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Abstract 

Four general purpose interactive numerical solution packages: MAPLE, MATLAB, MATHEMATICA and 
POLYMATH are compared with regard to their performance in solving systems of nonlinear algebraic equations 
typical to chemical engineering applications. 

Criteria for ease of learning, ease of use and user-friendliness of the packages are introduced. Benchmark problems 
are used to demonstrate that the selection of good initial estimates is still a critical issue in solving highly nonlinear 
problems with any of these programs. It is concluded that of the programs tested, the performance of 
MATHEMATICA and POLYMATH is the best for systems of NLEs, the interval of convergence of POLYMATH and 
MAPLE is the widest for a single NLE and POLYMATH possesses the most "user-friendly" features. © 1997 
Elsevier Science Ltd 

1. Introduction 

Many practical problems in chemical engineering 
require the solution of systems of nonlinear algebraic 
equations (NLEs). Typical examples are chemical and 
phase equilibrium calculations and steady state material 
and energy balances. One of the authors (Shacham, 
1985) published a comparison of software for solution of 
NLEs about ten years ago, in which the performance of 
the programs were compared on the basis of how many 
of the benchmark problems the program can solve and 
time required to reach the solution. 

In the last ten years the development of interactive 
programs has progressed to the level where the equations 
serve as input for the programs. Contrary to the 
FORTRAN programs in use ten years ago, these 
programs include an editor as an integral part of the 
program, and there is no need to recompile and link the 
subroutines between runs. These programs are very 
convenient to use for small and medium scale problems, 
containing up to several tens of equations. When using 
such interactive programs, the criteria utilized pre- 
viously by Shacham, 1985 for comparison between 
programs are no longer suitable and must be revised. For 
example, the number of iterations or the time required to 

reach the solution, is not important, as long as the user 
does not have to wait for the solution to appear on the 
screen. Thus, the user's time, not the computer or 
program development time, becomes the main con- 
sideration. 

The dependability or robustness of the NLE solver 
program, defined as a function of the number of 
problems the program can solve from a given set of 
benchmarks, relative to other NLE solvers, is still very 
important. Boston et al., 1993 predicted that by the year 
2001, combinations of NLE solvers and expert systems 
will exist which will be able to solve any system of 
NLEs, provided that a solution exists. In Section 2, we 
try to assess how close the presently available interactive 
programs are from reaching this goal. 

The present state of the art requires that the user 
provide an initial set of estimates for the unknowns. 
Depending on the level of the nonlinearity of the 
problem, selection of the initial estimates may be critical 
or non-critical. Some considerations for selecting initial 
estimates will be discussed in Section 3. 

A very important consideration is "user-friendliness". 
The degree of "user-friendliness" is the key for convert- 
ing the NLE solving programs from an expert's tool to a 
tool available and utilized by all engineers. 

323 



324 

How can "user-friendliness" be measured and com- 
pared? Slaughter et al., 1991 compared several NLE 
solvers for "ease of learning" and "ease of use" but the 
comparison was based on the subjective feelings of the 
evaluator. We believe that such comparison should be 
based upon objective criteria, such as flexible notation, 
online debugging, equation sorting, error detection, etc. 
In Section 4 we will introduce and demonstrate some of 
the features which, in our opinion, must exist in an NLE 
solver in order to be classified "user-friendly". 

Four software packages were used for the comparison: 
MAPLE (Ellis et al., 1992), MATHEMATICA (Wolf- 
ram, 1991), MATLAB (The Math Works, 1992) and 
POLYMATH 3.0 (Shacham and Cutlip, 1994). The PC 
DOS versions of MAPLE and POLYMATH were used 
and the Unix version of MATHEMATICA. Two versions 
of MATLAB were tested, MATLAB 3.5 PC DOS 
version and MATLAB 4.0 Unix version (or PC Win- 
dows). We will report only the results obtained using the 
Unix version, since its performance was observed to be 
superior. 

All these packages are capable of doing much more 
than solve NLEs, but only this application was com- 
pared. Although there are several additional interactive 
packages that can be used for the same purpose 
(Slaughter et al., 1991, Rosen, 1989) and most spread 
sheets can also be applied (Rosen and Adams, 1987), we 
have limited our study to only those packages where the 
solution is done on a single command, no programming 
or macros are required. The four packages studied were 
selected because they were available, but the criteria and 
benchmark problems presented in this paper can be 
applied to extend the comparision to additional software 
packages. 

2. Performance of the 4 packages for a set of 
benchmark problems 

In order to test the capability of the different programs 
to solve typical chemical engineering problems of 
different levels of nonlinearity and difficulty, we have 
used a set of 12 test problems. Five of them consist of a 
single implicit nonlinear equation and are taken from 
Shacham (1989) and seven additional problems, which 
include systems of equations, are taken from Shacham 
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(1984). Several of the examples included in the bench- 
mark set have been discussed extensively in the 
literature. The set includes a system of equations 
representing material and energy balances on a reactor 
from Carnahan et al., 1969 and 2 chemical equilibrium 
problems from Hiebert, 1982. Some of the problems are 
badly scaled and possess singular points, or intervals in 
the vicinity of the solution where some functions are 
undefined. Several of them have multiple solutions, but 
only some of the solutions are physically feasible. More 
details for the benchmark problems can be found in the 
references Shacham, 1984, 1989. 

Table 1 summarizes the performance of the packages 
for the benchmark set of single nonlinear equations. The 
equations in examples 3 and 5 are continuous with 
continuous derivatives, and the derivatives do not 
change sign over a wide interval near the root. None of 
the programs had any difficulty in converging from 
inside the interval shown in the table. 

The function of Example 7 is undefined for X->0.8. 
Nevertheless, POLYMATH and MAPLE converged 
from the entire feasible region: (0-X<0.799),  but the 
interval of convergence of MATLAB and MATHEMA- 
TICA became very narrow ( ~  0.64<X<0.79). 

The equation in Example 10 has two roots, and it is 
undefined for X~0  or X->0.95. POLYMATH and 
MAPLE found both solutions from the feasible interval 
(0.01 <--X<--0.99), and MATLAB and MATHEMATICA 
converged to one root at a time, depending on the initial 
estimate specified. None of the programs had any 
difficulty in solving Example 13. 

Table 2 shows the performance of the different 
programs for systems of NLEs. The example number 
given in the table is as it appears in Shacham (1984). All 
the examples (except No. 7) were solved from different 
initial estimates and two of them (Examples 8 and 10) 
were solved for different parameter sets. MAPLE could 
not be tested from different initial estimates, because it 
requires that the intervals be specified for all the 
unknowns within which the solution is expected to be 
located. 

The performance of MATHEMATICA was the best 
for this set of test problems. It converged to a solution in 
18 out of the 23 cases without any modification of the 
equations. In two cases it gave incorrect solutions 
without delivering any error message and in three cases 

Table 1. Performance of the packages for a single nonlinear algebraic equation 

example no. ~ Root Feasible region Interval of convergence 

POLYMATH MAPLE MATLAB MATHEMATICA 

3 T=551.77 T>0 
5 T = 4305.31 T> 0 
7 X--0.7574 0<X<0.8 
10.1 X=0.5 0<X<0.95 
10.2 X=0.03621 0<X<0.55 
13 v=0.0757 t~-0 

500-800 500-800 500-800 500-800 
3(X)0-5000 3000--5000 3000-5000 30(0)-5000 

0--0.799 0--0.799 0.64--0.76 0.63--0.79 
0.01--0.94 0.01--0.94 0 .28--0 .79 0.23-0.94 
0.01-0.94 0.01--0.94 0.03-0.18 0.01-0.22 

o-1 0--1 0-1 0-1 

Example number as it appears in Shacham (1989). 
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the solutions found were physically infeasible (negative 
mole  fractions). 

POLYMATH arrived at a solution in 16 out o f  the 23 
cases and all the solutions reached were physically 
feasible. In two cases user intervention was required in 
order  to arrive at the solution: In Example  7 there are 14 
equations and the number  o f  equations was reduced to 
12 (the upper limit in POLYMATH) by solving two 
linear equations for two unknowns,  and then substituting 
these values into the other equations. In Example  10 the 
solution for one of  the parameter sets had to be restarted 
after introducing a partial solution as a new initial 
est imate (a built-in option in POLYMATH). In all cases, 

where  POLYMATH did not converge to the solution, it 
was clearly indicated by an error message and display of  
intermediate results. 

Since initial est imates cannot be changed for MAPLE,  
only 10 cases were solved by this program. It converged 
to a feasible solution in only 6 o f  the 10 cases. In two 
(out o f  the 6) cases, the equations had to be modified 
prior to arriving at the solution. In both Examples 7 and 
8, the square o f  the functions had to be used in order to 
converge.  In Example  7, there was a need to specify a 
very narrow interval around the solution as initial guess 
in order  to achieve convergence.  M A P L E  gave error 
messages  in most  cases when it failed to converge, but in 
example  9 it failed without giving an error message.  
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MATLAB converged to the feasible solution in 9 out 
o f  the 23 cases. In the other  eases it converged to a local 

minimum, without giving any indication that the solu- 
tion found was not the root o f  the system o f  equations. 

3, Cons ide ra t i ons  In se lect ing an  ini t ial  e s t ima te  

All programs tested require specification of  initial 
estimates for the unknowns by the user. The initial 
estimates may be provided as a single value for each one 
of  the unknowns (POLYMATH, MATHEMATICA,  
MATLAB) or as an interval within which the solution is 
expected to be found (MAPLE,  POLYMATH for single 
equation). 

While it is always advisable to use initial estimates 

based on physical bounds,  in most  problems the 
selection o f  the initial estimates is not critical, as long as 
ranges o f  infeasible or absurd values are excluded (such 
as negative or greater than one for mole  fraction, 
negative absolute temperature, etc.). However,  the 
casual selection o f  initial estimates may not be good 
enough (for highly nonlinear problems).  Some o f  the 
difficulties associated with selection of  initial est imates 
are demonstrated by the following three examples.  

The first example is a chemical  equil ibrium problem 
taken from Shacham and Cutlip, 1997. The equations for 
the example are shown in Appendix  A and Table 3 

Table 2. Performance of the programs for systems of NLEs 

Example no. ~ Parameter set Initial guess POLYMATH MAPLE b MATLAB MATHEMATICA 

2 - 1 + + + + 
2 - 2 + - -  , 
5 - 1 - + - -  _ 
5 - 2 + - -  _ 
5 - 3 - + + 
5 - 4 + + + 
6 - 1 + + + + 
6 - 2 + + + 
7 - 1 - +  + + + 
8 1 1 + - +  - -  + 

8 1 2 + - -  , 

8 2 I + - - -  + 

8 2 2 + - -  , 

8 3 1 + - - -  + 

8 3 2 . . . .  
9 - 1 + - -  _ + 
9 - 2 - _ + 
9 - 3 - - -  _ 
9 - 4 - _ + 
10  1 1 + - +  + + 

10 1 2 + + + 

10 2 1 - +  - + __ 
10 2 2 - - -  + 

a Example number, parameter set and initial guess as appear in Shacham (1984). 
MAPLE requires an interval defined as initial estimate, no specific point can be defined. 

+ converged to a feasible solution. 
- did not converge to solution with error message. 
- -  did not converge to solution without error message. 
* converged to an infeasible solution. 
- +  converged to a feasible solution after modification. 
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Table 3. Performance of 3 packages for Example l, from different initial estimates 

Initial guess no. Co Cx Cz POLYMATH MATLAB MATHEMATICA 

I 0.61 0.2 0.4 + - - 

2 0.59 0.2 0.4 - - - 
3 0.7 0.28 0.4 + + 
4 0.7 0.31 0.4 - + + 
5 0.7 0.2 0.48 + + + 
6 0.7 0.2 0.51 - + - 
Solution 0.7~3 0.1778 0.3740 

+ Converged to solution. 
- Did not converge. 

summarizes the solution and the convergence to the 
solution for this example as obtained from 6 different 
starting points. MAPLE was not included in this 
comparison since it requires specification of an interval 
instead of a single point. 

It can be seen that even though all sets of initial 
estimates are very close to the solution, nevertheless, for 
some of them all of the programs fail to converge. The 
reason for this difficulty is that the concentration of C c 
may become zero for different combinations of Co, Cx 
and Cz near the solution and none of the programs is able 
to cross this barrier of singularity. The problem can be 
made much less nonlinear and easier to solve by 
eliminating division by unknowns: f~ can be multiplied 

by CACB, f2 by CcCB and f3 by CACx, to obtain the 
following modified set of equations: 

f,(Co, Cx, Cz)=CcCo- 1.06CaCB=O, 

f2( Co, Cx, Cz)=CxCr- 2.63CcCg=O, (1) 

f3(co, c,,, cz)=cz-  sCACx=O. 

In this form, the functions do not have any dis- 
continuities. Indeed, all 4 programs converged to the 
right solution from a reasonable initial estimate, such as 
Co=Cx=Cz=O (assuming no reaction takes place). The 
selection of initial estimates may be critical even for this 
formulation. Using POLYMATH with two different 
initial guesses, the program converged to two additional 
solutions, which are physically infeasible (some of the 
concentrations are negative). The initial estimates and 
additional solutions are shown in Table 4. 

Example 2 is a system of equations representing 
steady state material and energy balances in a chemical 

reactor (taken from Fogler, 1974 and the equations are 
detailed in Shacham, 1984). The two unknowns in this 
equation set are X (the conversion) and T (the absolute 
temperature). This system of equations is difficult to 
solve because it is badly scaled and there are local 
minima with a singular Jacobian matrix in the region of 
interest. 

The solution is at X*=0.53337 and T*= 1637.7. The 
local minima are at X=0.22484; T=1477.9 and 
X=0.016569; T=1368.7. All programs had difficulty 
converging to the solution when the system is formu- 
lated as two implicit equations, regardless of the initial 
estimates used. They did converge after certain manip- 
ulations of the equations. POLYMATH and MATLAB 
required rescaling of the equations. With MAPLE, the 
square of the 2nd function had to be used and 
MATHEMATICA required close initial estimates and 
restriction of the unknowns within tight intervals. 
MATLAB converged in some cases to a local mini- 
mum. 

The system can be modified to alleviate the problem 
by converting it to a single implicit equation in terms of 
X. Searching for a solution inside the interval 0-<X-0.9 ,  
POLYMATH and MAPLE found the solution without 
any difficulties. MATLAB and MATHEMATICA 
require a single initial estimate. When the initial estimate 
was set to X-<0.5, both programs converged to incorrect 
solutions; MATLAB converged to X=0.1972 and 
MATHEMATICA to X=0.I068.  Only with initial esti- 
mate in the interval 0 .53337>X>0.5 did these two 
programs converge to the correct solution. 

Example 3 (taken from Henley and Rosen, 1969, see 
Appendix B) involves the calculation of the bubble point 

Table 4. Initial estimates and solutions for the chemical equilibrium problem 

Variable Solution I Solution 2 Solution 3 

Initial estimate Solution Initial estimate Solution Initial estimate Solution 

Co 0 0.7053 1 0.0556 i 0 1.0702 
Cx 0 0.1778 1 0.5972 ! 0 - 0.3225 
Cz 0 0.3740 1 1.082 ! ! 0 1.1304 
C~ - -  0.4207 - -  - 0.3624 - -  - 0.7007 
Ca - -  0.2429 - -  - 0.2348 - -  0.808 
Cc - -  0.1536 - -  - 1.6237 - -  - 0.3782 
Cr - -  0.55 i 8 - -  1.6793 - -  0.2623 
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Initial estimate X. X2t Xj2 X22 POLYMATH MATLAB MATHEMATICA 

I 0 1 1 0 + + 
2 0.05 0.95 1 0 + + 
3 0.1 0.9 1 0 - + 
4 0.2 0.8 1 0 - + 
5 0 1.0 0.5 0.5 + + 
6 0 1.0 0.3 0.7 - + 
Solution ~ 0.0227 0.9773 0.6867 0.3133 

° For/~ initial estimate 0.8; solution 0.7330. 
For t initial estimate 80; solution 88.538. 
+ Converged to the solution; - Did not converge. 

temperature for a nonideal mixture. At the bubble point 
this mixture forms two liquid phases. Table 5 summa- 
rizes the performance of the different programs (except 
MAPLE) for this example with 6 different initial 
estimates. It can be seen that the convergence of all the 
programs is very much dependent on the initial estimate. 
A small change in the initial estimate for X.  can cause 
all the programs (except MATLAB) to fail. We could not 
find a formulation for this example which would render 
the system less sensitive to the initial estimate. 

4. Program-user interface 

In the past very little attention was paid to the man- 
machine interface of the equation solver program. In 
interactive programs, the user interface actually deter- 
mines the extent to which the target users population can 
benefit from the software. Some general criteria for 
evaluating the user interface follow. 

Menu based program control is considered more 
user friendly than command based program control 
because the options appear on the screen and the user 
does not have to remember the particular commands. 
This makes the program much easier to learn and to use. 
The advantages of menu based control are most obvious 
when the number of options available is relatively small. 
When the number of options increases, there is a need 
for several "levels" of menus. Only one level can be 
displayed on the screen at one time. In such cases, there 
is no obvious advantage to menu based control over 
command based control. From among the programs 
tested, POLYMATH provides menu based control, while 
MATLAB, MATHEMATICA, and MAPLE use com- 
mand based control for solution of NLEs. 

The notation and format used in equation entry 
will be demonstrated using the chemical equilibrium 
problem (Example 1). Figure 1 shows the equation and 
initial estimate input for the different programs. 

POLYMATH required minimum alteration of the 
original problem statement. POLYMATH requires that 
only one of the unknowns will appear on the left-hand 
side of an equation and it must be unique. MAPLE also 
allows one to use the same notation as given in the 
problem definition. There are no special rules for the 
left-hand side of implicit equations: they are treated just 

as any ordinary variable. A union of these variables, as 
well as of the unknowns, must be defined before 
solution, and the initial estimate for a variable must be 
given as an interval, MATHEMATICA requires the 
definition of the functions in a form similar to that used 
in programming languages. The definition of a new 
variable (as a function of other variables) is in a 
statement which is similar to function statement in 
programming languages (like FORTRAN). On the left- 
hand side, the name of the new dependent variable is 
written, while the name of the independent variable(s) 
must appear inside brackets with an underline added to 
the end of the name. The format required by MATLAB 
is very similar to the structure of a subroutine in 
programming languages. The variables are transferred in 
and out of this subroutine in a one dimensional array 
form. 

All of the programs contain certain debugging aids. 
They check for syntax errors after the equation is entered 
and the return key pressed. POLYMATH also displays 
the number of equations and variables that have been 
defined and lists the undefined variables. This feature, 
which can be very helpful in detecting mispelled 
variable names, does not exist in any of the other 
programs. 

An example from Shacham and Cutlip (1997) will be 
used to compare the different programs with regard to 
equation ordering and detection of implicit relation- 
ships. This example includes a system of equations 
representing calculations of bubble and dew point 
temperatures for a nonideal binary mixture (see Appen- 
dix C). The equations are written in the order in which 
mathematical models are usually developed. Equations 
representing general principles are written first. The 
equations which relate the principal variables y~ to the 
unknown temperature follow in a logical order.The 
calculations, however, are carried out in the opposite 
direction. 

Upon introducing the set of equations for the bubble 
point to POLYMATH, the program ordered the equa- 
tions as shown in Fig. 2. The solution obtained is 
T=82.845 and the function value fiT)= - 0,16 x 10 -5. 
MATHEMATICA and MAPLE did not inform the user 
that the equations were reordered, but the correct 
solution was reached with no regard to the order in 
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which the equations were entered. MATLAB found 
incorrect solutions and, apparently, calculates the equa- 
tions exactly in the order they have been entered (using 
variables before values were assigned to them). 

In order m calculate the dew point temperature for the 
same mixture, a priori, it appears that only the first five 
equations must be altered (as shown in Appendix C). 
POLYMATH is used to solve these five altered equa- 

A. MAPLE 

> ca0:=l.5; cb0:=l.5; 
> eps:=0.05; 

> ca:=caO-cA-=; 
> cy:=cx+cz; 
> cb:=cbO-cd-cy; 
> ee:--cd-cy; 

> fl :,~,,e*cA/(ca*¢b)- 1.06; 
> f2:=ex*ey/(e~*eb)-2.63; 
> fJ:---c~d(ca*ex)-5; 
> ~={fl,eZ,t3}: 
> var:={cA,cx,=}; 
> Xinterval:={ CA---0..1, 
cx-~.15..0.25, ==0..1 }; 

> root:--fsolve(f, var,Xintcrval); 

C. MATLAB 

global ca0; global cb0; 
ca0=l.5; ¢b0=1.5; 
CA0=0.7; ex0=0.2; =0~0.48; 
x0=[CA0 ex0 ca0]'; 

root=Csolv~eh~',x0) 
%. 
function ~-ch~l(X); 
global ca0; global cb0; 
cA=x0); cx-=x(2); cz--x(3); 

ca~0-ed-cz; 
¢y--cx+=; 
cb=eb0-cA-c~, 
e~---cd-ey; 

f( 1 )----(Co* CA)/(Ca* cb)-1.06; 
f(2)m~x* ey/(e¢* cb)-2.63; 
f(3)-~./(ca* cx)-5; 

B. MATHEMATICA 

ca0=l.5; 
cb0=l.5; 
rt[cA ,cx..,=..] :-  (~[~k~=].*cA) / 

( ca [~= ] *~ [cA ,~= ] ) .  l.o~; 
t:z[cA._,cx._,c, zJ  := cx*cy[¢,,,=] / 

(~[cA,~czl*d~[¢d,~=]) - 2.63; 
0 [~..,cx_,cz..] := ~(ca.[cd,=l*cx)-5; 
ca[cA.,=_] := caO-cxl-cz; 
cy[cx ~cz_] := cx+cz; 
~[cA._,cx.,=j := cl~xl .cy[~=];  
~[cA_,cx..,czj ::  CA-¢y[=,=]; 

root~Findl~ot [ 

(ca,o.7}, (~o.2}, (~o.4s}, 
MaxIterations->S0 ]; 

D, P O L Y M A T H  

The equations: 
~cA)--(e~*cAy(ca*c~)-l.o6 
f(cx)=cx* ¢y/Cce*cb)-2.63 
f(=p=/(ca*~)-5 
ca=eao-cA-cz 
cb-cb0-cA-cy 
cc=cA-cy 
cb0-1.5 
cy=cx~ 
ca0=!.5 

Initial values: 
cAo=o.7, cxo=O.2, ~=o.48 

Fig. 1. Equations and initial estimate input for example 1. 

The equations: 
f ( t ) = g l + q 2 - 1  
xi=0.80 
x2,,1-xl 
gl=10Ul(x2mx21(0.3781+21xlm(0.6848~0.3781))) 
p1-101"~(7.96681-1668.21/(t+228)) 
k1=glmp1/760 
ul=klllxl 
g2-lOml(xlmxll(O. 6848+2mx21(0.3781-0o6848))) 
p2:1011(8.04494-1554.3,,(t+222.65)) 
k2tg21p2/760 
u2mk 2mx2 

Search range: ~ in"  80.000t tmax ~ 120.00 

Fig. 2. Equations ordered by POLYMATH for calculation of bubble point temperature. 
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The @quationsl 
f(t)-xl+x2-1 
((x l) , ,x l -gl /k l  
f(x2),,x2-g2/k 2 
g1,,lOmm(x2mx2m(O.3781+2mxlm(O.6840-O.3781))) 
p1,,10""(?. 86481-1668.21/(t+228)) 
k 1-glmp1/760 
y1=0,8 
g2=lOlm(xlmxlm(O. 6848+2ax2m(O. 3781-0.6818))) 
p2,,lOlm(8,044B4-1554.3/(t+222.65)) 
k2,,q21p2/?60 

Init ial  va1~JeSl tO,, 80.000, xl O- O,8000p x~-, 0.2000 
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Fig. 3. POLYMATH equations input for calculation of the dew point temperature. 

tions, an error message will indicate that some of the 
explicit equations require simultaneous solution. The set 
of equations must be rewritten as shown in Fig. 3 in 
order to calculate the dew point. In this case, three 
implicit equations are required, as opposed to the single 
implicit equation for calculating the bubble point 
temperature. The solution obtained using the set of 
equations in Fig. 3 are: T=94.519; X,=0.9748 and 
X2=0.0252. 

Using the one implicit equation formulation, all other 
programs failed without being able to identify the reason 
for the failure. Using the 3-implicit equation formula- 
tion, MAPLE, MATHEMATICA and MATLAB all 
achieved the correct solution. 

Once a solution is reached, the root must be verified 
and multiple solutions detected. For verification, the 
values of the unknown must be introduced into the 
functions to yield values close to zero. In POLYMATH 
the function value is displayed both graphically and 
numerically. In the other three programs the user must 
explicitly request both calculation and display of the 
variable or function values at the solution. For an 
inexperienced user this may mean accepting incorrect 
results. 

For a system of equations all the programs will find 
only one root out of several possible solutions. For one 
nonlinear equation, POLYMATH will display and locate 
all the roots (up to 5 roots) which are inside the interval 
specified by the user, while the other programs will find 
only one solution from each initial guess. 

system of equations, but local minima, without issuing 
any error message. 

All the programs require the user to input initial 
estimates for the unknowns, and it has been shown that 
the selection of initial estimate can be critical for highly 
nonlinear problems. For such problems even an initial 
estimate close to the solution can lead to non-con- 
vergence, or convergence to a physically infeasible 
solution. In some cases, the problems can be transformed 
to make them less sensitive to the initial estimate used, 
by converting them to a single implicit equation or by 
eliminating division by unknowns. If the problem can be 
converted to a single implicit equation, POLYMATH 
and MAPLE will find at least one solution located inside 
the interval (in the case of multiple solutions, POLY- 
MATH may find up to five solutions). 

According to the criteria introduced in this study, 
POLYMATH is the most user friendly software for 
solving NLEs, among the programs tested. It has menu 
based program control, reorders the equations according 
to the calculation sequence, detects implicit relationship 
of variables, has debugging aids not available in the 
other programs, provides visual and numerical feedback 
regarding the accuracy of the solution and requires 
minimal alteration of notation and format of the equation 
set during input to the program. Introducing such 
features into the other programs can make them more 
user friendly, thereby making them more widely 
accepted by the engineering community and not only by 
specialists. 

5. Conclusions 

The four packages tested are adequate for solving 
NLEs arising in chemical engineering in an interactive 
mode. 

For solving one implicit nonlinear equation, POLY- 
MATH and MAPLE had the widest convergence interval 
for the set of test problems that were used. For systems 
of nonlinear equations, MATHEMATICA reached the 
solution in the largest number of cases, closely followed 
by POLYMATH. It should be noted, however, that 
MATHEMATICA, MAPLE, and MATLAB converged 
occasionally to points which are not solutions of the 

Appendix A: 

Example 1, Chemical Equilibrium Problem (Shacham 
and Cutlip, 1997) 

CoCo 
f,(C,,, Cx, Cz)= CAC8 - 1 .06=0,  

~ .  CxCr 
f2( Co, Cx, t.z)= ~cCs - 2.63 =0, 

Cz 
f~(co, c~, c~)= c ~  - 5=0, 

cA =CAo - co - cz, 
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CB=CBo-- Co - C~, 

Cc=Co-C~, 
Cy=Cx + Cz, 

C~o=1.5, 
CBo=I.5. 

Appendix B: 

Example 3, Bubble and dew point temperature for a 
20% (tool) isobutanol (1) and 80% water (2) mixture 
(Henley and Rosen, 1969) 

fl(B,xL I,X2.I,XL2,X2.2,I) =(XI,I --  X 1,2) + (X2,1 - -  X2,2), 

0.2 
f2(~sXl,l~X2,1sXl,2~'~2,2,t) =XI,I --  

f3(fl*XI.I~X2.1~XI 2~X2 2, I) -Xl  2 --  Xll kl.i 
, , , kl,2 ' 

f4(fl.,XI, I,X2,I,Xl,2~X'2.2,t) =X2, I -- 
0.8 

Appendix C: 

Example 4, Bubble and dew point temperature for a 
80% water (1) and 20% ethanol (2) mixture (Shacham 
and Cutlip, 1997) 

Bubble Point Dew Point 
f(t)=Yl +Y2- 1 =0 f(t)=x, +x2-  1 =0 
Yl =k,xl xl =y Jkl 
y2 =k2.x2 x 2 = y 2 l k  2 

xt =0.8 Yt =0.8 
x2=0.2 y2=0.2 

k~ = 7~P/P i = 1,2, 

log(P0=7.96681 - 1668.21ct(t+228.0), 

log(y,) =x 2[0.3781 + 2x~ (0.6848 - 0.3781 )], 

log(P2)---8.04494- 1554.3/(t+ 222.65), 

log(72) =x210.6848 + 2x2(0.3781 - 0.6848)]. 

f5(•,XI.I,X2.1.)Cl 2,X22 t )=x22- -X21  k2A 
. . . .  k2,2 ' 

f6(f l ,XI.I ,X2.1,XI.2,X2.2,t)  = x I A  ( I - -  kl.j) + x2,1(1 - -  k2,1) , 

1417.09 
log PL =7.62231 191.15+t' 

1750.29 
log P2=8.10765 235+t ' 

log 7u = 

log Y2: = 

log yt,2 = 

1.7x~., 

~ "FX2, I 

0.7x2,, 

I XLt 0.7X2 i 2 

1.7x~.2 

- - ~  "l'X2. 2 

0.7Xl22 
log 3/2,2= 

xl.2+ 0.7x22 2 

ktt= Yl.aPi ;k21 = Y2,1P2 
' 760 ' 760 ' 

71,2Pi 72,2P2 
kt '2= 7ff-60- ; k2'2= 7 6 0  
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