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EXOTHERMIC CSTRs
Just How Stable Are The Multiple Steady States?

M. SuacHam, N. Brauner!, M.B. CurLip?
Ben Gurion University of the Negev
Beer Sheva, 84105, Israel

his paper was prompted by a discussion with a col-

league who has been teaching chemical reaction

engineering for many years. During the discussion,
mention was made of the fact that when there are three
steady states in an exothermic continuous stirred tank reac-
tor (CSTR), the upper one can be unstable. The colleague
said that this is impossible, and he based his disbelief on the
classic plot of the multiple steady states, shown in Figure 1.
This particular plot was taken from Stephanopolous'"’ but it
appears in practically all the reaction engineering textbooks,
probably starting with the book by Levenspiel."

This plot shows the curve of heat generated (A) and the
line of heat removed (B) versus the temperature in an exo-
thermic CSTR. The three steady states are the points of
intersection (P,, P,, and P;, Figure 1) of curve A and line B.
Let's assume that the reactor is started at temperature T5. Al
this point the heat generated by the reaction (Q3) is greater
than the heat removed (Q; ). This will cause the temperature
in the reactor to rise, and the rise will continue until the
upper steady state, P,, is reached. It is easy to show, using
similar arguments, that P, and P, are stable steady states and
that P, is an unstable one. There is really no indication from
this plot that P, could also be unstable.
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Figure 1. Three steady states of an exothermic CSTR
fadapted from [1]).

We can conclude that the use of a plot such as the one in
Figure | may lead to the misconception that the upper steady
state in an exothermic CSTR is always stable, but the roots
of this misconception are actually much deeper. They stem
from the mistaken belief that one can rely solely an results of
a steady state model to predict dynamic behavior. The steady
state model can certainly provide some guidelines, but a
dynamic model is needed to predict dynamic behavior.

It should be mentioned that there are textbooks (i.e.,
Westerterp, ef al,"' pg. 339) where dynamic analysis is
discussed in detail, based mainly on the pioneering work of
Aris and Amundson."! But in most reaction engineering
courses, only plots such as the one in Figure | are mentioned
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We can conclude that the use of a plot such as the one in Figure 1 may

lead to the misconception that the upper steady state in an exothermic CSTR is always

stable, but the roots of this misconception are actually much deeper. They stem from the mistaken belief
that one can rely solely on results of a steady state model to predict dynamic behavior.,

as a practical means for analyzing CSTRs behavior. This
should not be the case any longer. The introduction of user-
friendly, interactive simulation packages which can solve
nonlinear algebraic or ordinary differential equations (ODEs)
has not only made the solution of dynamic nonlinear models
possible but has even made it easy.

In this paper we will demonstrate the use of one such
simulation package (POLYMATH) for analysis of the he-
havior of an exothermic CSTR. The POLYMATH package
is a numerical simulation package to be used with IBM and
compatible computers, and the current version (2.1.1 PC) is
distributed by the CACHE (Computer Aids for Chemical
Engineering Education) Corporation, a non-profit organiza-
tion for disseminating educational computer programs among
chemical engineering departments.*

POLYMATH has been used for almost a decade, and its
structure and possible applications have been described in
several publications.*” From among the programs included
in the package, the algebraic and ODE solver programs are
the most useful for exothermic CSTR analysis. (The alge-
braic equation solver was described in detail in reference 5.)

The main advantage of the POLYMATH ODE solver over
similar programs is that equations are typed in their math-
ematical form, and the user has to provide only infor-
mation regarding the mathematical model (equations, initial,
and final values). No technical information, such as integra-
tion method and step size, graph scaling, etc., has 1o be
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Figure 2. Exothermic reaction in a CSTR.

* CACHE Corporation, P.O. Box 7939, Austin, TX 78713
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provided. After the equations have been entered, the com-
puter time for solving even the most complicated problems
is only a few seconds.

For non-stiff equations, POLYMATH uses either an
explicit Euler's method or the fourth-order Runge-
Kutta method for integration. Euler's method is implemented
when the estimated integration error is less than 0.1 times
the error tolerance. For stiff equations the implicit Euler
method is used.

The structure of the rest of this paper is as follows:

* Inthe next section we introduce an example prob-
lem. It is essentially the same problem as Luyben
presented,” The problem definition is reproduced
for the reader's convenience.

In the third section, different combinations of
multiple steady states are demonstrated using a
steady state model, while the fourth section deals
with the analysis of the stability at different steady
states, using the dynamic model.

The model equations used for the reactor analysis
are given in the Appendices, in a form suitable for
use with the POLYMATH package.

EXAMPLE PROBLEM

The typical CSTR problems, in which a first order, exo-
thermic reaction is being carried out is presented in many
textbooks. We used a slightly modified form of an example
presented by Luyben. !

An irreversible exothermic reaction A—*— B is carried
out in a perfectly mixed CSTR as shown in Figure 2. The
reaction is first order in reactant A and has a heat of reaction
MBTU/mole A reacted). Negligible heat losses and constant
densities can be assumed. A cooling jacket surrounds the
reactor to remove the heat of reaction. Cooling water is
added to the jacket at a rate of F(ft'/sec) and an inlet tem-
perature T, ("R). The volume of the reactor, V, and the
volume of water in the jacket, V,(ft’} are constant.

The reaction rate coefficient changes as function of the
temperature according to the equation

k =a exp(~E / RT) (1)
The feed flow rate (F) and the cooling water flow rate ( F)
are constant. The jacket water is assumed to be perfectly
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mixed. Heal transferred from the reactor to the jacket can be
calculated from

Q=UA(T-T)) (2)
where
Q  heat wransfer rate in BTUMr
U overall heat transfer coefficient in BTUsec)(1)("R)

A heat transfer arca

The parameter values for the process™ are shown in
Table 1.

Taking into account that the inlet flow rate F, is equal to
the outlet flow rate F, we see that dV/dt = 0, and the mole
and energy balances on the reactor and cooling jacket yield:

dc,

th

= F.\(C_au =Ca)=VKCy 3)
pCpV %}i =pC,E (T, - T)=AVKC, —UA(T-T,)  (4)

dr,
p,.C,V, =L =p,CF(T

i - T,)+ UA(T-T,) (5)

jo

At steady state these equations become

F,(Cap —Ca)—VKC, =0 (6)
pC, F,(T, = T)=AVKC, = UA(T-T,)=0 (7)
CiFi(T;, —T;) + UA(T-T;)=0 (8)

In the third and fourth sections we will discuss the number
of steady state solutions of these equation sets for the pa-
rameter values of Table 1.

SOLVING THE CSTR STEADY STATE MODEL

There are several ways Lo solve the steady state equations
of the CSTR (Eqs. 6-8). The most obvious way is to solve
the three equations simultaneously, but this option has the
disadvantage that most solution algorithms will find only
one of the solutions. If there are several steady states, some
trial and error involving the initial estimates will be required
in order to find all the solutions.

Another option, one which will indicate all the steady
states, involves the preparation of plots similar to the one in
Figure |. To accomplish this, we first must solve Eq. (6) for
C, and Eq. (8) for T,. This gives us

. _ FCas
CrA=E T VK ®
T, +BT
..
T, = 7B (10)

where f = UAKp,CF).
Next. we define heat generated (Qg) and the negative of
32

TABLE 1
CSTR Parameter Values
F, = 40 ft/hr U = ISOBTUM-- "R
F = 40 ft/hr A = 2501
C,, = 0.50molift T, = S0°R
Vo= 48 T. = 530°R
F, = 499 ft/hr L = -30.000 BTU/mol
Vv, = 3851 €, = 0.75BTUMbm- R
o = 7.08%10"hr! C = LOBTU/Mbm- R
E = 30,000 BTU/mol p = 501bmf’
R = 1,99 BTU/mol °R p, = 6231/’
8,000
£.000

=U. 00J

=2.000 + + + 1
500.000 540000 GRO.000 670.000 460,000 7OO.0

TER)

Figure 3. Heat removed (1) and heat generated (2] as
functions of temperatures when T, = 530 °R.

heat removed (-Qy) as

Qg =-AVKC, an
~Qg ==[pC,F, (T~ T,) - UA(T - T} ] (12)

In order to change the temperature in the reactor continu-
ously, a dummy differential equation

AT _
ar=! (13)

can be specified.

The set of equations consisting of Eq. (1) and Egs. (9) o
(13) can be typed into the POLYMATH ODE simulator. The
form in which these equations are entered into POLYMATH
is shown in Appendix A. (Note that in the appendix the
notation "tr" is used for the temperature inside the reactor
and "tin" for the feed inlet temperature.) The numerical
values of the constants from Table 1 have already been
introduced into these equations.

The plot obtained by using the numerical values from
Table 1 is shown in Figure 3, above, which is very similar
to Figure 1. The three steady states can be clearly iden-
tified as the points of intersections of the Q, and Qy; curves,
and the approximate temperatures at these points can
be determined.
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The conditions can now be easily changed so as to get
different combinations of steady states. By changing the
reactor inlet temperature T,, the heat removal line moves
parallel to itself and one or two steady state conditions can
be generated, as shown in Figure 4.

This is not the best way, however, to find the exact values
of the variables at the various steady states. To do that we
can rewrite Eq. (7) as a single nonlinear algebraic equation

f(T)=Qg —Qr (14)

This equation, together with Eq. (1) and Egs. (9) to (12) can
be entered into the POLYMATH nonlinear algebraic equa-
tions' solver program (as described in Appendix A). The
results for all three steady states for T, = 530 °R are summa-
rized in Table 2,

STABILITY ANALYSIS AND
DYNAMIC SIMULATION OF THE CSTR

Once the steady states have been found, the most impor-
tant factor is how stable they are. We usually prefer to
operate the reactor at some particular steady state (most
often at the one with the highest conversion), but instability
at this steady state may cause many undesirable effects, such
as highly oscillatory response to small disturbances, or drift

to a different, less desirable steady state.

Stability at the different steady states can be determined
by calculating the eigenvalues of the state matrix of the
linearized model of the reactor. This method is widely taught
in process dynamics and control courses, but is not men-
tioned in any of the reaction engineering textbooks. Using
this method, the system of Equations (Egs. 3.4.5) is linear-
ized at the vicinity of a steady state. Once the state matrix
which contains the multipliers of the state variables is con-
structed and its eigenvalues are calculated, the stability of a
steady state solution is determined by the sign of the real part
of the eigenvalues of the state matrix. If the real part is
positive, the steady state is unstable; a negative real part
indicates a stable steady state.

We have carried out such an analysis for the CSTR ex-
ample which was discussed carlier. We used two different
formulations of the problem. In the first formulation, we
assumed pseudo steady state with regard to the cooling wa-
ter temperature, That means that the differential equation,
Eq. (5), was replaced by the algebraic equation, Eq. (10).
The jacket's time constant is relatively small because of its
small volume, with the result that steady state assumption
reduces the stiffness of the problem and changes the result
very little. We will henceforth refer to this formulation as the
modified model.

TABLE 2 In the second formulation, we used the basic set of equa-
Steady State T°R) T(°R) C (mole/ft’) tions, Egs. (3), (4), and (5), and from this point on we will
TTE T e s r:fer m‘na';f tt:e .‘n;:.m' ;p:det The calculated eigenvalues are
2. Intermediate 599,99 504,63 0.2451 sowirin, Lables.o anc &
3, Upper 651.06 641.79 0.0591 For both formulations there is a positive real eigenvalue
for the intermediate steady state, indicating that this steady
9.000
= ° 8.000 = o
- T,=500°R T, =510"R
6.000
.00 4.000
3.000 2.000
key 1.000 -0.000
-5
5 x
L 'Qsx10 1.000 t + + { -2.000 + + t + {
2 A—Q(XIO_S 8.000 7.000
- o
(Btwhr) P T =562°R i
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2.000 1.000
=0.000 =1.000
<2000 -f + + + { -
B 000 40000 SEL000 620,000 660.000 700.0 U0
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Figure 4. Heat generated (1) and heat removed (2) as functions of temperature for various T, values.
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state is unstable. There is also a positive eigenvalue for the
upper steady state. In this case the absolute value of the
positive eigenvalue is much larger in the modified model
than in the basic model. That indicates that the upper steady
state will be unstable when using both formulations, but the
oscillations in the basic model will grow much slower than
in the modified model,

These results can be verified by simulation. The equations
that have to be typed into the POLYMATH ODE simulation
program are shown in Appendix B for both the modified and
the basic model.

Figure 5 shows the change of temperature inside the reac-
tor when it is started up at the three different steady states.
These plots were obtained using the modified model and
show that the reactor operation is as expected from the
theoretical analysis. The lower steady state is stable and the
intermediate state is very unstable, meaning that the tem-
perature starts to go down after about one hour and stabilizes
at the lower steady state after about five hours, In the upper
steady stale the temperature first starts oscillating and finally
goes down toward the lower steady state.

The upper steady state can be further analyzed by looking
at the plot of heat generated versus temperature, shown in
Figure 6. It can be seen that for both the basic and the
modified formulation the heat generated creates a spiral
form where the growth rate of the spiral is much smaller in
the basic model. This is what is expected from the state
matrix eigenvalue analysis, but this plot is completely differ-
ent from the one in Figure 3 which was generated using the
steady state model.

Itis interesting to note that when it is integrated for a long
enough time, the basic model will produce a limit cycle.”)

TABLE 3
Eigenvalue of the State Matrix Using
the Modified Model

Steady State Ist 2nd
1. Lower 1446, 0 (L9353, 0
2, Imermediate  -0.515, 0 3504, 0
3, Upper 0,486, -2.86  0.486, 2.86

TABLE 4
Eigenvalues of the State Matrix Using the Basic Model

Steady State Ist 2nd 3rd
1. Lower -188.7, 0 -1.267, 0O L8976, 0O
2, Intermediate  -188.1, 0 -L532, O 30, 0
3. Upper -187.7, 0 0.00746,-2754  0.00746, 2.754
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This requires programs, however, that are "tuned" for inte-
gration of stiff equations for long time intervals with high
accuracy, and POLYMATH is not adequate.

The conclusion from these results is clear: using a steady
state model for predicting CSTR behavior at the upper steady
state can lead to wrong conclusions.

Several additional questions can be asked. First, is the
state matrix eigenvalue analysis really needed in order to
investigate the stability at different steady states? The an-
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Figure 5. Temperature changes inside the reactor when
started at different steady states,
using the modified model.
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Figure 6. Plot of heat generated versus T in the upper
steady state.
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swer in most cases will be no. Dynamic simulation can be
much easier and faster, and the real physical behavior of the
system can be observed, as opposed to observing indirect
indicators such as the eigenvalues.

Can the conditions in the CSTR be changed so that the
upper steady state is stable in the three steady state regions?
The reader can verify that such conditions exist by multiply-
ing the feed flow rate (F,) by three and repeating the simula-
tion using the equations in Appendices A and B,

Is the instability of the upper steady state a result of the
varying cooling water temperature, and could it be pre-
vented if there were only two variables (T and C,)? The
reader can verify that this assumption is not true by fixing
the cooling water temperature at T, = 530°R and using the
parameter values

F,=40x10ft/hr and o=2x7.08x 10" hr'

instead of the values shown in Table 1. This set of param-
eters gives three steady states, with the upper one being
unstable.

CONCLUSIONS

In this paper, we have demonstrated the applications of an
interactive numerical simulation package for location and
analysis of the steady states in an exothermic CSTR. We
showed that the use of a plot of heat generated and removed
versus temperature as the only means for analyzing the sta-
bility at the steady states may lead to wrong conclusions,
Also, that using this type of analysis sends the wrong mes-
sage o students, implying that they can rely solely on the
results of steady state models to predict dynamic behavior.

We have also shown that dynamic simulation is preferred
over other methods (such as state matrix eigenvalue analy-
sis) for testing stability at the steady states because it is easy,
it 1s fast, and the test is based on the real physical behavior
and not on indirect numerical indicators.
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APPENDIX A

Steady State Model
1 d versus Ti fi

Plotting Heat G d and Heat Ri
and Finding the Steady State Solutions.

{1} dlcr)/die)=1
(2) k=7.08*10**10"exp(-30000/1.99/tr)
9]

(3) beta=150*250/( 3*1.0*49.

(4) c£j=(530+beta*tr)/(l+beta)

(5) ca=0.5/(1+4B*k/40)

(6) qu=30000*k*ca*48

(7) tin=530

(8) rhocp=50*0.75
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APPENDIX B
Dynamic Simulation of the CSTR—Modified and Basic Models

{11 dica)/die)=40*(0.5- cal; 48-k*ca
[2) ditr)/dlt)=[gg-q hocp*48)

{3) beta=150*25 (62.3*1.0%49.9)

(4) £j=(530+beta*cr) /(1 Ta)

(51 7.08*10**10*exp(-30000/1.99/tr)
1) or'p ‘L"L' 75

{7}
(8}

 upper
y states

values.

- To change the feed flow ’1t= change 2 number
40 in equaticons (1) and {B) to the desi
value.

- To fix the ccolanq water temperature at t£j=530

‘n1‘.ow.na i

'_;I*dl»\—w 9* ((530-tj)+beta* £31)/3.85
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