have
been published by statisticians as well as chemical
engineers [3-6]. The methods presented in these
books have failed to reach most engineering stu-
dents and practicing engineers because they require
an extensive knowledge of statistics, which only a
specialized group of engineers possesses. The emer-
gence of interactive regression programs for per-
sonal computers with both graphic and numeric out-
put of the results brought advanced capabilities for
data analysis and modeling into the reach of all
engineering students and practicing engineers. Rep-
resentative software includes the regression pro-
gram in the Polymath package [7], the EZfit pro-
gram [ 6], and the linear regression option in spread-
sheet programs such as Excel [8]. The appropriate
time for introducing students to the use of such
programs and the extent of the desirable theoretical
background material that should be included in such
an introduction deserves further discussion.

Engineering students typically start doing labora-
tory experiments requiring data analysis in the Ist
year of their studies, so they should be introduced
to the basic concepts of data modeling and analysis
as early as possible. This material can be included
in an introductory computing course which is given
to freshman engineering students in several schools,
or it can be given as part of an introductory chemical
engineering course.

It is challenging to decide what to include in this
introduction to modeling and analysis of experimen-
tal data. Faculty should assume that the students do
not have previous knowledge of statistics, but this
introduction should not replace the traditional statis-
tics course. On the other hand. regression programs
cannot be used in a ‘‘cookbook’ manner, because
such a use often leads to wrong conclusions. The
students must understand how the statistical soft-
ware works and appreciate the meaning and impor-
tance of different statistical indicators.

In this article we present material that, in our opin-
ion (and experience), can provide an introduction to
the use of interactive programs for data modeling and
analysis to 1st-year engineering students. The time
framework for this introduction includes two lectures,
| computer laboratory hour, and an extensive data
analysis assignment. This introductory material will
provide students with a basis for advancing from the
era of graph paper to that of computerized modeling
and analysis of experimental data.

THE OBJECTIVES OF DATA MODELING
AND ANALYSIS

Generally data modeling and analysis is applied to
either experimental data from the laboratory or tabu-

lated data from the literature. This is accomplished
by postulating a particular form for a model and
fitting parameters to the model by regression of the
data. Obviously the objective is to find the model
which best represents the data.

In the past, tabulated data were often used in
process calculations. The introduction of computers
and more rigorous calculations into the process de-
sign and analysis area has made it imperative to fit
a model to the data. Such a model can represent the
data in a more compact, easier to use, and often
more accurate form.

There are, in general, three types of uncertainties
associated with the process of trying to fit a model
to a set of data; (1) The validity of the model repre-
sentation of the physical phenomena is not known.
(2) As a result of experimental (or other) error, the
true value of a particular variable at a particular
point is not known. (3) It is not known how well
the sample set of data represents the complete set
(full population), if such were available.

There are many statistical tests available to judge
the reliability of a regressed model and compare
various models in light of the uncertainties involved.
A comprehensive discussion, review, and demon-
stration of this subject is presented, for example,
in Himmelblau [4]. But there are actually a few
statistical indicators on which the comparison of the
different models can be based and which are usually
sufficient for carrying out statistical analysis. Fur-
ther analysis will often be of diminishing value.

For statistical analysis, it is important to under-
stand the difference between smoothed data as op-
posed to unaltered and untreated experimental data.
Tabulated data published in handbooks (such as
Perry’s [11], for example) are often smoothed and
interpolated, and as such they do not provide a true
representation of the experimental error involved.

In the next section, the basic statistical concepts
which should be included in an introductory course
are described. An example, which includes regres-
sion of both experimental and smoothed data for
vapor pressure of a particular substance, will be
used to demonstrate the proposed approach for data
modeling and analysis.

BASIC STATISTICAL CONCEPTS

The student (or practicing engineer ) must be famil-
iar with a few basic statistical concepts to be able
to select from among several models and estimate
the uncertainty of using the selected model.

Let us assume that there is a set of N data points
of a dependent variable y, versus x;. Xy " *x,.
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where x;, x;+ + -x, are n independent variables. A
particular model to be fitted to the data is of the
form

Yo =gy, xt 0 x, By, Ba - - By (1)

where §,, #, - -+ @, are the parameters of the
model. The least-squares error approach is most of-
ten used to find the parameters of Equation (1).

The statistical assumption behind the least-
squares error method for parameter estimation is
that the measured value of the dependent variable
has a deterministic and a stochastic part, The sto-
chastic part is often denoted as an error, ¢,. Thus,
Equation (1) can be rewritten

Yi = g(.t“.x;,- S '-tmvﬁl- nﬁ? i s ﬁan) i €; ( Ia]
It is further assumed that the origin of ¢, is measure-
ment error which is randomly distributed.

An infinite number of measurements would be
required to obtain the true values of the parameters
By, By -+ . Because a sample always contains
a finite number of measurements, the calculated pa-
rameters are always approximations for the true val-
ues. They are denoted with a circumflex. Thus,
By, By e 3, are the calculated values of the pa-
rameters and ¥, is the estimate for the dependent
variable y; .

In the least-squares error approach, the estimates
B, By -+ B, are found so that they minimize the
following function (squares of errors):

N
dei= z [\', _g(‘rlr‘xﬁr' "t X ﬁl' 163 S Jﬁm)]:
=]
(2)

The particular mathematic technique of finding
the set of parameter values that minimizes the func-
tion F depends on the form of the function
2(x, B).

If the parameters appear in a linear expression
in the function g, the minimization can be carried
out by solving a set of simultaneous linear algebraic
equations (the normal equations). Representation
of the minimization of the sum of squares as a sys-
tem of linear equations, for the cases of linear and
polynomial regression, and the solution of the sys-
tem are described in detail in several introductory
chemical engineering textbooks (for example,
[1.2]), and will not be repeated here. As part of the
discussion on linear regression, it should be noted
that several nonlinear models can be transformed
to linear ones by transformation of variables, Such

transformations are also discussed in the introduc-
tory textbooks.

Nonlinear regression (when the parameters ap-
pear in nonlinear expressions in g(x;, #)) requires
the application of more advanced numeric methods.
This subject is usually included in more advanced
numeric methods courses [9].

An assessment of the quality of the fit of a partic-
ular model and a comparison between different
models is based on graphic and numeric informa-
tion.

Graphic Information

The observed (y,) and estimated (¥, ) values of the
dependent variable can be plotted versus x; (if there
is a single independent variable) or versus i, the
point number (if there are several independent vari-
ables). The distance between the observed and esti-
mated values can serve as an indication for the qual-
ity of the fit. These distances can be amplified using
a “‘residual plot.”” In the residual plot, the model
error (residual ) & is plotted usually versus v, , where

&=y —3 (3)

A random distribution of the residuals around
zero indicates that the model correctly represents
the particular set of data. A definite trend or pattern
in the residual plot may indicate either a lack of fit
of the model or that the assumed error distribution
for the data (random error distribution for the de-
pendent variable) is not correct. In such cases, the
use of statistical indicators to evaluate the validity
of the model for the particular phenomena hased on
the available data is not justified. When the source
of the nonrandomness in the residual distribution is
a lack of fit of the model, appropriate modification
and upgrade of the model can eliminate the problem,
In other cases, data transformation can be beneficial.
Many forms of data weighting and transformation
can be covered only in advanced statistics courses,
but some simple forms are routinely used in data
analysis. For example, in cases where the value of
the dependent variable changes by several orders of
magnitude over the range of interest, often the rela-
tive error is distributed normally. The relative error
is defined as

;L (4)
Av'

e
]

An appropriate transformation, which results in
minimization of the relative error in the regression,



244 SHACHAM ET AL.

is taking the logarithm of both sides of the model
equation.

It should be emphasized that when the variables
are transformed the residual plot must be con-
structed using the transformed form of the indepen-
dent variable, to account for the change in the error
distribution introduced by the transformation.

Numeric Information

The most frequently used numeric indicator of the
quality of the fit is the standard error of the estimate
which represents the sample variance, and is given
by

i (y =)
N—m

5= (5)

Thus, the sample variance is the sum of squares of
errors divided by the degrees of freedom (where
the number of parameters, m, is subtracted from the
number of data points, N) and is a measure for the
variability of the actual v values from the predicted
¥ values. Smaller variance means a better fit of the
model 1o the data, It should be emphasized that
when the sample variance is used for the comparison
of different models, the same independent variable
(transformed or nontransformed ) should be used in
Equation (5) for all models. The variance is an
unscaled variable which can take on any value from
zero to infinity. Consequently the variance alone
cannot be used to indicate the goodness of fit be-
tween the data and the respective model.

When fitting a straight line to data of y versus
x, most software will provide as an output the corre-
lation coefficient (R*). The correlation coefficient
represents the ratio between the sum of squares
about the mean due to regression to the total sum
of squares (about the mean), and is obtained by

R:=21::t(f;—y1f (6)

2L -9

Hence, R* measures the proportion of variation
about the mean value ¥ that is explained by the
independent variables in the regression model. In
case of simple linear regression (single independent
variable ), the correlation coefficient (r = R) can
be calculated also from the following equation:

_ ELx—=-00.-7
VE (% — ,i*}’v'rl_'. (67 )

r

(6a)

where ¥ = EX, x,/N and ¥ = ), v,/N are the

sample mean of the independent and dependent
variables, respectively. The correlation coefficient
(=1 = r= 1) indicates the strength of the correla-
tion between x and y, If r is close to —1 or 1,
there is a strong correlation between the variables,
whercas a value close to zero indicates a weak or
no correlation, Because the correlation coefficient
is a scaled variable, it is often used to indicate how
well a straight line represents the data.

Confidence intervals (in particular, the 95% con-
fidence interval) on the parameter values can be
very useful indicators of the fit between the model
and the data. A better model fit and more precise
data lead to narrow confidence intervals, while a
poor model fit and/or imprecise data cause wide
confidence intervals. Furthermore, confidence inter-
vals which are larger (in absolute value) than the
respective parameters themselves often indicate that
the model contains too many parameters.

Calculation of the confidence intervals requires
knowledge of some advanced statistical concepts
(such as ¢ distribution), so its discussion can be
deferred to a course in statistics. In an introductory
engineering course, the explanation that the confi-
dence interval represents uncertainty in the caleu-
lated parameter values is probably sufficient. It
should be emphasized. however, that the validity of
the calculated confidence intervals is based on the
assumption of random distribution of the residuals.
Violation of this assumption renders the calculated
confidence intervals doubtful.

The maximum errors (absolute and relative)
have no statistical significance, but they can give
an indication of the error that can be expected in
the worst case, and therefore should be included in
the comparison of different models. If some models
involve transformation of variables, it is important
to calculate the errors based on the same variables
(as is also necessary in the case of the variance).

In the next section, an example involving model-
ing of vapor pressure will be presented and different
models will be compared based on the graphic and
numeric indicators outlined in this section.

VAPOR PRESSURE DATA AND MODELS

Table 1 shows vapor pressure data for 1-pro-
panethiol, in the low-pressure range (1 to 760
mmHg) as published by Stwull in 1947 [10]. The
same data appear in several editions of Chemical
Engineers Handbook (the last being the 6th edition,
from 1984 [11]). Table 2 shows vapor pressure data
for the same substance, 1-propanethiol, in a slightly
different pressure range (149.41 up to 2026
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Table 1 Vapor Presure Data for 1-Propanethiol
(from Stull [10])

Temperature (°C) Pressure (mmHg)

1 —-56.0 1
2 -36.3 5
3 —26.3 10
4 —154 20
5 -3.2 40
[ 4.6 60
7 15.3 100
8 31.5 200
9 492 400
10 67.4 760

mmHg). These data are from Oshorn and Dous-
lin [12].

There are several obvious differences between
the data in Tables 1 and 2. In Table 1, temperatures
at even pressures are provided. Because pressure is
the dependent variable, it is evident that the data
in this table are not experimental but have been
smoothed and interpolated. According 1o the num-
ber of significant digits provided, the error in the
temperature can be at least 0.05°C and the error in
the pressure is 0.5 mmHg.

In view of the number of significant digits pro-
vided. the data in Table 2 appear to be real experi-
mental data of higher precision. Judging merely
from the number of significant digits, the error in
the temperature is =0.0005°C and the error in the
pressure is 0.005 mmHg.

It is essential to find out whether the data repre-
sent cither real measured values or smoothed and
interpolated values. While the objective in both
cases is to fit the best possible model to the data,
only real measured data allow determination of the
uncertainty associated with the use of the model.
Statistical indicators obtained from smoothed data
will show the model’s deviation, not from the origi-
nally measured values but from the processed data.
The uncertainty introduced by smoothing and inter-
polation is wusually unknown. Furthermore, the
smoothing process is usually carried out using a
particular model. Fitting the same model to the data
may falsely indicate excellent agreement between
the model and the data.

In this respect, it is interesting to read what Stull
[10] wrote about the method used for obtaining the
data in Table 1. Vapor pressure data from different
sources were combined using the following tech-
nique:

A 56 > 38 inch Cox chart was used together with
a set of map tacks of different colors, All the infor-

mation on a given compound was plotied using
different colors to represent the work of different
individuals. With compounds that had been much
worked on, it was easy 10 see which of the points
did not fall on the median line. This median line
was actually a taut thread placed so that it touched
the data in which one had the most confidence.

. By choice and elimination the thread was
placed (under slight tension ) so that it fit the points
consistently, and the temperature values were
“read back™ at predetermined pressures and cop-
ied onto yellow cards. (Stull [10], p. 517)

Obviously, it is impossible to determine what is the
uncertainty introduced by such a treatment of the
data. Consulting the source of the data in Table
2 [12] confirms that these data indeed represent
experimental results.

It is not always as evident, as in Table 1, that
the data do not represent originally measured values.
The source of the data must always be consulted to
determine whether the data were not altered in a way
that can make statistical indicators for evaluating the
uncertainty in the calculated values of the model
parameters meaningless.

The following models (equations) are compared
with regard (o their ability to represent the vapor
pressure data of Tables | and 2:

1. The two-parameter Clapeyron equation:
B ;
|Dg(P)=A+} (7)

where P is the vapor pressure (mmHg), T is
the temperature (°K). and A and B are param-

Table 2 Vapor Pressure Data for 1-Propanethiol
(from Osborn and Douslin |12])

Temperature (°C) Pressure (mmHg)

1 24.275 149.41
2 29.563 187.57
3 34.891 233.72
4 40.254 289.13
5 45.663 355.22
6 51.113 433.56
7 56.605 525.86
8 62.139 633.99
9 67.719 760.00

10 73.341 906.06
11 79.004 1074.60
12 84.710 1268.00
13 90.464 1489.10
14 96.255 1740.80
15 102.088 2026.00
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log (P) = 7,94208 - L1167

log (P)

0.6 |-

0.0 L— . : ;
28 32 36 4.0 44 438

Figure 1 Plot of data points (Stull’s [10] data) and
calculated straight line for the Clapeyron equation.

cters to be estimated by regression of the ex-
perimental data.
2. The three-parameter Antoine eguation:

log(P) = A + (8)

1+ C

where 1 is the temperature (°C) and A, B, and
C are parameters.
3. A polynomial with up to six parameters:

P=ua,+at+at + -+ +ast® (9)

All calculations were carried oul using the
**Polynomial, Multiple Linear, and Nonlinear Re-
gression”” program of the Polymath 4.0 pack-
age [7].

THE CLAPEYRON EQUATION

The Clapeyron equation can be linearized by defin-
ing x = |/Tand y = log(P). Using this transforma-
tion, the plot of y versus x should give a straight
line. This is demonstrated in several introductory
chemical engineering textbook (e.g.. [1]), usually
by plotting P versus |/T on a semilogarithmic
paper.

Figures | and 2 show the plot of the data points,
the calculated straight line, and the calculated pa-
rameters of Equation (7) for the data of Stull [10]
and Osborn and Douslin [12], respectively. It can
be seen that in both cases the experimental data are
aligned nicely along a straight line. The calculated
parameter values differ, however, in the second sig-
nificant digit for the two data sets. The source of
the discrepancy is the use of two different samples

with different accuracies for correlating the same
physical property.

The pertinent numeric results are summarized in
Table 3. Some of the indicators show that the fit
between the Clapeyron equation and the data is not
very good for either of the data sets. The variance
(based on the pressure itself) is 198.7 for the less
accurate data set and 110.76 for the more accurate
data set. Similarly, the maximum errors in the pres-
sure are 37.07 and 30.57 mmHg for the less and
more accurate data sets, respectively.

Because the accuracy of the data is not reflected
and has a little effect on the accuracy of the correla-
tion, it can be concluded that this particular model
is limited in its ability to represent vapor pressure
data. This conclusion is further supported by exami-
nation of the residual plots of the two data sets,
shown in Figures 3 and 4. For both sets of data, the
residuals are not randomly distributed, but show a
clear pattern. Both data sets exhibit a curvature
which is not predicted by the Clapeyron equation.

The curvature in both residual plots nullifies the
apparent straight line representations in Figures |
and 2 and also the values of the correlation coeffi-
cient (r) in Table 3 (very close to —1). The residual
plot indeed magnifies the deviation between the
model and the data points, making it easier to distin-
guish between an appropriate and an inappropriate
model. The value of the correlation coefficient r,
which is very close to —1, demonstraies a major
limitation which may exist in some of the widely
used statistical indicators. One should not rely on a
single indicator but consider the consistency of sev-
eral relevant indicators in data analysis.

THE ANTOINE EQUATION

The Antoine equation, given by Equation (8). is
nonlinear, and the most appropriate treatment would

log (P) = 7.638 - 162283

log (P)
o

255

225k

lvgs 1 " i n 1 i
2.64 2.80 2.96 312 3R 3.44

/T
Figure 2 Plot of data points (Osborn and Douslin's

[12] data) and calculated straight line for the Clapeyron
equation.
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Table 3 Numeric Results for the Clapeyron Equation

Stull [10] Data

Osborn and Douslin [12] Data

95% Confidence

95% Confidence

Value Interval Value Interval
A 7.94208 0111465 7.638 0.0317435
B —1716.57 29.9813 —1622.85 10.5741
Variance* 4.09 x 10°* 1.66 x 10°°
rt -0.99977 —0.999944
Variance' 198.7 110.759
Max. abs, error' 307 30.57
Max. rel. error’ 8.9% 1.69%

*Based on y = log(P),
'Based on y = P.

be to use nonlinear regression for fitting parameters
to this equation. However, it is preferable to post-
pone the discussion on nonlinear regression from
the introductory course to a more advanced numeric
analysis or statistics course. For the introductory
engineering course, the Antoine equation can be
linearized by multiplying both sides of the equation
by t + C and rearranging as follows:

AC
lop(P) = A+ L8

C

Iog:” (10)

In this equation, the independent variables are
log(P)/t and 1/t, and the dependent variable is
log(P). Multiple linear regression can be used to
calculate the parameters A, (AC + B), and (=C).

It should be noted that P, the original dependent
variable, appears both as a dependent and indepen-
dent variable in Equation ( 10). The inclusion of the
dependent variable in the righthand side of Equation
(10) violates one of the statistical assumptions on

32

£x10?
=
o
o

3.2

4 8 1 i i L i L
0.0 0.6 1.2 1.8 24 30

y = log(P)

Figure 3 Residual plot for the Clapeyron equation
(Stull's [10] data).

which the regression error analysis is based. This
limitation must, of course, be pointed out to the
students. But in most cases (as in this example) the
linearization does not cause significant errors which
would be apparent in the residual plot.

Table 4 shows the numeric results, and Figures
5 and 6 the residual plots, when Equation (10) is
regressed using the data of Stwll [10] and Osborn
and Douslin [12]. A comparison of the results in
Tables 3 and 4 shows that the combination of accu-
rate data (Osborn and Douslin’s ) and a more appro-
priate model yields a very significant improvement
in all of the statistical indicators. The variance
(based on P) is reduced by more than four orders
of magnitude (from ~110 in Table 3 to ~0.0085
in Table 4). The maximum relative and absolute
errors are reduced by two orders of magnitude. Sim-
ilar reduction results in the confidence interval for
the calculated parameters values. The residual plot
(in Figure 6) shows a random distribution of the
errors, and the absolute value of the error based
on log(P) is reduced by one order of magnitude

6
oo
ir o ° = o
" o
- Op————————— O e ]
=] o
o
H =
w 3 L] o
Fyn
o o
9 L L g by
195 225 2.55 285 315 345
y =log(P)

Figure 4 Residual plot for the Clapeyron equation ( Os-
born and Douslin's [12] data).
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Table 4 Numeric Results for the Antoine Equation

Stull [10] Data

Osborn and Douslin [12] Data

95% Confidence

95% Confidence

Value Interval WValue Interval
A 7.01572 0.176281 6.9311 0.00551491
AC + B 393.556 12.6924 373.323 0.654306
C 234.871 7.60125 224.802 0.358564
Variance* 1.276 % 10 9.735 x 107"
Variance' 89.96 0.008561
Max. abs. error’ 24.89 0.2504
Max. rel. error' 3.27% 0.019%

*Based on v = log(P).
'Based on y = P.

compared to that obtained with the Clapeyron equa-
tion.

When using the more appropriate model with
the less accurate data [10], the improvement is not
nearly as significant. Comparison of Table 3 and 4
shows that the variance based on P, as well as the
maximal relative and absolute errors are reduced
only by a factor of ~2. There is no appreciable
change in the confidence intervals of the parameters.
While the pattern of the residual plot (Fig. 5) is not
as clear as with the Clapeyron equation (Fig. 3),
there is still an observable trend of increasing resid-
uals with increasing value of log(P).

POLYNOMIALS

An equation in the form of polynomial is often used
for representing the relation between one indepen-
dent variable and one dependent variable. The re-
sulting correlation is an empiric model, which lacks
a theoretic basis. The use of such a model for the
vapor pressure data can demonstrate some of the

1.5 °

0.0 0.6 12 1.8 24 i0
y = log(P)

Figure 5 Residual plot for the linearized Antoine equa-
tion (Stull’s [10] data).

advantages and the disadvantages of using empiric
models.

In the selection of the order of polynomial which
best represents the data, the residual plot and nu-
meric values of the variance and confidence inter-
vals on the parameter values are the most important
indicators. Table 5 shows the variances of polyno-
mials of orders 1-5 which have been fitted to the
data of P versus . It can be seen that for Swll’s
[10] data, there is a continuous, significant decrease
of the variance from the first and up to the fifth-
order polynomial, indicating that the fifth-order
polynomial is probably the best from among the
ones tested. Table 6 shows the parameter values
(including the 95% confidence intervals) for the
fifth-order polynomial for this case. It can be seen
that all of the confidence intervals are smaller than
the respective parameter values: thus, all of the pa-
rameters are significantly different from zero. The
residual plot (not shown ) indicates random distribu-
tion of the error. Comparing the pertinent results in
Tables 4 to 6 shows that the variance (based on P)
for the fifth-order polynomial is smaller by two or-

1.5
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1
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-4.5 - o

1.5 . . . s
1.95 225 255 285 3.15 3.45

y = log(P)

Figure 6 Residual plot for the linearized Antoine equa-
tion ( Osborn and Douslin’s [12] data).
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Table 5 Variance of Polynomials of Different Orders
for Representing Vapor Pressure Data

Variance

Oshorn and

Order of Stull [10] Douslin [12]
Polynomial Data Data
1 17801.7 24575.6
2 2024.17 3942
3 93.32 0.81
4 1.18 0.0021
5 0.1545 0.00205

ders of magnitude compared to that obtained with
the Antoine equation, and the maximum absolute
error is smaller by more than one order of magni-
tude. Thus, the polynomial fits the data better than
the Antoine equation. One should remember, of
course, that the fifth-order polynomial has six ad-
justable parameters; thus, the better fit is achieved
by using a more cumbersome and complicated
model. Obviously the number of data points re-
quired to obtain significant parameter values for the
six-parameter model is larger.

The second column in Table 5 shows the vari-
ances of the different order polynomials for Osborn
and Douslin’s [12] data. It can be seen that for these
data, there is a continuous and significant decrease
of the variance with increasing order of the polyno-
mial, up to the fourth order. While the variance for
the fifth-order polynomial is slightly better than that
of the fourth, the difference seems to be of little
significance. This conclusion is further enforced by
looking at the parameter values of the two polyno-
mials in Table 7. It can be seen that, while for the
fourth-order polynomial all the parameter values are
significantly different from zero, for the last param-
eter of the fifth-order polynomial (as) the confi-
dence interval is twice the parameter value itself,
indicating that using zero value for this parameter
can be as good as using any other value inside the
confidence interval. Thus, for these data the fourth-
order polynomial is the most appropriate. The resid-
ual plot for the fourth-order polynomial (not
shown) indicates a random error distribution. The
comparison of the variances and maximum errors
(Tables 4 and 7) shows that for these more accurate
data, the errors are only slightly smaller when using
a fourth-order polynomial instead of the Antoine
equation. This slight improvement in data correla-
tion comes at the expense of two extra adjustable
parameters in the polynomial.

_ It should be emphasized that an empiric model
(such as a polynomial ) can represent the data (often

very well, as in this case) only locally: namely,
inside the interval where the measurements were
taken. The use of such a model for extrapolation, or
for studying asymptotic behavior of the independent
variable, can be completely misleading.

We can try, for example, to use the various mod-
cls with the parameter values obtained with the Os-
born and Douslin [12] data to extrapolate to lower
temperatures (covered by Stull’s [10] data). For T’
= —26.3°C, the reported vapor pressure is 10
mmHg. The Clapeyron equation yields P = 11.58
mmHg and the Antoine equation yields P = 9.16
mmHg. But the fourth-order polynomial (with the
parameter values shown in Table 7), which repre-
sents the data excellently inside the interval where
the measurements were taken, yiclds negative vapor
pressure (—4.0 mmHg ) when extrapolating.

CLASSROOM IMPLEMENTATION

The students in the Chemical Engineering Depart-
ment at the Ben Gurion University of the Negev are
introduced to the use of the **Polynomial, Multiple
Linear, and Nonlinear Regression’ program of the
Polymath [ 7] package in the 1st year of their studies
as part of an “‘Introduction to Personal Computers™
course. Two hours of lecture are spent on introduc-
ing them to the basic concepts (roughly, the material
included in the *‘Basic Statistical Concepts’” section
of this article), and 1 additional hour is spent in the
computer lab, familiarizing the students with the
technical details of the Polymath regression pro-
gram. For practice with data analysis, every student
is given a different set of physical and thermody-
namic data (heat capacity, viscosity, heat of vapor-
ization, vapor pressure, and thermal conductivity)
for various substances. They are asked to calculate
the parameters of different models representing the

Table 6 Parameters and Maximal Error Values for
the Fifth-Order Polynomial (Stull [10] Data)

95%

Confidence
Parameter Value Interval
al 47.4619 0.620243
al 2.44657 0.0434703
a2 0.0521241 0.00122225
a3 0.000610835 4.44444¢-05
ad 4.63332e-06 3.6769e-07
a5 2.03111e-08 9.6309¢-09
Variance 0.1545
Max. abs. error 0.53

Max. rel. error 2.36%
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Table 7 P ters and Mavimal Emor Valuwes for Fourth- and Filth-Order Polynomials |Dsborn and Doushn
|12] Data)

Fourth Order Fifth Order

95% Confidence 95% Conflidence

Parameter Value Interval Value Interval
al 44.1152 1.36474 45.8882 3.8466
al 2.65097 0.1049 247299 0.375874
a2 0.048802 0.00280121 0.0554638 0.0137958
al 0.000762749 3.11485¢-05 0.000645722 0.000239316
ad 3.6009e-06 1.22945¢-07 4.57320e-06 1.97535¢-06
as —3.08024e-09 6.24507e-09
Variance 0.002107 0.002057
Max. abs. error 0.068 0.0825
Max. rel. error 0.0156% 0.00845%

data and then compare the models following the
guidelines in the vapor pressure example shown
here. After accomplishing this assignment, they sub-
mit a report summarizing their findings.

Reading their reports, it is evident that a brief
introduction to an interactive regression program,
as presented here, enables 1st-year engineering stu-
dents to

1. Discriminate and appreciate the difference be-
tween true experimental data and smoothed
or interpolated data.

2. Calculate the parameters of models requiring
linear or polynomial regression.

3. Use transformations to linearize nonlinear
models.

4. Apply the relevant statistical indicators: vari-
ance, confidence intervals, and residual plots
to check the appropriateness of a model and
compare the quality of representation of the
same data using different models.

CONCLUSIONS

Considerable potential now exists for dramatic im-
provements in the correlation and analysis of experi-
mental data because of the introduction of personal
computers along with user-friendly interactive soft-
ware which performs linear regressions and yields
standard statistical results,

Our experience and student performance have
indicated that a Ist-year course for engincering stu-
dents can effectively introduce students to the corre-
lation and modeling of experimental data. This ca-
pability can be given to students during two lectures

and a |-hour computer laboratory period plus an
appropriate assignment.

Basic instruction to Ist-year students prior to the
use of regression software should include the basic
statistical terms of variance, least-squares, correla-
tion coefficients, confidence intervals, and residual
plots. Students should be exposed to the differences
between experimental data and smoothed or interpo-
lated data. Experience with data sets, such as pre-
sented here, can be helpful in learning to employ
various indicators properly when making compari-
sons among various models and assessing model
applicability.

As engineering students progress through their
educational program, the ability to manipulate
and correlate data sets can be used in a variety of
courses and student capabilities can be enhanced
through subsequent statistics and numerical analysis
coursework.

The definitions, explanations, and examples set
forth in this article can be used to provide freshman
engineering students with data sets which help o
advance their capabilities beyond the basic use of
various forms of graph paper, which has been the
standard for data correlation for much too long.
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