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Abstract

Construction of optimal (stable and of highest possible accuracy) regression models comprising of linear combination of
independent variables and their non-linear functions is considered. It is shown that estimates of the experimental error, which are
most often available for engineers and experimental scientists, are useful for identifying the set of variables to be included in an
optimal regression model. Two diagnostical indicators, which are based on experimental error estimates, are incorporated in an
orthogonalized-variable-based stepwise regression (SROV) procedure. The use of this procedure, followed by regression diagnos-
tics, is demonstrated in two examples. In the first example, a stable polynomial model for heat capacity is obtained, which is ten
times more accurate than the correlation published in the literature. In the second example, it is shown that omission of important
variables related to reaction conditions prevents reliable modeling of the product properties. © 1999 Elsevier Science S.A. All
rights reserved.
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1. Introduction

Obtaining experimental data is often very expensive
and time consuming. However, the accuracy and reli-
ability of process related calculations critically depend
on the accuracy, validity and stability of the regression
models fitted to the experimental data.

Regression models used for physico-chemical, ther-
modynamic or rate data can be partially theory based
or completely empirical. In both cases, it is not known
a-priori how many explanatory variables (independent
variables, and/or their functions) and parameters
should be included in the model for obtaining an
optimal regression model. An insufficient number of
explanatory variables results in an inaccurate model
characterized by a large variance. Some independent
variables which may have critical effects on the depen-

dent variable under certain circumstances, may be omit-
ted. On the other hand, the inclusion of too many
explanatory terms renders an unstable model. The in-
stability is characterized by typical ill effects, whereby
adding or removing an experimental point from the
data set may drastically change the parameter values.
Also, the derivatives of the dependent variable are not
represented correctly and extrapolation outside the re-
gion, where the measurements were taken, yields absurd
results even for a small range of extrapolation. Brauner
and Shacham [1–3] have demonstrated some of the ill
effects of including too many terms of regression
models.

The most frequent causes of inaccuracy and/or ill-
conditioning in regression are the following:
1. Non-optimal or inadequate model (not all the influ-

ential explanatory variables are included in the
model and/or non-influential variables are
included).

2. Excessive errors in the data (as in the presence of
outlying measurements).

3. Presence of collinearity among the explanatory
variables.
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The calculations related to the examples were carried
out using the POLYMATH 4.01 and MATLAB 5.22

packages.

2. Stepwise regressing using orthogonalized variables
(SROV)

A standard linear regression model can be written:

y=b0+b1x1+b2x2…+bnxn+o (1)

where y is an N-vector of the dependent variable,
xj( j=1,2,…n) are N vectors of explanatory variables,
b0,b1…bn are the model parameters to be estimated
and o is an N-vector of stochastic terms (measurement
errors). It should be noted that an explanatory variable
can represent an independent variable or a function of
one or more independent variables.

A certain error (disturbance, imprecision, noise) in
the explanatory variable is also considered. Thus, a vec-
tor of an explanatory variable can be represented by

xj= x̂j+dxj (2)

where x̂j is an N-vector of expected value of xj and dxj

is an N-vector of stochastic terms due to noise.
The vector of estimated parameters b. T= (b. 0,b. 1,…b. n)

is often calculated via the least squares error approach
by solving the normal equation:

XTXb. =XTy (3)

where X= [1,x1,x2,…xn ] is an N(n+ 1) data matrix and
XTX=A is the normal matrix. This method is subject
to accelerated numerical error propagation due to
collinearity (see for example, [2]). The SROV procedure
[8] is much less sensitive to numerical error propagation
and as such, is more appropriate to be used in a general
purpose stepwise regression program.

A schematic flow diagram of the SROV procedure is
shown in Fig. 1. Basically, the procedure consists of
successive stages, where at each stage one of the ex-
planatory variables, say xp, is selected to enter the re-
gression model. The explanatory variables which have
already been included in the regression model (at previ-
ous stages) are referred to as basic variables, and the
remaining explanatory variables are the non-basic vari-
ables. At each stage, the non-basic variables and the de-
pendent variable are first updated, by subtracting the
information which is collinear with the basic variables.
This updating generates non-basic variables which are
orthogonal to the basic variables set.

When progressing from stage k to stage k+1 in the
stepwise regression procedure, the parameter estimate

4. The algorithm used to calculate the model parame-
ters is highly sensitive to numerical error
propagation.

In view of the possible existence of several different
causes for non-optimality, ill-conditioning or statistical
invalidity of the regression model, the selection of the
most adequate, optimal model should proceed in an it-
erative manner as follows [4–6]:
1. Suggestion of initial pool of explanatory variables

which can potentially be included in the regression
model.

2. Carrying out a stepwise regression procedure to
identify the variables which should be included in an
optimal, statistically valid model. An algorithm,
which has a low sensitivity to numerical error prop-
agation must be used for regression.

3. Identification of the cause(s) that limit the accuracy
and the number of explanatory variables that can be
included in the model (collinearity, outlying mea-
surements, influential variables missing from the ini-
tial pool, etc.).

Then, remedial actions are taken and the process is
reiterated from step 1 to check whether further im-
provement of the model is possible.

There are several stepwise regression algorithms and
programs available (for details see, for example [7,6]).
Most algorithms, however, are appropriate for linear
regression models, and models containing a linear com-
bination of non-linear functions of the independent
variables (such as 1/x or log (x)) are considered as non-
linear models in statistical analysis. Furthermore, exist-
ing programs may overwhelm engineering users with
irrelevant and sometimes conflicting statistical informa-
tion. Therefore, stepwise regression is rarely used by en-
gineers.

In this paper, a stepwise regression procedure based
on orthogonal variables (SROV) is presented. This pro-
cedure is well-suited to carry out the iterative process
for selection of the optimal regression model, because it
has low sensitivity to the harmful effects of collinearity
and it provides reliable numerical indicators that help
to identify the dominant cause(s) that limit the number
of terms and accuracy of a statistically valid regression
model. In the next section, the SROV procedure and its
incorporation in an iterative framework for selecting
the optimal regression model are described.

Two examples are presented. These examples demon-
strate that the use of the proposed iterative procedure
enables to pinpoint the dominant causes that limit the
accuracy and stability of the regression model used. In
many cases, the application of this procedure leads to a
more accurate and stable regression models then the
ones published in the literature.

1 POLYMATH is copyrighted by M. Shacham and M.B. Cutlip
(http://www.polymath-software.com).

2 MATLAB is a trademark of the Math Works, Inc. (http://
www.mathworks,com).
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corresponding to the explanatory variable xp (selected as
a basic variable at stage k) is obtained by:

b. k+1b. p=
yk

Txp

xp
Txp

; xpxk+1 (4)

Then, the updated values of the dependent variable
yk+1, which represent the residual values that are not
explained by the variables included in the basis at stage
k are calculated by:

yk+1=yk−bpxp (5)

The model variance at this stage,

s2=
(yk+1)T(yk+1)

n
(6)

is the sum of squares of errors divided by the degrees of
freedom (n=N− (n+1)). The variance is a measure for
the variability of the ŷ values predicted by the regression
model. Smaller variance indicates a better fit of the
model to the data.

The confidence interval, Dbp on a parameter estimate
can be defined:

Dbp= t(n,a)
s2(xp
Txp) (7)

where t(n, a) is the statistical t distribution correspond-
ing to n degrees of freedom and a desired confidence
level, a and s is the standard error of the estimate.
Clearly, if b. p is smaller (in its absolute value), than the

term Dbp, then the zero value is included inside the
confidence interval. Thus, there is no statistical justifica-
tion to include the associated term in the regression
model.

Finally, the orthogonal components (residuals) of the
non-basic variables are obtained by:

x j
k+1=x j

k−xp

�(x j
k)Txp

xp
Txp

�
(8)

2.1. Criteria used for selection of an additional basic
6ariable

The strength of the linear correlation between an ex-
planatory variable xj, and a dependent variable y is
measured by

YXj=yTxj (9)

where y and xj are centered and normalized to a unit
length. The value of �YXj � is in the range [0,1]. In case of
a perfect correlation between y and xj (y is aligned in the
xj direction), �YXj �=1. In case y is unaffected by xj the
two vectors are orthogonal), YXj=0. The inclusion of a
variable xp, which has the highest level of correlation
with y, in the basic set (YXp value is the closest to one)
will affect the maximal reduction of the variance of the
regression model. Therefore, the criterion xp=xj{max
�YXj � } is used to determine which of the non-basic vari-
ables should preferably be included in the regression
model at the next stage, provided that the following
CNR and TNR tests are both satisfied. The CNRj mea-
sures the signal-to-noise ratio of YXj, and is defined by:

CNRj=
> �yTxj �

%i=1
N (�xijoi �+ �yidxij �)

?
(10)

Note that the denominator of Eq. (10) represents the
error in YXj as estimated via the error propagation for-
mula. A value of CNRj�1 signals that the correlation
between xj and y is significantly larger than the noise
level. Thus, an accurate value of YXj can be calculated.
But when CNRj 01, the noise in YXj, as affected by dxj

and o, is as large as, or even larger than �YXj �. If this is
the case, no reliable value for �YXj � can be obtained and
the respective variable should not be included in the re-
gression model.

The TNRj measures the signal-to-noise ratio in an ex-
planatory variable xj. It is defined in terms of the corre-
sponding Euclidean norms [1]:

TNRj=
xj

dxj
=
! x j

Txj

dx j
Tdxj

"1/2

(11)

A value of TNRj �1 indicates that the (non-basic)
explanatory variable xj, contains valuable information.
On the other hand, a value of TNRj51 implies that the
information included in xj, is mostly noise, and there-
fore it should not be added to the basic variables.Fig. 1. Schematic flow diagram of the SROV procedure.
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For calculation of CNRj and TNRj, o and dxj values
must be provided by the user. These values are based
on the estimated experimental error or precision of the
measurement and control devices. In the first stage of
the regression, the values provided by the user are used.
In subsequent stages, those estimates are updated using
numerical perturbation. To this aim, the regression is
carried out using two data sets in parallel, the original
one and a perturbed data set. The differences between
the updated values of the explanatory variables (Eq.
(8)) and the dependent variable (Eq. (5)), obtained with
the original and perturbed data sets, provide the esti-
mates for the updated values of o and dxj at each new
stage. (For a more detailed explanation, see [8].)

The selection of new variables (from among the
non-basic variables) to be added to the basic variables
in the SROV procedure stops when for all the non-ba-
sic variables either CNRj51 or TNRj51.

The SROV procedure consists of two phases. In the
first phase, an initial (nearly optimal) solution is found.
In the second phase, the variables are rotated in an
attempt to improve the model.

2.2. Phase 1. Finding an initial solution

In the 0-th stage of phase 1, the dependent and
explanatory variables are centered (except for models
which do not include a free parameter where centering
is avoided).

The first variable selected to enter the basis is deter-
mined using Eqs. (9)–(11) and the concepts that were
explained in the previous section. Then the calculation
of the corresponding parameter value b1 and the up-
dating of the dependent and the remaining explanatory
variables (and the corresponding errors) is carried out.
In all subsequent stages of phase 1, the selection of
additional variables to enter the basis and the updating
of the dependent and explanatory variables is per-
formed the same way as in the 0-th stage. As noted
above, the stopping criteria of phase 1 is CNRj51 or
TNRj51 for all the remaining non-basic variables.

When the correlation between the original explana-
tory variables is weak (they are nearly orthogonal) the
regression model found in phase 1 is the optimal with a
minimal variance (and the sum of square errors) value.
However, if there is a considerable collinearity among
the explanatory variables, the order in which they enter
the basis may change their effect on the reduction of
the variance. In such cases, rotation of the variables can
lead to a solution with a smaller variance.

2.3. Phase 2. Rotation of the basic 6ariables

In this phase, the variables in the basis are rotated so
that each of them is tested versus the nonbasic variables
and reselected as the last one to enter the basis. Before

starting a new phase, all the variables are set back to
their original values. Only the order at which they
entered the basis in the previous phase is retained. If a
new variable enters the basis during rotation, a new
rotation cycle (a new phase) is started.

2.4. Presentation of the optimal model

For the variable included in the optimal regression
model the parameter estimate, b. j confidence intervals,
Dbj and the ratio of confidence interval to parameter
value Dbj/�bj � for the orthogonalized variables are
reported.

For a statistically valid model all Dbj/�bj � must be
smaller than 1. However, since the use of the model
with orthogonalized variables may not be convenient
for practical application, parameter estimates compat-
ible with the original variables are also presented. These
are obtained via a back-substitution algorithm.

The presentation of the optimal model includes also
a residual plot of the error o=y− ŷ versus y (where y
is the vector of measured values of the dependent
variables and ŷ is the vector of estimated values). The
residual plot helps to verify that the regression model
represents the data correctly (random error distribu-
tion) and helps to identify outlying observations. Stan-
dardized residuals: oi/s are also presented to assist with
the decision concerning removal of outliers.

For the variables, which were not included in the
optimal model, the final values of YXj, TNRj and CNRj

are presented. These variables can assist in determining
the dominant cause that limits the accuracy of the
regression model and indicate the possible direction of
the actions that should be taken to further improve the
regression model. Regression diagnostic using the re-
sults of the SROV procedure and the possible actions
that can be taken to improve the model are described in
the next section.

3. Regression diagnostics and model improvement

After an optimal regression model has been found,
the indicators of the SROV procedure can be used for
further diagnostic, in order to identify the actions that
should be taken for further improvement of the regres-
sion model. Three typical cases are considered:
1. All Dbj/�bj �B1 for the variables included in the

model and all CNRj51 (or are very close to 1) for
variables not included in the model. In this case, a
stable and statistically valid model has been ob-
tained. The inclusion of additional explanatory vari-
ables in the model is prevented by the level of the
noise (i.e. experimental error). The model can be
further improved by providing more precise data of
y and X.
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Table 1
Selected information for heat capacity of solid 1-propanol [12]

Cp (J/K mol) 6 z y= (Cp/Cp max)T (K)

2.397 0.057308Minimal value −110.83 0.01798
Maximal value 188.98 133.3 1 1 1
No. of data points 50

0.003Avg. dT (K)
0.03Avg. dCp (J/deg mol)

Avg. d6 1.59E-05
3.37E-05Avg. dz

2. All Dbj/�bj �B1, there are still variables not included
in the model for which CNRj\1 but TNRjB1 (or
very close to 1). In this case, collinearity among the
explanatory variables prevents the inclusion of addi-
tional variables for increasing the model precision.
Extending the range of the experiments and/or im-
proving the precision of the independent variables
data should be considered for eliminating collinear-
ity. In polynomial or quadratic models, data trans-
formations (such as the z-transformation, see Eq.
(13) below) can often alleviate the ill-effects of
collinearity and enable addition of more explana-
tory terms to the model ([2,9]).

3. One or more Dbj/�bj �\1, and there are still vari-
ables not included in the basis for which TNRj\1,
and CNRj\1. In this case, the variance is being
inflated by either the use of an inappropriate model
(the structure is incorrect and/or important explana-
tory variables have not been considered) or due to
unexpected excessive error in y (as in the presence of
outlying measurements).

Outlying measurements can be identified in the resid-
ual plot. Removing the outliers from the data set (for
reducing the variance) can be considered. There are
statistical tools for identifying suspected outliers. How-
ever, it is always recommended to re-confirm outlying
points by repeated experiments or physical justification.

An inappropriate model structure and/or omission of
important explanatory terms can sometimes be iden-
tified in the residual plots (y− ŷ) versus y and/or versus
the explanatory variables.

An inappropriate linear model can be a result of
neglection of non-linear effects. Theoretical consider-
ation can sometimes be used to improve the model (for
example, minimizing the relative error instead of the
absolute error, [10]) or to identify the explanatory
variables that should be added to the model. In the
framework of empirical models, non-linear effects can
be accounted for by extending the linear model to a
quadratic model (inclusion of second order terms) or by
including higher order polynomial terms. A quadratic
model is defined by:

y=b0x0+ %
n

j=1

bjxj+ %
n

i=1

%
n

j=1

bijxixj+o (12)

The use of the z-transformation [9]

z=
2x−xmax−xmin

xmax−xmin

(13)

can be beneficial when polynomial or quadratic models
are used. This transformation yields a variable distribu-
tion in the range:−15z51. The 6-transformation is
defined by 6i=xi/xmax, where xmax is the largest x (in
absolute value). This transformation yields a variable
distribution in the region 6min56i51. The benefits of
extending a linear model to a quadratic model (or to
higher polynomial terms) and employing the z-transfor-
mation (instead of no transformation or 6-transforma-
tion) will be demonstrated in the examples.

Two examples are shown, which demonstrate the
advantages of using the SROV procedure for obtaining
the optimal model and for regression diagnostics.

4. Examples

4.1. Example 1. Heat capacity of solid 1-propanol

Heat capacity versus temperature date are usually
correlated by polynomials. Daubert and Danner [11],
for example used a 3rd order polynomial to correlate
heat capacity (Cp) data versus temperature for solid
1-propanol, as published by Counsel et al. [12]. Selected
information from this data is shown in Table 1.

Fitting a 3rd order polynomial (as recommended by
Dauber and Danner [11]) to the normalized Cp (y=
Cp/Cpmax) versus temperature (T in K) yields the fol-
lowing polynomial model (95% confidence intervals are
shown in parenthesis):

y= −0.127417(0.0197)+1.20074(0.0931)×10−2T

−7.30919(1.099)×10−5T2+2.08259(0.365)

×10−7T3

with a variance estimate s2=2.41×10−4. This model
is stable (all confidence intervals are significantly
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Fig. 2. Residual plot for regression of normalized Cp versus tempera-
ture data by a 3rd order polynomial.

premelting. Removing the two potential outliers re-
duces the variance of the 3rd order polynomial repre-
sentation to s2=3.53×10−5, but the unexplained
curvature of the residual plot remains.

To find a model that can represent better the Cp
data, polynomials of various orders were considered as
explanatory variables and the 6 and z-transformation
were used. The full data set, as well as the reduced data
set (with the two outliers removed), were considered.
Using z-transformation for the reduced data set yielded
a compact seven parameters model, while the other
options (full data set and/or with 6-transformation)
lead to optimal models comprised of many more terms
and parameters. For the sake of brevity, only the
results obtained using z-transformation with the re-
duced data set will be given in some detail.

The SROV procedure was employed in order to
select the terms that should be included in optimal
polynomial model, from a pool containing various
powers of z, up to z15.

In Fig. 3, mean-cantered and scaled (to unit length)
values of various powers of z are plotted versus mean-

smaller than the respective parameter values), but not
very accurate. In Fig. 2, the residual plot of the error
o=y− ŷ versus y is shown. It can be seen that the Cp
curve has significant curvature, that cannot be ex-
plained by a 3rd order polynomial. There are two data
points that can be marked as potential outliers. These
two points correspond to the highest temperature and
Cp values. It is well-known (see [13]) that Cp data near
the melting point can be very inaccurate due to

Fig. 3. y versus Zk at various stages of tire SROV procedure (example 1).
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Table 2
Results of the SROV procedure for example 1a

Variables not included in the regression modelVariables included in the regression model

bjVar. no.: j Dbj Dbj/�bj � Var. no.: j YXj TNRj CNRj

0.0004213 0.000892 111 −0.027440.472460 961.5 0.1483
0.0008113 0.0064442 15−0.125890 0.02688 796.0 0.1482
0.001623 0.014746 90.110090 −0.024543 1074.4 0.1322

0.04025314 0.003065 0.076141 7 −0.01961 1221.3 0.1041
−0.01107013 0.002195 0.198310 5 −0.01619 1425.6 0.0861

0.003162 0.067669 80.046730 0.011184 1074.0 0.0532
6 0.01105 1245.2 0.0521

12 −0.00737 850.6 0.0360
10 0.00311 948.4 0.0149

a z transformation, orthogonalized variables, outliers removed.

cantered and scaled values of Cp (y) at the various
stages of the SROV procedure. The respective values of
YXj and CNRj are also shown.

At the 0th stage, it can be seen that the data points
for z1 are aligned almost perfectly along the straight
line with slope of 1, that represents a perfect correla-
tion. The respective YX1 value is 0.988. The shape of
the curve obtained from the z3 value is similar to that
of z1, but there is considerably larger curvature. Conse-
quently, the value of YX3 (0.95) is smaller than the
value of YX1. At this stage, the linear correlation
between y and z2 or z4 is weak. This is indicated by
small absolute values of YX2 (=0.30) and YX4 (=
0.283). However, at this stage, all TNRj and CNRj are
much greater than one, thus, stability considerations do
not exclude inclusion of anyone of the variables in the
regression model.

Because of its highest YXj, z1 is entered into the
model at the 0th stage. In Fig. 3, the updated values of
z2 are plotted versus the updated values of y, as ob-
tained at stage 1. At this stage, there is already a
considerable spread of the data points, but the points of
z2 line up nicely along the straight line of slope−1,
with YX2= −0.909. Thus, the residual of z2, becomes
strongly correlated with the residual of y, which is
orthogonal to and cannot be explained by z1. At stage
1, z2 is added to the model. At stage 2, the residual of
z3 becomes the most collinear with the residual of y (see
the plot of stage 2 in Fig. 3), yielding YX3=0.957. It is
interesting to note that CNR3 was reduced by more
than an order of magnitude after the information which
is collinear to z1 have been subtracted from z3 and y.

After z3 has been added to the model, the consecu-
tive power of z (z4) has lower YXj value (=0.715) than
higher powers of z. At this point, z14 has the highest
correlation with the residual of y (YX14=0.944, see
also the plot of stage 3 in Fig. 3). The SROV continues
by adding z14 to the model at stage 3, z13 (YX13= −
0.631) at stage 4 and z4 (YX4= −0.795) at stage 5. At
stage 6, YX11 is the highest, however, CNR11 and all

other the CNR values become smaller than one, thus,
no more variables should be added to the model. The
plot of the residual of z11 versus y at stage 6 (see Fig. 3)
also shows that the correlation is very weak and the
distribution of the points is nearly random.

In Table 2, the results of the SROV procedure in
terms of orthogonalized variables, are summarized. The
optimal model includes z, z2, z3, z4, z13 and z14. The
Dbj/�bj � ratios for all of them are significantly smaller
than one, thus, this model is stable. For the variables
not included in the model all TNRj�1, indicating that
collinearity does not prevent addition of more vari-
ables. However, all CNRjB1, thus combined impreci-
sion of the independent and dependent variables data
limits the number of terms in the model.

In Table 3, the parameter values and the variance
estimate for the optimal model using non orthogonal-
ized z-transformed variables are shown. The variance
estimate is s2=9.15×10−7, smaller by almost two
orders of magnitude than the variance of the 3rd order
polynomial. The residual plot for the optimal model is
shown in Fig. 4. It can be seen that, in constrast to the
3rd order polynomial (see Fig. 2), the error is dis-
tributed randomly and the maximal errors are of the
order of 2.5×10−3, an order of magnitude smaller
than for the 3rd order polynomial.

Table 3
Regression results for example 1a

Var. no.: j bj

0 0.619590
1 0.378440

−0.1231102
3 0.121200
4 −0.026676
13 −0.009320
14 0.040253
s2 9.1459E-7

a Optimal model, z transformation, outliers removed.
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Fig. 4. Residual plot for the optimal regression model obtained for
normalized Cp versus polynomial of z.

For further investigation of the adequacy of the
proposed quadratic model, the SROV procedure was
employed for identifying the optimal model. It was
assumed that the independent and dependent variables
data are accurate up to the number of decimal digits
reported (for the uncoded data). Thus, the average
error values used are dx1=0.033, dx2=0.0125, dx3=
0.033 and dY1=0.03 (for details of the error estima-
tion, see [15]).

The results of the SROV procedure are shown in
Table 6. The optimal model includes variables x1, x3

and x2
3. All the Dbj/�bj � values for the model are smaller

than one, thus, the four-parameter (three-variable
model) is statistically valid. However, all the TNRj and
CNRj values for the remaining non-basic variables are
greater than one, indicating the possibility that addi-
tional variables can be added to the model. But, at-
tempting inclusion of one more variable yields Dbj/�bj �
value larger than one, thus, a stable model contains
only the three variables xl, x3 and x2

3. This situation
corresponds to case no. 3 in the regression diagnostic
section, where an inappropriate model due to ommis-
sion of an important explanatory variable is mentioned
as possible cause of inflated variance. Consulting the
residual plot for the optimal model (shown in Fig. 5b)
substantiates this conclusion. There is a clear trend in
the residuals that is not explained by the proposed
model.

The ommission of important variables is even more
evident when Y2 and Y6 are regressed with the
quadratic model that contains the same variables. Aia
et al. [14] concluded that for regression of Y2, a linear
model containing only the independent variable x2 is
the most appropriate model and there is no justification
to add any more terms to the model. The use of the
SROV procedure yields the same result. The optimal
model obtained is Y. 2=9.365(0.6279)+
1.06968(0.7627). Although CNRj and TNRj for all re-
maining non-basic variables are greater than one, none
can be included in the model, because of the excessively
large confidence intervals resulting from the large
model variance.

In Fig. 6, the residual of Y2 is plotted versus x2, when
the single variable linear model is used for regression. It
can be seen that x2 alone cannot represent Y2, but since
all the other explanatory variables must be excluded
from the model, there must be additional variable(s)
(not included in the reported data) that can explain the
lack of fit of the linear model.

This conclusion is further reinforced by examining
the data of Y6, the additional dependent variable. Aia
et al. [14] could not find any statistically valid model to
represent Y6 with the reported independent variables
and concluded that Y6 is a constant, which is varying
within the experimental error. But Y6 varies over a
considerable range (0.445Y651.49) and the explana-

Thus, the SROV procedure enabled identifying a
much more accurate, stable regression model then the
one that is recommended by Daubert and Danner [11].

4.2. Example 2. Precipitating stoichiometric
CaHPO4·2H2O

This example was discussed extensively in the chemi-
cal engineering literature [14] and the statistical litera-
ture [7].

The three independent variables are the mole ratio of
the NH3 to CaCl2 in the calcium chloride solution,
addition time (t, min) of ammoniacal CaCl2 to
NH4H2PO4 and starting pH of NH4H2PO4 solution.
These variables were coded3 so that−5/3BxjB5/3
( j=1,2,3) using the transformations xl= [(NH3)/
(CaCl2)−0.8]/0.09; x2= (t−50)/24 and x3= (pH−
3.5)/0.9. The coded values of the independent variables
are shown in Table 4. Seven dependent (response)
variables were measured, only three of them are used in
this work: Y1, the yield (percent of theoretical), Y2,
Fisher subsieve size (microns) and Y6, B.E.T. specific
surface area (m2/g). The measured values of Y1, Y2 and
Y6 are also shown in Table 4. Aia et al. [14] suggested
the use of a full quadratic model for regression of Y1.
Based on analysis of the variance, they concluded that
the terms associated with x2 can be removed from the
model, but included all the remaining terms in the
model. Table 5 summarizes the values of bj, Dbj, Dbj/
�bj � and s2 for the model suggested by Aia et al. [14]. It
can be seen that for two of the terms (x1x3 and x1

2)
Dbj/�bj �\1, indicating that these terms can probably be
removed from the model.

In Fig. 5a, the residual plot is shown when Y1 is
regressed with the six parameters model which was
proposed by Aia et al. [14]. The errors are larger for
larger Y1 values and there is a clear trend in the
residuals that cannot be explained with the proposed
model.

3 Note that these bounds are different than in the paper by Aia et
al. [14], where there were apparently typographical errors.
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Table 4
Data for example 2 [14]

x2Point no. x3x1 y1 y2 y3

−1 −11 52.8−1 8 1.29
2 −11 −1 67.9 6.2 1.11

1 −1 55.4−1 10.43 0.8
1 −1 64.24 10.61 0.52

−1 1 75.1−1 7.65 1.49
−1 1 81.6 10.56 0.631

1 1 73.8−1 127 0.69
18 1 1 79.5 9.8 0.96

−1.666679 0 0 68.1 7.8 0.88
0 0 91.21.66667 9.410 0.44

011 −1.66667 0 80.6 8.8 0.47
1.666667 0 77.50 11.212 0.58
0 −1.66667 36.813 10.50 1.2
0 1.666667 780 9.814 0.52

015 0 0 74.6 10.4 0.5
0 0 75.90 6.316 1.1

017 0 0 76.9 9.5 0.8
018 0 0 72.3 8 0.77

0 0 75.90 1019 0.95
0 0 79.8 10.5 1.1320 0

tion that the variation is only due to experimental
error, is not at all convincing. More probable is that Y6

is function of additional variable(s), which are not
included in the reported data set, possibly the same
variable(s) Y2 depends on. To test this hypothesis,
the SROV procedure has been employed after adding
to the quadratic model Y4 and Y2 as additional
explanatory variables. A statistically valid model
Y6=2.4766(2.007)−0.01089(0.009912)Y1

−0.09102(0.07553)Y2 has been obtained.
Since Aia et al. [14] reported only the measurements

for the three independent variables, using their data, it
is impossible to determine which important variable
was omitted. However, it should be pointed out that
isothermal operation at 30°C was assumed, although it
was noted that a temperature rise of about of about
4°C occurred during precipitation. Since the physical
properties of the product are known to widely vary
with temperature [14], a possible omitted variable is the
temperature rise during precipitation.

5. Conclusions

It has been shown that the use of experimental error
estimates can be very beneficial in identifying optimal
regression models and in regression diagnostic. The
error estimates are considered in the framework of the
SROV procedure.

In the first example, the use of the SROV procedure
enabled obtaining an optimal regression model for heat
capacity of solid 1-propanol, which contains non-con-

Table 5
Regression results, for example 2, independent variable y1, model of
Aia et al. [14]

bjVar. no.: j Dbj Dbj/�bj �

0 0.030862.35776.3886
5.48804 1.8421 (x1) 0.3356

2 (x3) 1.84210.1773 0.181
−1.46253 (x1x3) 2.407 1.646

4 (x1
2) 0.642875 1.784 2.775

0.2471.784−7.223625 (x3
2)

10.073s2

Fig. 5. Residual plot for regression of Y1 with six parameter and four
parameter models (example 2).
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Table 6
SROV procedure and regression results for example 2 (independent variable y1)

a. Centered-orthogonalized variables

Variables included in the regression model Variables not included in the regression model

Dbj Dbj/�bj �Var. no.: j Var. no.: jbj YXj TNRj CNRj

0.1257 0.3265 21 −0.20410.38511 84.03 5.8063
3 0.7143 0.3404 0.4765 4 (x1x2) −0.1951 31.68 5.0093

−0.530739 (x3
2) 0.2279 0.4295 5 (x1x3) −0.3215 35.84 8.1766

6 (x2x3) −0.0632 22.64 1.5029
7 (x1

2) 0.195 37.98 3.3587
8 (x2

2) 0.126 38.52 2.2376
b. Unaltered variables

1.9770 0.0257176.9095
1.852 0.33651 5.50328
1.852 0.181410.20743

−7.398519 (x3
2) 1.807 0.2442

s2 10.34

Fig. 6. Residual plot for regression of Y2 versus x2 (example 2).
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secutive powers of the independent variable. The opti-
mal model is a stable model, which is an order of magni-
tude more accurate than the 3rd order polynomial model
that was recommended for this property in the literature.

In the second example, data precision considerations
and the SROV procedure enabled identifying the omis-
sion of important variables as the main cause for pre-
venting accurate and stable modeling of various prop-
erties of calcium hydrogen orthophosphate as function
of reaction conditions. This cause was not detected pre-
viously, in spite of the extensive discussion of the prob-
lem in the chemical engineering and statistical literature.

Engineers and experimental scientists can usually ob-
tain good estimates of the experimental errors. Using the
various indicators and the SROV procedure presented in
the paper, they can utilize the experimental error esti-
mates to extract the maximal valuable information from
the data. The outcome is either obtaining a satisfactory,
most accurate and stable optimal regression model or
identifying the main cause that limits the accuracy and
stability of the optimal regression model.


