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Abstract

Engineers must often use correlations that were developed before statistical analysis and verification of the correlation became
a routine procedure. In this paper, we use modern statistical techniques to compare the traditional linear regression technique with
the modern nonlinear regression as applied to the Arrhenius equation. The objective of the comparison is to determine whether
there are basic flaws with the technique used in the past and whether these flaws may render the constants published in the

literature untrustworthy.

It is concluded that linear regression, when applied to the Arrhenius expression, is in principle not inferior to nonlinear
regression and if the relative error in the data is distributed normally, it can even be superior. Nevertheless, if insufficient data
were used for calculation of the constants and/or the experimental data were interpolated or smoothed, the accuracy of the
published correlation is unpredictable. © 1997 Elsevier Science S.A.
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1. Introduction

Consistent and accurate modeling and correlation
of experimental data is essential in the era of com-
puter-aided chemical process design. In the days when
calculations were done by hand or with a calculator,
inappropriate data could be immediately detected and
discarded. But, nowadays, if the correlation is in-
cluded inside a large, say, process simulation pro-
gram, it is very difficult to detect inaccurate or
meaningless results obtained in a particular range of
temperature, pressure or composition.

Nowadays, it is customary to carry out a statistical
analysis and verification of the model which is being
fitted to the data. But, correlations that were devel-
oped more than 30 years ago are still being widely
used. These correlations were developed in the slide
rule and graph paper era, mostly without any statisti-
cal analysis. It is, therefore, very difficult to assess
their accuracy. If the original data is still available,
statistical analysis can provide this missing informa-
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tion. Such an analysis may sometimes indicate that
the experimental data cannot justify the model used,
see for example, Shacham et al. [1].

The original data is not always available to carry
out the statistical analysis. On the other hand, a corre-
lation cannot be discarded off hand, since repeating
the experiments is expensive and time consuming.
This dilemma can be partly resolved by analyzing the
correlation techniques that were used in the past for
a particular group of model equations and comparing
its accuracy with the techniques that are being used
today. If serious flaws in the old techniques are de-
tected, then the model equations and parameter val-
ues obtained in the past probably cannot be trusted.
But, if no such flaws are found, it is justified to use
the old correlation.

We have carried out such an analysis for the
Arrhenius equation. In the remainder of this section,
some basic concepts relevant to the Arrhenius expres-
sion are described.

The Arrhenius equation for correlating the de-
pendence of reaction rate coefficients on temperature is:

k=A exp(— E/RT) (1a)




244 N. Brauner, M. Shacham / Chemical Engineering and Processing 36 (1997) 243 -249

where k is the rate coefficient, 4 is the frequency factor,
E is activation energy, R is the ideal gas law constant,
and T is the absolute temperature. The constants 4 and
E are calculated by regression of experimental data.

Eq. (1a) possesses some undesired properties in the
statistical sense (strong correlation between the parame-
ters A and E) and in the numerical sense (nearly
singular normal matrices). The following form of the
equation is frequently used to overcome these
difficulties (see for example Himmelblau [2], Bates and
Watts [3] and Kittrell [8]):
k=A"exp[— E/R(1/T —1/Ty)] (1b)
where T, is the average absolute temperature and 4’ =
A exp(-E/RTy).

Eq. (la) or Eq. (1b) can be very conveniently lin-
earized:

Ink=1lnA— E/RT ©)

so that the constants can be calculated using linear
regression. This type of linearization, which allows
fitting a straight line to the transformed experimental
data, has been used for nearly a century (Chen and Aris
[4]). Most of the constants reported in the literature
were obtained using this method.

An alternative, is to use nonlinear regression tech-
niques with Eq. (1a) or Eq. (1b). Nonlinear regression
applied to Eq. (1a) leads to the following minimization
problem:

mip §= 3, (- Aexpl—F /RT]? ©)
where S is the sum of squares of the errors and # is the
total number of data points of k vs T.

It should be mentioned that the parameters calcu-
lated using either linear and nonlinear regression are
only approximate because of the experimental error in
the observed k& values. The notation used in statistics to
differentiate between exact and approximate values will
be introduced in Section 2 which deals with the error
distribution in the Arrhenius expression.

In order to solve the minimization problem described
in Eq. (3), either derivative based methods (such as the
Marquardt method [5]) or nonlinear search algorithms
(such as the Simplex method, [2]) can be used. Both
types of methods may encounter difficulties because of
the extreme nonlinearity of the Arrhenius equation.
When a derivative based method is used, the matrix of
partial derivatives may often turn to be nearly singular
(as noted by Himmelblau, [2]). On the other hand, the
surface S(A4,E), defined by Eq. (3), is often a narrow
canyon with steep sides and a very long shallow bottom
[4]. Such a shape makes the direct search methods very
slow and inefficient. The parameter values obtained
using linear regression can be used as initial estimates
for nonlinear minimization alleviating the problems
associated with using this method.

In this study, linear and nonlinear regression applied
to the Arrhenius equations, are compared in order to
evaluate the accuracy of data in the literature that was
obtained using linear regression.

In the following section, some of the statistical con-
cepts used in the comparison of the linear and nonlin-
ear regression results are introduced. In Section 3
results of a recent study of the subject (Chen and Aris
[4)) are analyzed. A large set of experimental data (from
Wynkoop and Wilhelm [7]) is used in Section 4 for
assessing the accuracy of linear and nonlinear regres-
sion results.

Most of the calculations reported in the paper were
carried out using the linear and nonlinear regression
program in the POLYMATH 3.0 package (Shaham
and Cutlip [9]).

2. Error distribution in the linearized and nonlinear
form of the Arrhenius equation

The statistical assumption behind the least squares
error method for parameter estimation is that the mea-
sured value of the dependent variable has a determinis-
tic part and a stochastic part. The stochastic part is
often denoted by error (or experimental error), €. Thus,
Eq. (1a) can be rewritten:
k,=A exp(— E/RT;) T ¢ 4
It is further assumed that the error is normally and
independently distributed with zero mean and equal
variances.

An infinite number of measurements is required in
order to obtain the exact values of the parameters £
and A. Since a sample always contains a finite number
of measurements, the calculated parameters are always
an approximation for the true values, and they are
denoted with a circumflex. Thus, E and 4 are the
calculated values of the parameters and k, is the esti-
mate for the dependent variable k..

A key indicator for a particular model to represent
the data correctly is the error distribution. In order to
determine the error distribution before the regression is
carried out, replicate measurements (meaning several
experimental & values at the same temperature) must be
available. In most kinetic studies, no replicates are
available. In such a case, inspection of the residuals,
after carrying out the regression while using a particu-
lar model, provides a clue to whether the error distribu-
tion satisfies the underlying assumptions (Bates and
Watts [3], p. 24).

When the error distribution is nonhomogeneous and
no replicate measurements are available, transforma-
tions such as the power transformation proposed by
Box and Hill [6], can be used to correct inhomogeneity
of the variance. The transformation proposed by Box
and Hill [6] is the following:
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k?—1
k¢ = 1)

Ink, ¢=0

¢#0 )

Using this transformation, a particular weight (W) is
assigned to each k; value (Box and Hill [6]):

W= pe=2

Adding a weighting factor to the objective function Eq.
(3) and rewriting it in the notation introduced in this
section yields:

n
mip S= 3 (ki — A exp[ — E/RT]k{* =2 9
Two cases are of special interest to us. For ¢ =1 the
weighting factor is £?%» =1, and in this case the sum
of squares of the absolute error is minimized. When
¢ =0, the transformation In (thus linearization of the
Arrhenius expression) is used. In this case, the weighting
factor is &7 2. Since the expression in the square brackets
in Eq. (7) is an estimate of ¢, the objective function
amounts to minimizing (e,/k,)*2, thus the relative error,
€ =€ Ex

‘It should be noted that the residual of the linearized
Arrhenius equation (residual of In k) is equivalent to the
relative error, €, (this can be easily shown using Taylor
series expansion of In(1 + €. )). Thus, the key for selecting
between linear and nonlinear regression is observing the
error distribution as reflected from the residual plots.
When the experimental error, €, is normally distributed,
the parameters obtained using nonlinear regression
should be preferred. But when the relative error is
distributed normally, the linear regression results are
more appropriate.

If the experimental data is not precise enough or there
are not enough data points, there will not be a significant
difference between the parameter sets obtained using
linear and nonlinear regressions. In order for the parame-
ter values to be significantly different the joint confidence
regions (or joint likelihood contours) must be well
separated for the two parameter sets. The calculation of
the joint confidence region is discussed by Himmelblau
[2] and Kittrell [8]. The method of calculation for the
Arrhenius expression is shown in Appendix B. For
nonlinear models, such as the Arrhenius expression, the
joint confidence region is only approximate. A more
accurate predictor of the confidence level of the parame-
ter values is the joint likelihood contour which is de-
scribed by Bates and Watts [3]. In this work we include
results of both predictors.

3. Example 1. Synthesis of ethyl acetate

Recently, Chen and Aris [4] compared linear and
nonlinear regression techniques using one set of data.

Table 1

Experimental data (Chen and Aris [4])

i T, (°C) k;
1 30 0.5
2 40 1.1
3 50 ) 2.2
4 60 4.0
5 70 6.0

They concluded, based on their results, that the constants
calculated by nonlinear regression are more accurate.
Curl [10] concluded, using the same set of data, that
linear regression vields more accurate constants.

The data used by Chen and Aris [4] for the comparison
is shown in Table 1.

It is quite evident that the data shown in Table 1 is not
experimental data. While the independent variable (tem-
perature in this case) can often be set to round numbers
(e.g. 60, 70), which are more convenient for calculations,
it is quite unusual for the dependent variable, k, to obtain
exactly the values of 4.0 and 6.0. Chen and Aris [4]
indicate that the data was taken from Saleton and White
[11]. This original reference contains much more data
than that in Table 1, but Chen and Aris [4] took most
of the data from Table 7 in Saleton and White [11]. The
pertinent data from this table is shown in Table 2.

Saleton and White [11] noted that the data in Table
2 ‘was read from smoothed curves’. Thus, even the
original data in Table 2 do not represent experimental
data, but data which were altered by interpolation and
extrapolation. This process introduced changes in the
error distribution of the data, the effects of which are
impossible to assess without comparing the smoothed
data with the raw experimental data. Chen and Aris [4]
further changed the error distribution by rounding the
numbers that appear in Table 2.

The conclusion from this discussion is that the data in
Table 1 does not represent experimental data. Therefore,
it is inadequate for comparing different regression tech-
niques. For such a comparison, original, unaltered mea-
sured data should be used.

There are only five data points in Table 1. Is such a
small number of points large enough to find a significant
difference between regression techniques? To answer this
question, we have calculated the constants 4 and E of
the Arrhenius equation, using linear and nonlinear

regression.

Table 2

Experimental data (Saleton and White [11})

i T; (°O) k; ( mol=!' h—Y)
1 40 1.09

2 50 2.19

3 61 3.99

4 71 6.0
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Fig. 1. Joint confidence regions for A and E for the Chen and Aris [4]
data.

The Arrhenius constants obtained (including individ-
ual 95% confidence intervals) are: For nonlinear regres-
sion: A=1(1.0399+3.8278) x10° 1 mol~! h~1
E=11350 £ 2469 cal/g mol. The sum of squares of
errors with these constants is §=0.1496. For linear
regression: A= (1.2365+2424 or -—1.17)x10° 1
mol~'h~!, E=12984 +1935cal g"'! mol~?! and S=
0.455.

There is no significant difference between these re-
sults and the parameter values obtained by Chen and
Aris [4]. It can be seen that the confidence intervals on
A are very large and when nonlinear regression is used,
the confidence interval extends to negative values. In
this case, the large confidence intervals are due to
strong interaction between the parameters 4 and E.
Using Eq. (1b) instead of Eq. (la) with 7,=323.15
yields the following results. For nonlinear regression:
A'=2.189+0.41796 1 mol~! h~!, for linear regres-
sion: 4’ =(2.0418 + 0.2897 or —0.2537) I mol~! h~1
The value of E and S are identical to those obtained
when using Eq. (1a).

Eq. (Ib) is used for calculating the 95% joint confi-
dence regions for the constants obtained by linear and
nonlinear regression. It can be seen (Fig. 1) that the two
regions overlap in about half of their area and the
minimum of the sum of squares is located in the
common region for both types of regression. This indi-
cates that the difference between the constants obtained
by linear and nonlinear regression is statistically in-
significant. The insignificance is probably a result of
using too few data points. In order to obtain statisti-
cally significant results, it is imperative to use unaltered
experimental data and large enough number of data
points.

We have repeated this test using the joint likelihood
regions. For the linear case, the joint confidence region
and the joint parameter likelihood region are identical.
The 95% likelihood contour obtained for the results of

nonlinear regression is also shown in Fig. 1 (dashed
curve). The differences between the joint confidence and
likelihood regions is insignificant, indicating that the
linear approximation ellipses correctly describe the
parameters likelihood region.

4. Example 2: hydrogenation of ethylene

Wynkoop and Wilhelm [7] studied the catalytic hy-
drogenation of ethylene over copper magnesia catalyst
in a continuous flow tubular reactor. They carried out
75 experiments with average temperature ranging be-
tween 13 and 79°C. The results of these measurements
were reported with three to five decimal digits of accu-
racy, and are used here to calculate the reaction rate
coefficient k. Because of the variation of the tempera-
ture along the reactor, we used the linear averaged
temperature as recommended by Winkoop and Wil-
helm. From among the 75 experiments, 30 were carried
out with water vapor present.

Wynkoop and Wilhelm [7] concluded that water va-
por causes reversible poisoning of the catalyst. For the
present study, we used only the 45 data points without
water vapor present. For the 45 data points of &k vs
temperature, the constants, 4 and E, were obtained by
linear regression and nonlinear regression using both
Eq. (la) and Eq. (1b). The value T,= 329 was used
with Eq. (1b). The regression program of POLYMATH
[9] was used for the calculations. The calculated con-
stants, sum of squares of errors, and results reported by
Wynkoop and Wilhelm [7] are shown in Table 3. (Note
that all the sum of squares of errors were calculated
using k values, (not In k)).

There are several facts worth noting in this table. The
results obtained here using linear regression (with dou-
ble precision computation) are very close to the values
reported by Wynkoop and Wilhelm [7]. This indicates
that when linearization is used, the calculations do not
require high precision, since Wynkoop and Wilhelm
probably did not have high precision computational
tools available in 1950. The sum of squares of errors is
somewhat higher when linearization is used, but the
confidence interval of the individual constants (rela-
tively to the constant value itself) is much smaller in
linear regression, indicating that the uncertainty in the
calculated constants is smaller when linearization is
used. (Note that the confidence interval in the linearized
case is not symmetric because of the transformation
from In k to k).

Fig. 2(a) shows the experimental points and the line
of calculated In & vs 1/T when the constants of the
linearized Arrhenius expression are used. It can be seen
that, indeed, the experimental data is well represented
by a straight line. Fig. 2(b) shows the plot of k (calcu-
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Table 3

Arrhenius equation constants and sum of squares of errors for the Wynkoop and Wilhelm [7] data

Linear regression

Nonlinear regression

Wynkoop and Wilhelm

909 + 1136 5960

A2 5988 43686
—2281
A’ (8.2665+0.3004 — 0.2898) x 10~° (8.7357 4+ 0.6383) x 10—¢
ke 13336 + 304 12068 + 859 13320
S 12.84x 10~ 9.21x 10!

14.68x 10~ 11

¢ Numbers were rounded to the decimal point.

lated and observed) versus 1/7 when the nonlinear
regression constants are used. The fit does not look as
good as for the linear case, especially for the high
temperature values (low 1/7). This, of course, does not
provide a clear evidence for the superiority of one of
the methods. We have to check whether the observed
experimental error is nearly normally distributed with
zero mean, as expected from the theory of regression
diagnostics. The residual for data point i is:

= ki~ A expl = BIRT) ®

and the corresponding relative error is €, = ¢;/k,.

Fig. 3(a) shows a plot of the residuals of k obtained
with the linearized Arrhenius equation. There are 21
positive and 24 negative residuals. It can be seen that,
in general, the residual, which represents the experimen-
tal error, increases with increasing k.

Fig. 3(b) is the residual plot for the nonlinear case.
There are 11 positive residuals and 34 negative residu-
als. The discrepancy between the number of positive
and negative residuals is a clear indication that the
experimental error is not normally distributed around
the calculated curve. As in the linear case, the residual
tends to increase with increasing k.

The trend of increasing experimental error with in-

Q. Linearized equation

o
6.2 ! ! I |

b. Nonlinear equation

2.80 2.96 3.12 3.28 344 3.60
1/T-10°

Fig. 2. Experimental data and calculated Arrhenius curve for
Wynkoop and Wilhelm [7] data.

creasing k, can be eliminated by plotting the relative
error vs k for the linearized equation (Fig. 4(a)), which
corresponds to the residual plot of In k. It can be seen
that, indeed, the relative error is distributed randomly
and all the points, except one, lie inside the region of
+ 24% error.

Fig. 4(b) shows the relative error versus k for the
nonlinear case. It can be seen that now there is a clear
trend of increasing relative error with decreasing k and
all, except two points, lie inside the region of + 20 and
— 45% relative error.

Box and Hill [6] recommended finding an optimal
value for the parameter ¢ for the power transformation
(defined in Eq. (5)). This optimal value can in principle
be different from 0 or 1 (corresponding to minimization
of the relative errors or absolute errors respectively).
The optimal value of ¢ is estimated by maximizing the
likelihood function, L, following the procedure outlined
in Draper and Smith [12]. The plot obtained for L(¢) is
shown in Fig. 5, which shows that the likelithood func-
tion attains a maximum at ¢ = 0.

All these indicators substantiate the observation that
it is the relative error which is normally distributed in
the experimental data and the appropriate Arrhenius
constants are those obtained by minimizing the relative

4
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Fig. 3. Residual plot (absolute errors) for the Wynkoop and Wilhelm
[7] data.
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Fig. 4. Residual plot (relative errors) for the Wynkoop and Wilhelm
[7] data,

error, as done when the linearized form of the Arrhe-
nius equation is used. The use of relative error can be
further justified by considering the measurement preci-
sion reported by Wynkoop and Wilhelm [7]. The reac-
tion rate coefficient is calculated from measured flow
rate, reactor volume and conversion. Wynkoop and
Wilhelm report the approximate errors in measuring
these variables as percentage, thus relative errors. In the
temperature range of their experiments, the &k values
change by two orders of magnitude (from about 2 x
10~7 to 3 x 10~%). Therefore, when the absolute error
is minimized, the error at the range of high & values
dominate, while the error at the low k& values will have
only a negligible effect.

Fig. 6 shows the 95% joint confidence regions for the
constants obtained by linear and nonlinear regression.
It can be seen that for this set of data, the confidence
regions are practically separated (there is only a very
small overlap on the boundaries). The 95% joint confi-
dence region and 95% likelihood contours (dashed line)
are practically identical. Thus, the difference between
the parameter values obtained with linear and nonlin-
ear regression in this case is indeed statistically signifi-
cant.

655

645

635

625

615

Liktihood Function, L {(¢)

-0.3 o] 0.3 0.6 0.9 1.2
— ¢

Fig. 5. Plot of the likelihood function L({¢) for the Wynkoop and
Wilhelm [7] data.
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Fig. 6. Joint confidence regions for 4 and E obtained for the
Wynkoop and Wilhelm [7] data.

5. Conclusions

Advanced statistical techniques and indications,
namely: analysis of residuals, the maximum likelihood
approach, joint confidence regions and joint likelihood
contours were used to compare the traditional linear
regression technique for the Arrhenius equation with
the new and intuitively superior nonlinear regression
technique. The comparison has shown that linear re-
gression is in principle not inferior to nonlinear regres-
sion; depending on the nature of the error distribution
in the data, it can be even superior (if the relative error
is distributed normally, like when the k values change
over a range of several orders of magnitude).

It should be emphasized that this conclusion applies
only to this particular equation, for other group of
equations, a different conclusion can be reached.
Shacham et al. [13] has shown, for example, that lin-
earization of equations which represent activity coeffi-
cients may cause serious errors.

In spite of the proven accuracy of the linear regres-
sion technique, when applied to the Arrhenius equa-
tion, the constants of this equation that appear in the
literature cannot be blindly trusted. If there are too few
data points or/and the original data was interpolated or
smoothed before the regression was carried out, the
accuracy of the correlation is unpredictable, as shown
in Example 1.

Appendix A. Nomenclature

A frequency factor
A’ modified frequency factor, Eq. (1b)
E activation energy (kJ mol™%)
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k rate coefficient

n number of data points

R ideal gas constant (kJ mol~! K1)
S sum of squares of errors

T temperature (K)

T, average temperature (K)

W weight assigned to data

Greek letters

€ absolute error

€, relative error

15 parameter of transformation, Eq. (5)
Subscripts

[ index of data point

¥ relative

Superscripts

estimated value

Appendix B. Joint confidence interval for A and k

The approximate joint confidence interval for linear
model is defined by (Draper and Smith [12]):

(B —bY(XTX)B — b) =ps*F,_(p,n—p) (B1)

where # is the number of observations, p the number of
parameters in the model, X is the (n x p) matrix of
observations of the independent variables, # and b are
the (p x 1) vectors of the estimate on expected values
for the model parameters and those obtained by the
regression of the n observations, respectively. F,_, is the
upper limit of the F distribution for p and n — p degrees
of freedom and s? is the estimated variance of the
experimental error:

2

S
ST =
n—=p
In case of simple linear regression, p =2 and Eq. (B1)
reduces to a quadratic algebraic equation, which yields

an explicit expression for the joint confidence interval
of f, and S,

=pf —b=—a} + {aglﬁ% - azz(aﬁﬁg - O}
Bo—bo (B3)

(B2)

I

B
Fo

where
C=ps*F, _,(2n—2) (B4)

The a; are the elements of the (2 x 2) X7X matrix, and
are given by:

A =*n; dip=0da3 = Z Xy Gy = Z X7 . (BS)
i=1 i=1

Note that Eq. (B3) defines the upper and lower limits

for the range of variation of 8, over the joint confi-

dence interval:
/422 C (B6)

b NZ
)
(apay; — az)"?

B (apay —a3p)'?
Eq. (B3) to Eq. (B6) have been utilized to obtain the
joint confidence interval for Arrhenius equation
parameters A( = ff,) and E=(f,) with X, =T, (Figs. 1
and 6).

< fBo< by+
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