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A Systematic Approach to Model Validation
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wo recent papers in this journal' have discussed the
ever-increasing role of computers in chemical engi-
neering education and practice. While computers are
heavily used for word processing and communication, their
most noticeable effect in engineering education is their role
as mathematical modeling and numerical computation tools.

The range of numerical computational tools available to
the student and the practicing engineer includes spreadsheets
for simple caleulations, numerical computation packages
such as MATLAB, MATHEMATICA, MAPLE, and
POLYMATH. and powerful, sophisticated steady-state and
dynamic simulation programs such as ASPEN, HYSIM,
PROIL, and SPEEDUP. These tools have considerably re-
duced the time and effort required for engineering calcula-
tions. They also make it possible to simulate operation of a
complete process or even a plant. The sophisticated compu-
tational tools have not reduced, however, the need to verify
and validate the results. Actally, there is probably more
need than ever for verification of the results because some of
the computational tools are used as a “black box™ where the
applied mathematical model is invisible to the user.

Most commercial simulation programs use the black-box
approach where the user has to provide only a minimum
amount of input data to specify the process. The mathemati-
cal model, the solution algorithm, and the physical and
thermodynamic properties are provided by the program.
and the user usually receives only the final results. This
approach saves much of the user’s time, but it makes it
impossible to use some of the traditional methods for model
validation and verification.

Himmelblau™ quotes Finger and Naylor's"' steps for model
validation as: validation of the logic, validation of model
behavior. and validation of model assumptions. Clearly, when
the model is invisible to the user, neither its logic nor its
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simplifying assumptions can be validated. The user can only
rely on the final results for validating the model.

Validating the model and verifying the results is more an
art than a science, as Himmelblau notes. The model can
never be completely validated because there are only finite
number of tests that can be carried out,” and passing a
certain number of tests does not ensure that the model is
correct. In order to minimize the chance for errors, a verifi-
cation process that uses the final results only as a diagnostic
tool should be devised; this process should be used consis-
tently, without taking anything for granted. The use of so-
phisticated computational tools can save a lot of time, but
some of this saved time must be used for validation and
verification of the results.
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- - sophisticated computational tools have not reduced, however, the need (o verify and validate the
results. Actually, there is probably more need than ever for verification of the results

because some of the computational tools are used as a “black box” where

the applied mathematical model is invisible to the user.

In this paper, a model validation and verification process,
based only on the final computational results, is presented
and its use is demonstrated using several examples from the
literature. We recommend that students be introduced to
model validation toward the last quarter of a modeling and
simulation course. The examples included in the paper can
be best given as homework assignments where the student
can use a numerical computation package (such as
POLYMATH, MATLAB, or MATHEMATICA) to solve
the problem and use the validation procedure to detect what
is wrong with the solution. Some of the examples involve
solution of stiff ordinary differential equations, and it is
important to ensure that the software used by the students is
capable of solving such equations.

Most of the readers have probably come across examples
(even in research work) where the lack of model validation
has led to embarrassing glitches. The examples we present
are fairly simple, so that they can be easily understood by
undergraduate students, do not require excessive amount of
time for preparation, and can be solved using widely avail-
able software packages.

MODEL VALIDATION
AND VERIFICATION PROCEDURE

The following procedure assumes that the only informa-
tion available about the model is the final result.

1. Solve a problem similar to the one you want 1o solve,
but where the results can be verified using: process
data, results from the literature, an analytical solution,
or limiting cases (a typical example would be checking
the steady-state solution for a dvnamic problem).
Compare the solution obtained by using the model with
the results or data obtained independently.

2. Always investigate error messages and warnings that
YOur program issues,

3. Check the results obtained for physical feasibility,

4. Carry out a sensitiviry analysis by introducing small
changes in the input dara and user-selectable or
adjustable parameters of the computer program (such
as solution algorithm, error tolerance, plot interval,
ete.). Look out for any unreasonable changes in the
results caused by these parameter variations.

While complete verification of the results is practically
impossible, consistently earrying out the above four steps of
verification can prevent most of the common errors encoun-
tered in simulation and numerical computation. Some ex-
amples that demonstrate this procedure follow.
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Example 1
Transient Behavior of a Catalytic Fluidized Bed

Luss and Amundson' swdied a simplified model for the
dynamics of a catalytic fluidized bed in which an irrevers-
ible gas phase reaction A — B is assumed to occur. The mass
and energy conservation equations for this system were

dp

-&::p‘_PJ'Hs(Pn'P) (1a)
% =T, =T+Hy(T, = T)+Hy (T, - T) (1b)
%EHTRIP—%(!H)] (1c)
% = % (T'TP}J'F"Pv] (1d)

where
k=0.0006 exp(20.7 - 15000/T,)
T°(R),P(atm}=temperature and partial pressure of the reactant
in the fluid
T(°R),P {atm)=temperature and partial pressure of the reactant
at the catalyst
t=dimensionless time
H_H.. F A C=dimensionless constants

and the subscript e indicates entrance conditions. The fol-
lowing numerical values were provided by Luss and

Amundson:
P.=0.1 atm C=20574 H,= 320
T.= 600°R F=8000 H,=266.667 A=0.17142

Luss and Amundson noted that the system of ordinary
differential equations (ODE) representing the catalytic fluid-
ized bed is a stiff system. At that time, there were no estab-
lished methods for solving stiff systems of ODEs and they
derived a special technique to solve it.

Subsequently, Aiken and Lapidus'” proposed a different
method for solving stiff ODEs. They used the system of Eqg.
(1) as a test example, but rewrote the system of equations by
introducing the numerical values into system (1) and round-
ing some of the coefficient as follows:

§=0_|+3znp}, -321P (2a)
A 1952-269T +267T, (2b)
dt B

d—jﬁ‘-: 1.88x10*[P = P,(1+ k)] (2¢)
%:1.3[1‘-%}»,1.04“0‘1:?, (2d)



One possible assignment for the students in this example
can be o verify that Eq. (1) and Eq. (2) vield the same
steady-stale solutions.

Luss and Amundson have identified three steady-state
solutions for this problem. The values of P, P, T, and T, at
the three steady states reported by Luss and Amundson are
shown in Table 1.

To find the steady-state solutions, the time derivatives in
the four equations of systems (1) and (2) are set equal to
zero. The systems can then be reformulated to give a single
implicit nonlinear equation, which should equal 1o zero,
while the rest of the variables can be calculated from explicit
expressions. Introducing the numerical values of the con-
stants into Eg. (1) and reformulating yields

£(T)=1.296 (T~ T, ) + 10369 kP, (3a)
T, = (269.267 T - 1752)/ 266,667 (3b)
P, = =0.1/{321[320/321 - (1+ k)] (3c)
P, +0.
_ (320, +0.1) -
321

System (2) can be written in a similar manner. Figure 1
displays plots of f(T) versus T in the region 500°R<T<1300°R
using both the original and revised formulations. Tt can be
seen that the original formulation yields three steady states
at the points indicated by Luss and Amundson, whereas the
revised formulation gives only a single root at T = 1210.8.

Thus, when there is very little difference between the

TABLE 1
Steady-State Solutions
of the Catalytic Fluidized Bed'™
Steady States
First Second Third
platm) 0.00352 0.06704 0.006822
P"fztm] 0.09350 0.06694 0006531
T(°R) 6901445 753.344 912,764
T‘\{“R] 690,607 759.167 015.004
+ g™
1m + - revised
A 2 \\»._ 2= = ~ formulation
[ S VS
w
original
2= fum‘\%!sﬁnn
4=
1 WOV N TR N NI
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Figure 1. Steady states of the catalvtic fluidized bed

reactor using original and revised model formulations.
27

original (Eq. 1) and revised (Eq. 2) formulation, they actu-
ally do represent a much different problem. The discrepancy
between the original and revised formulation was detected
by Michelsen™ two years after the revised formulation was
published. In the meantime, this formulation was exten-
sively used for testing software (see, for example, reference
8) without noticing that it actually was a different problem.
Tao understand the reason for this difference, the expression
for T, in Eq. (3b) can be introduced into Eq. (3a) to yield

f(T)=8.5147 - 0.0126 T + 10369 kPy (4)

Carrying out the same substitution using the modified for-
mulation yields

f(T)=8.53-0.00974 T +1.04 x 10" kP, (5)

It can be seen that the coefficients of T in Egs. (4) and (5)
are significantly different, thus rounding the numbers at the
third decimal digit in Eq. (2b) resulted in not even one
correct digit in the coefficient of T in Eq. (5).

This example demonstrates that small changes in the
model equations may sometimes cause unpredictably large
changes in the results. Model validation is needed to
detect such errors.

Example 2
A Chemistry Problem'”
This problem has been frequently used to test stiff ODE

solver programs, and it is cited very often in both the chemi-
cal engineering® and numerical analysis™'*7 literature.

The equations of this example, as they appear in reference
11 are

d .
T‘:L=—u.m3y,-nooom3 (6a)
dy,

=2 = 2500 yay, (6b)
dt

—;I—"Il=—n.n|3 ¥y = 1000 y,y5 = 2500 y,y, (6¢)

The initial conditions are y,(0)=1, y,(0)=1, and y,(0)=0.
These equations are usually integrated from t, = O up to t, =
50. Assuming that v, y,, and y, represent concentration of
different species, the students should check the physical
feasibility of the solution.

The variation of y; in the requested time interval is shown
as curve “A” in Figure 2. It can be seen that y, descends very
rapidly from the initial values y,(0)=0 to y.=-3.7x10°
and stays negative for the whole range of solution. Assum-
ing that y, represents concentration (a very probable
assumption given the form of the model equations), it can-
not be negative,

The original reference by Gear' shows that there was a
typographical error in Eq. (6¢). The equal sign is missing
and there is a minus sign in front of the 0,013 vy, term.

Chemical Engineering Educarion
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Figure 2. Variation of v, in the chemistry problem in a
large time scale
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Figure 3. Variation of y, in the chemistry problem in a
short time scale.

Apparently when the equation was copied by others, the
equal sign was added and the minus sign was retained. This
formulation of the problem gives a physically infeasible
solution of a negative concentration of y,. The general form
of Eq. (6) indicates that it most probably represents reaction
rates among three reacting species, so the 0.013 y, term in
Eq. (6¢) must definitely be positive.

The integration when the first minus is replaced by a plus
in Eq. (6¢) yields all positive values for y, as shown in
Figure 2 (curve “B"). Figure 2 demonstrates an additional
potential problem in interpreting the results. Since the initial
change of y, is very fast, it seems from the figure that the
initial value of y, is y;(0)=3.27x10° (or -3.27x10®) instead
of the correct value of y4(0)=0. To see the exact details of the
solution at initial t, the integration interval must be reduced
considerably. Figure 3 shows the initial changes of y, when
the integration interval is reduced by a factor of 107,

This example demonstrates that error in the model often

TABLE 2
Multiple Solutions of the Chemical
Equilibrium Problem
Variahle I 2 3
c, 07053 00556 10702
25 0.1778 0.5972 -0.3225
C, 0.3740 1.0821 1.1304
C, 0.4207 -0.3624 (L7007
C, (.2429 12348 (L8080
Cg 0.1536 -1.6237 -0.3782
(= 0.5518 1.6793 0.2623
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results in physically infeasible solution, and that often the
plot interval must be changed in order to obtain complete
details of a solution,

Example 3
Chemical Equilibrium

The following system of algebraic equations describes
equilibrium in a constant volume, gas-phase batch reactor
for a complex system of reactions:

GG
f(Cp,Cx.Cz) = ZE - K =0
B

£(Cp:Cx,Cz) = 2t - K, =

2 C,
f3(Cp.Cx.Cz )= = é -K;=0
ANX

Ca=Carn-Cp-Cz
Cy=Cyo-Cp-Cy

CamCh~Cy

Cy=Cx~Cy (7

where C,, Cy, Ce, Cp,, Cy, Cy, and C, are concentrations of the

various species, and C,,, Cyp,. K, K,. and K, are constants.

The assignment is to solve the system for the following
values of the constants:

Cao=Cprp =15

K, = 1.06
Ks =263
Ky=5

for three different sets of initial estimates
(Cp.Cx.Cz)=0,1,10

Most programs for solving nonlinear algebraic equations
will not be able to solve this system (7) as it is written. The
difficulty is caused by division by the unknowns in the first
three equations. The problem can be made much less nonlin-
ear and easier to solve by eliminating division by the un-
knowns. Indeed, f, can be multiplied by C,Cy to yield C.Cy,
- K,C,Cy = 0. Similar transformations can be applied 1o T,
and f,. Using the modified set of equations POLYMATH
converged to three different solutions (as shown in Table 2)
from the three initial guesses.

Checking for physical feasibility reveals that only the first
solution is acceptable. In solutions 2 and 3, some of the
concentrations are negative, and thus these solutions cannot
represent a valid physical situation.

Contrary to dynamic simulation, in solving steady-state
models, the algorithm may converge to infeasible solutions,
even when the model is correct and the initial estimate lies in
the feasible region. If an infeasible solution is reached, a
sensitivity analysis (by changing the initial guess) should be
carried out in an attempt to locate a feasible solution. In this
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case, convergence to infeasible solutions does not necessar-
ily indicate an erroneous model.

Example 4

Equilibrium Conversion in an Isothermal Tubular
Reactor

The following equations represent the conversion in a
tubular reactor (X) as a function of the catalyst weight (w):

KiPo(1-X) Kk, P2X?

dX 1+X 1+ %)
dw | (1(_);}) (8)
AR °{1+X)
where
k= 1277x10° expl 000831 T)]
k. = 1.29%10" ew[-um;{s,g”-]l

Fao = 20 P, /(0.082 x 450)
P, = pressure at the inlet

T = temperature in the reactor

The assignment is to find the equilibrium conversion in
the reactor for Py = 10 atm and T = 313°K.

To find the equilibrium conversion in the reactor, dX/dw =
f(X) is set 1o zero. Solving the resultant algebraic equation
using the POLYMATH 3.0" program yields two solutions:

X =098 where f(X)=0.114 x 107
and
X =102 wheref(X)=-0.7 x 107

Atboth points the function value is very small, and thus both
can represent legitimate solutions. But conversion of 1,02 is
unacceptable because it is physically infeasible to obtain
conversion higher than 1.

Carrying out sensitivity analysis, by changing the initial
guess for the unknown X, causes the program to find differ-
ent values for the first solution. A plot of f(X) versus X
(shown in Figure 4) reveals the reason for the inability of the
program 1o locate the root precisely. Between X = 0 and X =
1 the function value is always below the 3 x 10 in absolute
value. There are two changes of the function value sign
around X = 1. One at the root (the precise value is X =
(1.999985) and the other at X = 1.029, which is a point of
discontinuity for the function. With such small function
values throughout the entire interval of interest and the pres-
ence of point of discontinuity near the solution, most pro-
grams will have great difficulty in locating the precise root.

Once a solution is reached, the root must be verified. For
verification, the values of the unknown must be introduced
into the functions to yield values close to zero. In some of
the nonlinear equation-solver programs, the user must ex-
plicitly request calculation and display of the function values
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Figure 4. Function shape for equilibrium conversion
calculation in a tubular flow reactor.

at the solution. This is essential for avoiding acceptance of
incorrect results, as may happen when the program uses
minimization algorithms and occasionally converges 1o a
local minimum. More strict verification of the root is pos-
sible by carrying out a sensitivity study to obtain changes of
the sign of the function values in the vicinity of the solution.

-_— Example 5

Aerobic Microbial Growth Problem’™

The following equation represents the amount of substrate
(8). cells (x), and coneentration of oxygen (Cq, ) in an
aerobic microbial growth system:

dx &
di =L
8__m
dt Yire
0O, . ux Mg,
—22 =Ky (Ch, - Co, |- - D% (9
dt LA[ L 01] Yero, X )
where
i s
Hinax Ks+5
Flmu-KS-Y‘x,‘Y,mZ,m.KM.C;}!.m,_,! = constants.

The assignment is to explore the dynamics of this system
from t=0to 1= 10 hrs using the constants and initial values
shown in Table 3.

Figure 5 shows the variation of the biomass with time. It
can be seen that the amount of biomass increases up to
around t = 0.65 and from this point on the amount decreases
(as indicated by the curve of the original model). Checking
the physical feasibility for the other variables reveals that
when x reaches its maximum, the substrate value is reduced
to zero. It continues to decrease and obtains negative values.
This is, of course. impossible. The reason for the negative
amounts of material, in this case, is that the model presented
in Eq. (9) is correct only if § > 0, In order to make the same
model applicable for the S = 0, the differential equation dS/
dt must be rewritten as
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i B mx ifS>0
—_— Y:U's (10)

] otherwise

Using the revised model x remains constant after reaching
its maximum, as shown in Figure 5. Thus the original model
was used outside the region of its validity, and proper model
validation procedure detects this problem.

If, during dynamic simulation, some of the variables become
infeasible at a particular point, sensitivity analysis (by chang-
ing tolerances or parameters of the numerical solution algo-
rithm) at the vicinity of this point can detect whether the
source of the problem lies in the numerical solution algo-
rithm or the model fails to represent correctly the physical
situation at this point.

DISCUSSION AND CONCLUSIONS

We have shown five examples where computational re-
sults can be incorrect. The following reasons for incorrect or

TABLE 3
Constants and Initial Values for the
Microbial Growth Problem!
Constant Value Units
"llrm: 0'6 hr-1
K, 0.05 arfliter
i 0.5 ar - cells/gr - glucose
Yo, 1 gr - cells/gr - O,
m 0.08 gr - glucose/(gr - cells - hr)
K, 400 hr?
C:«_.: 8 mgr/liter
mp, 0.1 gr - O f(gr - cells - hr)
x{1=0) 0.1 arfliter
Sit=0) 10 ar/liter
Co, (=0) 8 mgr/liter
revised
x S o/ model
e
ariginal
3k madel
2l
1
0 Z 4 [ lli 10
—

Figure 5. Variation of the biomass in the microbial
growth problem.
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imprecise results were demonstrated: carelessly rounding
numbers in the model equations; error in the sign in a model
equation; multiple problem solutions; using a model outside
the domain of its validity; numerical difficulties in finding
the precise solution when working with very small numbers,

There can be many more reasons for obtaining incorrect
results. Correlation of experimental data when the model
equations are improperly linearized''*! or when experimental
design for obtaining the data is not satisfactory!"” can be
common sources of such errors. Low resolution in present-
ing the results can lead to misinterpretation of the results
even if the solution is correct."!

In an era when hand calculations have been replaced by
computation, it is more important than ever to consistently
validate and verify the results. The examples provided in this
paper demonstrate very clearly the necessity of model vali-
dation. The suggested procedures can serve as a basis for
systematic approach for validating the results.
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