
Pergamon
Computers chem. Engng Vol. 22, No. 1-2. pp. 323-331, 1998

Copyright © 1997 Elsevier Science Ltd
Printed in Great Britain. All fights reserved

Pll: S0098-1354(96)00000-0 0098-1354/97 $17.00+0.00

Comparing software for interactive
solution of systems of nonlinear algebraic

equations

Mordechai Shacham a, Neima Brauner b and Michael Pozin b

a Department of Chemical Engineering, Ben-Gurion University of the Negev,Beer-Sheva, 84105
Israel

b School of Engineering, Tel-Aviv University, Tel-Aviv, 69978 Israel

(Received 18 May 1994; revised 30 November 1995)

Abstract

Four general purpose interactive numerical solution packages: MAPLE, MATLAB, MATHEMATICA and
POLYMATH are compared with regard to their performance in solving systems of nonlinear algebraic equations
typical to chemical engineering applications.

Criteria for ease of learning, ease of use and user-friendliness of the packages are introduced. Benchmark problems
are used to demonstrate that the selection of good initial estimates is still a critical issue in solving highly nonlinear
problems with any of these programs. It is concluded that of the programs tested, the performance of
MATHEMATICA and POLYMATH is the best for systems of NLEs, the interval of convergence of POLYMATH and
MAPLE is the widest for a single NLE and POLYMATH possesses the most "user-friendly" features. © 1997
Elsevier Science Ltd

1. Introduction

Many practical problems in chemical engineering
require the solution of systems of nonlinear algebraic
equations (NLEs). Typical examples are chemical and
phase equilibrium calculations and steady state material
and energy balances. One of the authors (Shacham,
1985) published a comparison of software for solution of
NLEs about ten years ago, in which the performance of
the programs were compared on the basis of how many
of the benchmark problems the program can solve and
time required to reach the solution.

In the last ten years the development of interactive
programs has progressed to the level where the equations
serve as input for the programs. Contrary to the
FORTRAN programs in use ten years ago, these
programs include an editor as an integral part of the
program, and there is no need to recompile and link the
subroutines between runs. These programs are very
convenient to use for small and medium scale problems,
containing up to several tens of equations. When using
such interactive programs, the criteria utilized pre-
viously by Shacham, 1985 for comparison between
programs are no longer suitable and must be revised. For
example, the number of iterations or the time required to

reach the solution, is not important, as long as the user
does not have to wait for the solution to appear on the
screen. Thus, the user's time, not the computer or
program development time, becomes the main con-
sideration.

The dependability or robustness of the NLE solver
program, defined as a function of the number of
problems the program can solve from a given set of
benchmarks, relative to other NLE solvers, is still very
important. Boston et al., 1993 predicted that by the year
2001, combinations of NLE solvers and expert systems
will exist which will be able to solve any system of
NLEs, provided that a solution exists. In Section 2, we
try to assess how close the presently available interactive
programs are from reaching this goal.

The present state of the art requires that the user
provide an initial set of estimates for the unknowns.
Depending on the level of the nonlinearity of the
problem, selection of the initial estimates may be critical
or non-critical. Some considerations for selecting initial
estimates will be discussed in Section 3.

A very important consideration is "user-friendliness".
The degree of "user-friendliness" is the key for convert-
ing the NLE solving programs from an expert's tool to a
tool available and utilized by all engineers.

323

324

How can "user-friendliness" be measured and com-
pared? Slaughter et al., 1991 compared several NLE
solvers for "ease of learning" and "ease of use" but the
comparison was based on the subjective feelings of the
evaluator. We believe that such comparison should be
based upon objective criteria, such as flexible notation,
online debugging, equation sorting, error detection, etc.
In Section 4 we will introduce and demonstrate some of
the features which, in our opinion, must exist in an NLE
solver in order to be classified "user-friendly".

Four software packages were used for the comparison:
MAPLE (Ellis et al., 1992), MATHEMATICA (Wolf-
ram, 1991), MATLAB (The Math Works, 1992) and
POLYMATH 3.0 (Shacham and Cutlip, 1994). The PC
DOS versions of MAPLE and POLYMATH were used
and the Unix version of MATHEMATICA. Two versions
of MATLAB were tested, MATLAB 3.5 PC DOS
version and MATLAB 4.0 Unix version (or PC Win-
dows). We will report only the results obtained using the
Unix version, since its performance was observed to be
superior.

All these packages are capable of doing much more
than solve NLEs, but only this application was com-
pared. Although there are several additional interactive
packages that can be used for the same purpose
(Slaughter et al., 1991, Rosen, 1989) and most spread
sheets can also be applied (Rosen and Adams, 1987), we
have limited our study to only those packages where the
solution is done on a single command, no programming
or macros are required. The four packages studied were
selected because they were available, but the criteria and
benchmark problems presented in this paper can be
applied to extend the comparision to additional software
packages.

2. Performance of the 4 packages for a set of
benchmark problems

In order to test the capability of the different programs
to solve typical chemical engineering problems of
different levels of nonlinearity and difficulty, we have
used a set of 12 test problems. Five of them consist of a
single implicit nonlinear equation and are taken from
Shacham (1989) and seven additional problems, which
include systems of equations, are taken from Shacham

M. SHACHAM, N. BRAUNER AND M. POZIN

(1984). Several of the examples included in the bench-
mark set have been discussed extensively in the
literature. The set includes a system of equations
representing material and energy balances on a reactor
from Carnahan et al., 1969 and 2 chemical equilibrium
problems from Hiebert, 1982. Some of the problems are
badly scaled and possess singular points, or intervals in
the vicinity of the solution where some functions are
undefined. Several of them have multiple solutions, but
only some of the solutions are physically feasible. More
details for the benchmark problems can be found in the
references Shacham, 1984, 1989.

Table 1 summarizes the performance of the packages
for the benchmark set of single nonlinear equations. The
equations in examples 3 and 5 are continuous with
continuous derivatives, and the derivatives do not
change sign over a wide interval near the root. None of
the programs had any difficulty in converging from
inside the interval shown in the table.

The function of Example 7 is undefined for X->0.8.
Nevertheless, POLYMATH and MAPLE converged
from the entire feasible region: (0-X<0.799), but the
interval of convergence of MATLAB and MATHEMA-
TICA became very narrow (~ 0.64<X<0.79).

The equation in Example 10 has two roots, and it is
undefined for X~0 or X->0.95. POLYMATH and
MAPLE found both solutions from the feasible interval
(0.01 <--X<--0.99), and MATLAB and MATHEMATICA
converged to one root at a time, depending on the initial
estimate specified. None of the programs had any
difficulty in solving Example 13.

Table 2 shows the performance of the different
programs for systems of NLEs. The example number
given in the table is as it appears in Shacham (1984). All
the examples (except No. 7) were solved from different
initial estimates and two of them (Examples 8 and 10)
were solved for different parameter sets. MAPLE could
not be tested from different initial estimates, because it
requires that the intervals be specified for all the
unknowns within which the solution is expected to be
located.

The performance of MATHEMATICA was the best
for this set of test problems. It converged to a solution in
18 out of the 23 cases without any modification of the
equations. In two cases it gave incorrect solutions
without delivering any error message and in three cases

Table 1. Performance of the packages for a single nonlinear algebraic equation

example no. ~ Root Feasible region Interval of convergence

POLYMATH MAPLE MATLAB MATHEMATICA

3 T=551.77 T>0
5 T = 4305.31 T> 0
7 X--0.7574 0<X<0.8
10.1 X=0.5 0<X<0.95
10.2 X=0.03621 0<X<0.55
13 v=0.0757 t~-0

500-800 500-800 500-800 500-800
3(X)0-5000 3000--5000 3000-5000 30(0)-5000

0--0.799 0--0.799 0.64--0.76 0.63--0.79
0.01--0.94 0.01--0.94 0 .28--0 .79 0.23-0.94
0.01-0.94 0.01--0.94 0.03-0.18 0.01-0.22

o-1 0--1 0-1 0-1

Example number as it appears in Shacham (1989).

Comparing softwae for interactive solution o f NLES

the solutions found were physically infeasible (negative
mole fractions).

POLYMATH arrived at a solution in 16 out o f the 23
cases and all the solutions reached were physically
feasible. In two cases user intervention was required in
order to arrive at the solution: In Example 7 there are 14
equations and the number o f equations was reduced to
12 (the upper limit in POLYMATH) by solving two
linear equations for two unknowns, and then substituting
these values into the other equations. In Example 10 the
solution for one of the parameter sets had to be restarted
after introducing a partial solution as a new initial
est imate (a built-in option in POLYMATH). In all cases,

where POLYMATH did not converge to the solution, it
was clearly indicated by an error message and display of
intermediate results.

Since initial est imates cannot be changed for MAPLE,
only 10 cases were solved by this program. It converged
to a feasible solution in only 6 o f the 10 cases. In two
(out o f the 6) cases, the equations had to be modified
prior to arriving at the solution. In both Examples 7 and
8, the square o f the functions had to be used in order to
converge. In Example 7, there was a need to specify a
very narrow interval around the solution as initial guess
in order to achieve convergence. M A P L E gave error
messages in most cases when it failed to converge, but in
example 9 it failed without giving an error message.

325

MATLAB converged to the feasible solution in 9 out
o f the 23 cases. In the other eases it converged to a local

minimum, without giving any indication that the solu-
tion found was not the root o f the system o f equations.

3, Cons ide ra t i ons In se lect ing an ini t ial e s t ima te

All programs tested require specification of initial
estimates for the unknowns by the user. The initial
estimates may be provided as a single value for each one
of the unknowns (POLYMATH, MATHEMATICA,
MATLAB) or as an interval within which the solution is
expected to be found (MAPLE, POLYMATH for single
equation).

While it is always advisable to use initial estimates

based on physical bounds, in most problems the
selection o f the initial estimates is not critical, as long as
ranges o f infeasible or absurd values are excluded (such
as negative or greater than one for mole fraction,
negative absolute temperature, etc.). However, the
casual selection o f initial estimates may not be good
enough (for highly nonlinear problems). Some o f the
difficulties associated with selection of initial est imates
are demonstrated by the following three examples.

The first example is a chemical equil ibrium problem
taken from Shacham and Cutlip, 1997. The equations for
the example are shown in Appendix A and Table 3

Table 2. Performance of the programs for systems of NLEs

Example no. ~ Parameter set Initial guess POLYMATH MAPLE b MATLAB MATHEMATICA

2 - 1 + + + +
2 - 2 + - - ,
5 - 1 - + - - _
5 - 2 + - - _
5 - 3 - + +
5 - 4 + + +
6 - 1 + + + +
6 - 2 + + +
7 - 1 - + + + +
8 1 1 + - + - - +

8 1 2 + - - ,

8 2 I + - - - +

8 2 2 + - - ,

8 3 1 + - - - +

8 3 2
9 - 1 + - - _ +
9 - 2 - _ +
9 - 3 - - - _
9 - 4 - _ +
10 1 1 + - + + +

10 1 2 + + +

10 2 1 - + - + __
10 2 2 - - - +

a Example number, parameter set and initial guess as appear in Shacham (1984).
MAPLE requires an interval defined as initial estimate, no specific point can be defined.

+ converged to a feasible solution.
- did not converge to solution with error message.
- - did not converge to solution without error message.
* converged to an infeasible solution.
- + converged to a feasible solution after modification.

326 M. SHACHAM, N. BRAUNER AND M. POZIN

Table 3. Performance of 3 packages for Example l, from different initial estimates

Initial guess no. Co Cx Cz POLYMATH MATLAB MATHEMATICA

I 0.61 0.2 0.4 + - -

2 0.59 0.2 0.4 - - -
3 0.7 0.28 0.4 + +
4 0.7 0.31 0.4 - + +
5 0.7 0.2 0.48 + + +
6 0.7 0.2 0.51 - + -
Solution 0.7~3 0.1778 0.3740

+ Converged to solution.
- Did not converge.

summarizes the solution and the convergence to the
solution for this example as obtained from 6 different
starting points. MAPLE was not included in this
comparison since it requires specification of an interval
instead of a single point.

It can be seen that even though all sets of initial
estimates are very close to the solution, nevertheless, for
some of them all of the programs fail to converge. The
reason for this difficulty is that the concentration of C c
may become zero for different combinations of Co, Cx
and Cz near the solution and none of the programs is able
to cross this barrier of singularity. The problem can be
made much less nonlinear and easier to solve by
eliminating division by unknowns: f~ can be multiplied

by CACB, f2 by CcCB and f3 by CACx, to obtain the
following modified set of equations:

f,(Co, Cx, Cz)=CcCo- 1.06CaCB=O,

f2(Co, Cx, Cz)=CxCr- 2.63CcCg=O, (1)

f3(co, c,,, cz)=cz- sCACx=O.

In this form, the functions do not have any dis-
continuities. Indeed, all 4 programs converged to the
right solution from a reasonable initial estimate, such as
Co=Cx=Cz=O (assuming no reaction takes place). The
selection of initial estimates may be critical even for this
formulation. Using POLYMATH with two different
initial guesses, the program converged to two additional
solutions, which are physically infeasible (some of the
concentrations are negative). The initial estimates and
additional solutions are shown in Table 4.

Example 2 is a system of equations representing
steady state material and energy balances in a chemical

reactor (taken from Fogler, 1974 and the equations are
detailed in Shacham, 1984). The two unknowns in this
equation set are X (the conversion) and T (the absolute
temperature). This system of equations is difficult to
solve because it is badly scaled and there are local
minima with a singular Jacobian matrix in the region of
interest.

The solution is at X*=0.53337 and T*= 1637.7. The
local minima are at X=0.22484; T=1477.9 and
X=0.016569; T=1368.7. All programs had difficulty
converging to the solution when the system is formu-
lated as two implicit equations, regardless of the initial
estimates used. They did converge after certain manip-
ulations of the equations. POLYMATH and MATLAB
required rescaling of the equations. With MAPLE, the
square of the 2nd function had to be used and
MATHEMATICA required close initial estimates and
restriction of the unknowns within tight intervals.
MATLAB converged in some cases to a local mini-
mum.

The system can be modified to alleviate the problem
by converting it to a single implicit equation in terms of
X. Searching for a solution inside the interval 0-<X-0.9 ,
POLYMATH and MAPLE found the solution without
any difficulties. MATLAB and MATHEMATICA
require a single initial estimate. When the initial estimate
was set to X-<0.5, both programs converged to incorrect
solutions; MATLAB converged to X=0.1972 and
MATHEMATICA to X=0.I068. Only with initial esti-
mate in the interval 0 .53337>X>0.5 did these two
programs converge to the correct solution.

Example 3 (taken from Henley and Rosen, 1969, see
Appendix B) involves the calculation of the bubble point

Table 4. Initial estimates and solutions for the chemical equilibrium problem

Variable Solution I Solution 2 Solution 3

Initial estimate Solution Initial estimate Solution Initial estimate Solution

Co 0 0.7053 1 0.0556 i 0 1.0702
Cx 0 0.1778 1 0.5972 ! 0 - 0.3225
Cz 0 0.3740 1 1.082 ! ! 0 1.1304
C~ - - 0.4207 - - - 0.3624 - - - 0.7007
Ca - - 0.2429 - - - 0.2348 - - 0.808
Cc - - 0.1536 - - - 1.6237 - - - 0.3782
Cr - - 0.55 i 8 - - 1.6793 - - 0.2623

Comparing softwae for interactive solution of NLES

Table 5. Performance of the programs for ~:Kample 3

327

Initial estimate X. X2t Xj2 X22 POLYMATH MATLAB MATHEMATICA

I 0 1 1 0 + +
2 0.05 0.95 1 0 + +
3 0.1 0.9 1 0 - +
4 0.2 0.8 1 0 - +
5 0 1.0 0.5 0.5 + +
6 0 1.0 0.3 0.7 - +
Solution ~ 0.0227 0.9773 0.6867 0.3133

° For/~ initial estimate 0.8; solution 0.7330.
For t initial estimate 80; solution 88.538.
+ Converged to the solution; - Did not converge.

temperature for a nonideal mixture. At the bubble point
this mixture forms two liquid phases. Table 5 summa-
rizes the performance of the different programs (except
MAPLE) for this example with 6 different initial
estimates. It can be seen that the convergence of all the
programs is very much dependent on the initial estimate.
A small change in the initial estimate for X. can cause
all the programs (except MATLAB) to fail. We could not
find a formulation for this example which would render
the system less sensitive to the initial estimate.

4. Program-user interface

In the past very little attention was paid to the man-
machine interface of the equation solver program. In
interactive programs, the user interface actually deter-
mines the extent to which the target users population can
benefit from the software. Some general criteria for
evaluating the user interface follow.

Menu based program control is considered more
user friendly than command based program control
because the options appear on the screen and the user
does not have to remember the particular commands.
This makes the program much easier to learn and to use.
The advantages of menu based control are most obvious
when the number of options available is relatively small.
When the number of options increases, there is a need
for several "levels" of menus. Only one level can be
displayed on the screen at one time. In such cases, there
is no obvious advantage to menu based control over
command based control. From among the programs
tested, POLYMATH provides menu based control, while
MATLAB, MATHEMATICA, and MAPLE use com-
mand based control for solution of NLEs.

The notation and format used in equation entry
will be demonstrated using the chemical equilibrium
problem (Example 1). Figure 1 shows the equation and
initial estimate input for the different programs.

POLYMATH required minimum alteration of the
original problem statement. POLYMATH requires that
only one of the unknowns will appear on the left-hand
side of an equation and it must be unique. MAPLE also
allows one to use the same notation as given in the
problem definition. There are no special rules for the
left-hand side of implicit equations: they are treated just

as any ordinary variable. A union of these variables, as
well as of the unknowns, must be defined before
solution, and the initial estimate for a variable must be
given as an interval, MATHEMATICA requires the
definition of the functions in a form similar to that used
in programming languages. The definition of a new
variable (as a function of other variables) is in a
statement which is similar to function statement in
programming languages (like FORTRAN). On the left-
hand side, the name of the new dependent variable is
written, while the name of the independent variable(s)
must appear inside brackets with an underline added to
the end of the name. The format required by MATLAB
is very similar to the structure of a subroutine in
programming languages. The variables are transferred in
and out of this subroutine in a one dimensional array
form.

All of the programs contain certain debugging aids.
They check for syntax errors after the equation is entered
and the return key pressed. POLYMATH also displays
the number of equations and variables that have been
defined and lists the undefined variables. This feature,
which can be very helpful in detecting mispelled
variable names, does not exist in any of the other
programs.

An example from Shacham and Cutlip (1997) will be
used to compare the different programs with regard to
equation ordering and detection of implicit relation-
ships. This example includes a system of equations
representing calculations of bubble and dew point
temperatures for a nonideal binary mixture (see Appen-
dix C). The equations are written in the order in which
mathematical models are usually developed. Equations
representing general principles are written first. The
equations which relate the principal variables y~ to the
unknown temperature follow in a logical order.The
calculations, however, are carried out in the opposite
direction.

Upon introducing the set of equations for the bubble
point to POLYMATH, the program ordered the equa-
tions as shown in Fig. 2. The solution obtained is
T=82.845 and the function value fiT)= - 0,16 x 10 -5.
MATHEMATICA and MAPLE did not inform the user
that the equations were reordered, but the correct
solution was reached with no regard to the order in

328 M. SHACHAM, N. BRAUNER AND M. POZIN

which the equations were entered. MATLAB found
incorrect solutions and, apparently, calculates the equa-
tions exactly in the order they have been entered (using
variables before values were assigned to them).

In order m calculate the dew point temperature for the
same mixture, a priori, it appears that only the first five
equations must be altered (as shown in Appendix C).
POLYMATH is used to solve these five altered equa-

A. MAPLE

> ca0:=l.5; cb0:=l.5;
> eps:=0.05;

> ca:=caO-cA-=;
> cy:=cx+cz;
> cb:=cbO-cd-cy;
> ee:--cd-cy;

> fl :,~,,e*cA/(ca*¢b)- 1.06;
> f2:=ex*ey/(e~*eb)-2.63;
> fJ:---c~d(ca*ex)-5;
> ~={fl,eZ,t3}:
> var:={cA,cx,=};
> Xinterval:={ CA---0..1,
cx-~.15..0.25, ==0..1 };

> root:--fsolve(f, var,Xintcrval);

C. MATLAB

global ca0; global cb0;
ca0=l.5; ¢b0=1.5;
CA0=0.7; ex0=0.2; =0~0.48;
x0=[CA0 ex0 ca0]';

root=Csolv~eh~',x0)
%.
function ~-ch~l(X);
global ca0; global cb0;
cA=x0); cx-=x(2); cz--x(3);

ca~0-ed-cz;
¢y--cx+=;
cb=eb0-cA-c~,
e~---cd-ey;

f(1)----(Co* CA)/(Ca* cb)-1.06;
f(2)m~x* ey/(e¢* cb)-2.63;
f(3)-~./(ca* cx)-5;

B. MATHEMATICA

ca0=l.5;
cb0=l.5;
rt[cA ,cx..,=..] :- (~[~k~=].*cA) /

(ca [~=] *~ [cA ,~=]) . l.o~;
t:z[cA._,cx._,c, zJ := cx*cy[¢,,,=] /

(~[cA,~czl*d~[¢d,~=]) - 2.63;
0 [~..,cx_,cz..] := ~(ca.[cd,=l*cx)-5;
ca[cA.,=_] := caO-cxl-cz;
cy[cx ~cz_] := cx+cz;
~[cA._,cx.,=j := cl~xl .cy[~=];
~[cA_,cx..,czj :: CA-¢y[=,=];

root~Findl~ot [

(ca,o.7}, (~o.2}, (~o.4s},
MaxIterations->S0];

D, P O L Y M A T H

The equations:
~cA)--(e~*cAy(ca*c~)-l.o6
f(cx)=cx* ¢y/Cce*cb)-2.63
f(=p=/(ca*~)-5
ca=eao-cA-cz
cb-cb0-cA-cy
cc=cA-cy
cb0-1.5
cy=cx~
ca0=!.5

Initial values:
cAo=o.7, cxo=O.2, ~=o.48

Fig. 1. Equations and initial estimate input for example 1.

The equations:
f (t) = g l + q 2 - 1
xi=0.80
x2,,1-xl
gl=10Ul(x2mx21(0.3781+21xlm(0.6848~0.3781)))
p1-101"~(7.96681-1668.21/(t+228))
k1=glmp1/760
ul=klllxl
g2-lOml(xlmxll(O. 6848+2mx21(0.3781-0o6848)))
p2:1011(8.04494-1554.3,,(t+222.65))
k2tg21p2/760
u2mk 2mx2

Search range: ~ in" 80.000t tmax ~ 120.00

Fig. 2. Equations ordered by POLYMATH for calculation of bubble point temperature.

Comparing softwae for interactive solution of NLES

The @quationsl
f(t)-xl+x2-1
((x l) , ,x l -gl /k l
f(x2),,x2-g2/k 2
g1,,lOmm(x2mx2m(O.3781+2mxlm(O.6840-O.3781)))
p1,,10""(?. 86481-1668.21/(t+228))
k 1-glmp1/760
y1=0,8
g2=lOlm(xlmxlm(O. 6848+2ax2m(O. 3781-0.6818)))
p2,,lOlm(8,044B4-1554.3/(t+222.65))
k2,,q21p2/?60

Init ial va1~JeSl tO,, 80.000, xl O- O,8000p x~-, 0.2000

329

Fig. 3. POLYMATH equations input for calculation of the dew point temperature.

tions, an error message will indicate that some of the
explicit equations require simultaneous solution. The set
of equations must be rewritten as shown in Fig. 3 in
order to calculate the dew point. In this case, three
implicit equations are required, as opposed to the single
implicit equation for calculating the bubble point
temperature. The solution obtained using the set of
equations in Fig. 3 are: T=94.519; X,=0.9748 and
X2=0.0252.

Using the one implicit equation formulation, all other
programs failed without being able to identify the reason
for the failure. Using the 3-implicit equation formula-
tion, MAPLE, MATHEMATICA and MATLAB all
achieved the correct solution.

Once a solution is reached, the root must be verified
and multiple solutions detected. For verification, the
values of the unknown must be introduced into the
functions to yield values close to zero. In POLYMATH
the function value is displayed both graphically and
numerically. In the other three programs the user must
explicitly request both calculation and display of the
variable or function values at the solution. For an
inexperienced user this may mean accepting incorrect
results.

For a system of equations all the programs will find
only one root out of several possible solutions. For one
nonlinear equation, POLYMATH will display and locate
all the roots (up to 5 roots) which are inside the interval
specified by the user, while the other programs will find
only one solution from each initial guess.

system of equations, but local minima, without issuing
any error message.

All the programs require the user to input initial
estimates for the unknowns, and it has been shown that
the selection of initial estimate can be critical for highly
nonlinear problems. For such problems even an initial
estimate close to the solution can lead to non-con-
vergence, or convergence to a physically infeasible
solution. In some cases, the problems can be transformed
to make them less sensitive to the initial estimate used,
by converting them to a single implicit equation or by
eliminating division by unknowns. If the problem can be
converted to a single implicit equation, POLYMATH
and MAPLE will find at least one solution located inside
the interval (in the case of multiple solutions, POLY-
MATH may find up to five solutions).

According to the criteria introduced in this study,
POLYMATH is the most user friendly software for
solving NLEs, among the programs tested. It has menu
based program control, reorders the equations according
to the calculation sequence, detects implicit relationship
of variables, has debugging aids not available in the
other programs, provides visual and numerical feedback
regarding the accuracy of the solution and requires
minimal alteration of notation and format of the equation
set during input to the program. Introducing such
features into the other programs can make them more
user friendly, thereby making them more widely
accepted by the engineering community and not only by
specialists.

5. Conclusions

The four packages tested are adequate for solving
NLEs arising in chemical engineering in an interactive
mode.

For solving one implicit nonlinear equation, POLY-
MATH and MAPLE had the widest convergence interval
for the set of test problems that were used. For systems
of nonlinear equations, MATHEMATICA reached the
solution in the largest number of cases, closely followed
by POLYMATH. It should be noted, however, that
MATHEMATICA, MAPLE, and MATLAB converged
occasionally to points which are not solutions of the

Appendix A:

Example 1, Chemical Equilibrium Problem (Shacham
and Cutlip, 1997)

CoCo
f,(C,,, Cx, Cz)= CAC8 - 1 .06=0,

~ . CxCr
f2(Co, Cx, t.z)= ~cCs - 2.63 =0,

Cz
f~(co, c~, c~)= c ~ - 5=0,

cA =CAo - co - cz,

330 M . SHACHAM, N. BRAUNER AND M . P o z i N

CB=CBo-- Co - C~,

Cc=Co-C~,
Cy=Cx + Cz,

C~o=1.5,
CBo=I.5.

Appendix B:

Example 3, Bubble and dew point temperature for a
20% (tool) isobutanol (1) and 80% water (2) mixture
(Henley and Rosen, 1969)

fl(B,xL I,X2.I,XL2,X2.2,I) =(XI,I -- X 1,2) + (X2,1 - - X2,2),

0.2
f2(~sXl,l~X2,1sXl,2~'~2,2,t) =XI,I --

f3(fl*XI.I~X2.1~XI 2~X2 2, I) -Xl 2 -- Xll kl.i
, , , kl,2 '

f4(fl.,XI, I,X2,I,Xl,2~X'2.2,t) =X2, I --
0.8

Appendix C:

Example 4, Bubble and dew point temperature for a
80% water (1) and 20% ethanol (2) mixture (Shacham
and Cutlip, 1997)

Bubble Point Dew Point
f(t)=Yl +Y2- 1 =0 f(t)=x, +x2- 1 =0
Yl =k,xl xl =y Jkl
y2 =k2.x2 x 2 = y 2 l k 2

xt =0.8 Yt =0.8
x2=0.2 y2=0.2

k~ = 7~P/P i = 1,2,

log(P0=7.96681 - 1668.21ct(t+228.0),

log(y,) =x 2[0.3781 + 2x~ (0.6848 - 0.3781)],

log(P2)---8.04494- 1554.3/(t+ 222.65),

log(72) =x210.6848 + 2x2(0.3781 - 0.6848)].

f5(•,XI.I,X2.1.)Cl 2,X22 t)=x22- -X21 k2A
. . . . k2,2 '

f6(f l ,XI.I ,X2.1,XI.2,X2.2,t) = x I A (I - - kl.j) + x2,1(1 - - k2,1) ,

1417.09
log PL =7.62231 191.15+t'

1750.29
log P2=8.10765 235+t '

log 7u =

log Y2: =

log yt,2 =

1.7x~.,

~ "FX2, I

0.7x2,,

I XLt 0.7X2 i 2

1.7x~.2

- - ~ "l'X2. 2

0.7Xl22
log 3/2,2=

xl.2+ 0.7x22 2

ktt= Yl.aPi ;k21 = Y2,1P2
' 760 ' 760 '

71,2Pi 72,2P2
kt '2= 7ff-60- ; k2'2= 7 6 0

References

Boston, J. E, Britt, H. I. and Tayyabkhan, M. T. (1993)
Software: Tackling tougher tasks. Chem. Eng.
Progr. 89(11), 38--49.

Carnahan, B, Luther, H. A. and Wilkes, J. O. (1969)
Applied Numerical Methods, p. 321. Wiley, New
York.

Ellis, W. Jr., Johnson, E., Lodi, E. and Schwalbe, D.
(1992) MAPLE V flight manual. Brooks/Cole Pub.
Co., Pacific Grove, CA.

Fogler, H. S. (1974) The Elements of Chemical Kinetics
and Reactor Calculations (A Self-Paced Approach).
Prentice-Hall, New Jersey.

Henley, E. J. and Rosen, E. M. (1969) Material and
Energy Balance Computation. John Wiley, New
York.

Rosen, E. M. (1989) Some experiences with TK
SOLVER PLUS, CAST Communications 12(2), 16

Rosen, E. M. and Adams, R. N. (1987) A review of
spreadsheet usage in chemical engineering calcula-
tions. Computers Chem. Engng 11(6), 723-736.

Hiebert, K. L. (1982) An evaluation of mathematical
software that solves systems of nonlinear equations.
A CM Trans. Math. Softw. 8(1), 5-20.

Shacham, M. (1984) Recent developments in solution
techniques for systems of nonlinear equations. In
Proceedings of the Second International Con-
terence on Foundations of Computer Aided Design,
eds Westerberg, A. W. and Chien, H. H. pp.
891-923, CACHE Publications, Ann Arbor, MI.

Shacham, M. (1985) Comparing software for the
solution of systems of nonlinear algebraic equations
arising in chemical engineering. Computers Chem.
Engng 9(2), 103-112.

Comparing softwae for interactive solution of NLES

Shacham, M. (1989) An improved memory method for
solution of a nonlinear equation. Chem. Eng. Sci.
44(7), 1495-1501.

Shacham, M. and Cutlip, M. B. (1994) POLYMATH 3.0
Users' Manual. CACHE Corporation, Austin, TX.

Shacham, M. and Cutlip, M. B. (1997) Numerical
Solution of Chemical Engineering Problems Using
POLYMATH. Prentice-Hall, Inc., Upper Saddle
River, New Jersey.

331

Slaughter, J. M., Petersen, J. N. and Zollars, R. L. (1990)
Use of PC based mathematics software in the
undergraduate curriculum. Chem. Eng. Ed. 25(1),
54--60.

MATLAB for Unix Computer's Users' Guide (1992) The
Math Works, Inc., Natick, MA.

Wolfram, S. (1991) MATHEMATICA, A System for
Doing Mathematics by Computer, 2nd ed. Addison
Wesley, NY.

