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Abstract

The solution of systems of non-linear algebraic equations with discontinuities in the solution search domain is considered. It is
demonstrated that such problems are often very difficult to solve, even with the state of the art numerical solvers, and even when
initial guesses close to the solutions are used. The application of constrained solution methods that do not require evaluation of
function and derivative values outside of a predefined (feasible) subspace of the variables for solving such systems is considered.
An algorithm is presented for identifying and handling of sub-expressions that introduce discontinuities. These are either removed
by algebraic manipulations, or defined as boundaries of a feasible subspace. Using the proposed approach, it is demonstrated that
a feasible solution for originally unsolvable problems can be found. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many practical problems in chemical engineering
give rise to the need to solve systems of non-linear
algebraic equations (NLE) with discontinuities and/or
regions where some of the functions are undefined.
Such points and regions may often lie in the vicinity of
the solution. Typical examples that involve NLE with
discontinuities include: calculation of chemical equi-
librium by minimization of Gibbs energy or using
equilibrium constants, continuous operation of some
reactors (such as continuous stirred tank reactors,
CSTR), heat exchanger calculations (where logarithmic
mean temperature difference is used), calculation of the
parameters of activity coefficient equations (such as the
Van Laar and Wilson equations), solving various equa-
tions of state for specific volume or compressibility
factor and calculation of the minimum reflux ratio
using the Underwood equations.

Many powerful algorithms and codes for solving
NLE have been developed in recent years, including

methods that claimed to be ‘globally convergent’ (for a
recent review, see for example Wilhelm & Swaney,
1994). Unfortunately, for NLE with discontinuity in the
vicinity of the solution, all of the methods may fail.
Most of the ‘globally convergent’ methods assume con-
tinuity, which is obviously not valid for the case under
consideration. Minimum search methods that use only
function values may ‘overstep’ the solution if the search
resolution is not sufficiently high or/and may converge
to a local minimum instead of the true solution.

Often, it is possible to remove the discontinuities by
algebraic manipulation of the equations (e.g. by multi-
plying equations by denominators that may obtain zero
value during the solution process), but in many cases it
is impossible to remove all the discontinuities.

Shacham and Shacham (1990) used symbolic analysis
of the equations system to detect discontinuities along a
one-dimensional ray, which is the progress direction
determined by the solution method. The step length
along this direction is restricted so as to avoid entering
regions where discontinuity has been detected. This is a
very effective technique for solving NLE with disconti-
nuities. Unfortunately, it is limited to fairly simple
functions, where the zeros of the sub-expressions that
introduce the discontinuities can be obtained
analytically.
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The so-called ‘constrained’ NLE solution methods
can serve as a basis for a general approach for solving
NLE with discontinuities. These methods search for the
solution in a predefined subspace of the variables and
do not require function or derivative evaluations out-
side this subspace. Several algorithms are available for
solving constrained NLE: the CONLES algorithm of
Shacham (1986), the iterative linear programming (LP)
methods of Bullard and Biegler (1991), Wilhelm and
Swaney (1994) and the multidimensional bisection
method of Gupta (1995). The CONLES algorithm will
be discussed in some details in the next section. In the
iterative LP technique, linear programs are solved,
while combining local Jacobian and global bounding
information, in order to generate search directions that
satisfy region feasibility. In the multidimensional bisec-
tion method, a sequence of one-dimensional problems
is solved using bisection, in order to ensure that the
variables stay inside the feasible region.

Successful applications of the CONLES algorithm in
solving chemical problems are widely documented (for
example, Lorenzini, Bertrand & Villermaux, 1991;
Sarkar & Gupta, 1992; von Bergen, von Bergen &
Rogel, 1997). Three most recent applications of this
method include simulation of polymer absorption at the
solid liquid interface by a continuum model (Juvekar,
Anoop, Puttanayek & Naik, 1999), simulation of mi-
cro-phase enhanced reactions (Hasnat & Roy, 1999)
and modeling the acid separation behavior of weak
base ion exchange resins (Bhandari, Yonemoto & Ju-
vekar, 2000).

In this paper the CONLES algorithm is used as a
basis for developing a general approach for solving
NLE with discontinuities. In the next section, the prin-
ciples of solution of constrained NLE will be briefly
reviewed. Typical difficulties in solving NLE with dis-
continuities will be demonstrated using three examples
in Section 3. The Section 4 presents a general approach
for solving NLE with discontinuities and finally some
conclusions are presented.

2. Basic concepts

Let us denote the n-dimensional Euclidean space as
Rn and let f be a function with domain and range in Rn.
Then, the problem of solving n non-linear equations in
n variables can be stated in vector form as

f(x)=0 (1)

Any, or all of the variables may be subject to con-
straints of the type

xj�0, j=1, 2…, m (2)

It is important to point out from the outset the
similarities and dissimilarities between constrained

NLE and constrained non-linear optimization. In both
cases only a solution that satisfies the constraints (lies
in the feasible region) is acceptable and is of physical
significance. But, unlike in constrained optimization,
the constraints of NLE are expected to be inactive at
the solution. This is because in Eq. (1) both f and x are
in Rn, and any active bound results in an over-deter-
mined system.

The CONLES algorithm uses the step length re-
stricted Newton–Raphson (NR) method for solving
constrained NLE. Given the iterate xk, this method
generates the next iterate by solving the linear system
(3) for the correction vector �xk.

f�(xk)�xk= − f(xk) (3)

where f�(xk) is the Jacobian matrix (evaluated at xk).
The next iterate, xk+1 is obtained by:

xk+1=xk+�k�xk (4)

In the original NR method, �k=1 is used. Here, its
value is set so as to ensure that none of the constraints
are violated at xk+1. Let j represent the indexes of all
the variables for which constraints have been specified
and xkj+�xkj�0, then:

�k=min
j

��xkj

�xkj

�
(5)

where � is a number smaller than (however close to)
one. The constant � is used to ensure that a constrained
variable would not attain a value of exactly zero during
iterations (CONLES uses �=0.99 as a default value).

The NR method may fail to generate the right direc-
tion vector if a singular, or nearly singular Jacobian
matrix is encountered. Should a singular Jacobian ma-
trix, or excessively large �xk encountered (an indication
for a near singular matrix) CONLES recalculates the
correction vector using the Levenberg–Marquardt
equation:

[�kI+ f�(xk)Tf�(xk)]�xk= − f�(xk)T(xk) (6)

where I is the unity matrix and �k is a non-negative
parameter. For �k=0, the length and the direction of
the correction vector are the same as in the NR
method, while for �k�� the ‘steepest descent’ direc-
tion with infinitesimally small step length is obtained.
In CONLES, the value �k=max�f�(xk)� is used.

Even the combined use of these two algorithms can
not ensure convergence to the solution, unless the initial
guess is close enough. If no convergence is obtained
from a particular initial guess, or the convergence is to
a local minimum, a provision should be provided for
generating a better initial guess. CONLES uses a ‘con-
tinuation’ type method to generate a sequence of initial
guesses. This sequence is generated by the solutions of
the following equation system:
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G(x, �)= f(x)−�f(x0)=0, �� [1, 0] (7)

where x0 is the first initial guess. The value of � is
changed from its initial value, �=1 (where the solution
Eq. (7) is known, x0) to its final value, �=0 (the
solution of the original NLE problem) in a sequence
�k+1=�k−��. This is carried out in successive stages,
using the solution of one stage as initial guess for the
next stage. First the value of ��=1 (a single step from
�=1 to �=0) is used. If the combined NR, Leven-
berg–Marquardt method fails to converge (function
values are too large when the correction vector gener-
ated is very small) the value of �� is reduced and the
problem is resolved from �=1. This process continues
until convergence, or until �� reaches a pre-specified
minimal value, or the number of iterations reaches a
pre-specified maximal value. Thus, the CONLES al-
gorithm can find one solution in the feasible region if
such a solution exists. Otherwise, if such solution does
not exist or it has not been found, a ‘no convergence’
message is issued.

A detailed description and the FORTRAN code for the
CONLES algorithm can be found in Shacham (1986).
This algorithm is implemented in the POLYMATH 5.01

numerical computation package.
Several additional subroutines and programs for

solving NLE have been used for the present study.
These include the subroutines mnewt and newt from the
‘Numerical Recipes’ (Press, Teukolsky, Vetterling &
Flannery, 1992) book, the fsol�e and fzero algorithms
of MATLAB2 and the FindRoot algorithm of
Mathematica3. The subroutine mnewt implements the
classical NR method (Eqs. (3) and (4) with �k=1). The
newt algorithm employs the NR method with a line
search. Using this method, �k is set so as to ensure that

f(xk+1)Tf(xk+1)� f(xk)Tf(xk). This method is consid-
ered by Press et al. (1992) as a ‘globally convergent’
method. The fzero algorithm finds a zero of a function
with one variable. It uses a combination of bisection,
secant and inverse quadratic interpolation methods.
The fsol�e algorithm uses several non-linear least-
squares techniques to solve system of NLE. It uses the
trust region Newton’s method for large-scale systems
and the Gauss–Newton or Levenberg–Marquardt
methods for medium scale problems. Further details on
the fsol�e and fzero algorithms can be found in the
Optimization Toolbox User Guide (The MATH-
WORKS Inc., 2000). The FindRoot algorithm uses the
NR method in cases where analytical expressions for
the terms of the Jacobian can be symbolically derived.
Otherwise, it uses a multidimensional secant method.

It should be noted that the use of various, widely
used NLE solvers is done not for comparison purposes
but to demonstrate that all the algorithms that rely on
the assumption of function continuity in a predefined
subspace of the variables may fail to solve problems
that include such discontinuities. ‘Robust’ NLE solvers
such as the ones presented by Bullard and Biegler
(1991), Gupta (1995), Wilhelm and Swaney (1994) use
algorithms that rely also on function continuity and do
not claim to solve problems with discontinuities.

3. Motivating examples

3.1. Example 1. Global reaction rate in catalytic
oxidation of hydrogen (Vasude�an, 2000)

This example concerns the calculation of the global
reaction rate in a packed bed reactor, where catalytic
oxidation of hydrogen is carried out. The details of the
problem are presented by Smith (1981). Vasudevan
(2000) suggested solving the following equation to ob-
tain the global reaction rate rp:

f(rp)

=rp−0.327(0.06−161rp)0.804

×exp
� 5230

[1.98(373+1.84×106rp)]
�

=0 (8)

Physical considerations dictate that rp�0.
This equation cannot be solved with a numerical

algorithm, unless the region where the function is
defined is first identified. The function is undefined for
(0.06−161 rp)�0 (thus, rp�0.0003727) and there is a
discontinuity for (373+1.84×106 rp)=0 (thus, rp= −
0.0002027). In Fig. 1, f(rp) is plotted versus rp in the
region of 0�rp�0.00037. The root of the equation is
at rp=0.000340568862. Thus, about 3% increase of rp

above the root value puts it in the region where the
function is undefined. Within the feasible region,

Fig. 1. Plot of f(rp) vs. rp in the feasible region (example 1).

1 POLYMATH is copyrighted by M. Shacham, M.B. Cutlip and M.
Elly (http://www.polymath-software.com).

2 MATLAB is a trademark of The Math Works, Inc. (http://
www.mathworks.com).

3 Mathamatica is a trademark of Wolfram Research, Inc. (http://
www.wolfram.com).

http://www.polymath-software.com
http://www.mathworks.com
http://www.mathworks.com
http://www.wolfram.com
http://www.wolfram.com
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Table 1
Model equations for the CSTR (Fogler, 2000)—example 2

f1=V−�o(CAO−CA)/−rA=0
f2=V−�o(CBO−CB)/−rB=0
f3=V−�oCC/rC=0
f4=V−�o CD/rD=0
f5=V−�o CE/rE=0
f6=5000(350−T)−25(20+40)(T−300)+V(SRH)=0
Where
rA=−2k1BCACB

rB=−(k1BCACB+2k2CCCCB
2 )

rC=3k1BCACB−k2CCCCB
2

rD=−k3ECD+k2CCCCB
2

rE=k3ECD

k1B=0.4 exp[(20000/R)(1/300−1/T)]
k2C=10 exp[(5000/R)(1/310−1/T)]
k3E=10 exp[(10 000/R)(1/320−1/T)]
SRH=2k1BCACB20 000−2k2CCCCB

2 10 000+5000k3ECD

R=1.987, V=500, �o=75/3.3, CAO=25/�o, and CBO=50/�o

Physical considerations dictate that all the concentra-
tions CA, CB, CC, CD, and CE, as well as the tempera-
ture T are positive, the reaction rates rA and rB are
negative, while rC, rD and rE are positive.

All the algorithms mentioned in the Section 2 failed
to converge to a solution of this system, irrespective of
the initial guess and parameter settings used. Analysis
of the system for discontinuities (see Section 4) reveals
that it can be made solvable by eliminating the division
by unknowns (multiplying f1 by (−rA), f2 by (−rB) f3

by rC, f4 by rD and f5 by rE). Using this formulation the
solution shown in Table 2 was reached (with the CON-
LES algorithm) from the initial guess shown in the
same table.

The reason for failure of all the algorithms tested to
solve this system using the original problem formula-
tion (Table 1) becomes obvious when one of the func-
tions, f4 is plotted versus the temperature in the vicinity
of the solution (see Fig. 2). It can be seen that the
function value changes very sharply over a very small
temperature interval. At T=372.70 K the function
value is 350, at T=372.7646 K the function value is
practically zero and at T=372.79128 K the function
value is unbounded as the denominator in f4 ap-
proaches zero. Thus, for a temperature difference
smaller than 0.04 K (relative change=0.01%), the func-
tion value goes from zero to infinity.

Regarding the results shown in Table 2, it is worth
noting that variable values at the solution are reported

f �(rp)=0 at two locations: at rp=0.0002338 and at
rp=1.974×10−6.

3.2. Example 2. Modeling of a CSTR for complex
sequence of reactions (Fogler, 2000)

Fogler (2000) considered the steady state solution for
a CSTR where a complex sequence of reactions: 2A+
B�3C ; C+2B�D ; and D�E is carried out. The
reactor design equations, including the numerical values
of some of the constants are shown in Table 1.

Table 2
Initial guess and solution for example 2

SolutionVariable Initial guess

f(x)Value Value f(x)

CA ( f1) −1.1724E−132.6663269113340E−0329108.870.5
14519.860.01 3.3464055791589E−02CB ( f2) −9.2371E−14

1CC ( f3) 43656.84 8.3706595580096E−01 −1.5277E−13
0.0001 −16.9574CD ( f4) 3.9669844981400E−04 2.1302E−14

CE ( f5) 1 −1.5817 8.0853785538223E−01 −3.9080E−14
−1.9791E−093.7276458623092E+025.82E+08T ( f6) 420

5824.501K1B 2.7950788123442E+02
K2C 83.80888 3.9225986593124E+01
K3E 9.2643973568468E+01422.9115

−58.245RA −4.9878803322212E−02
RB −29.1393 −9.8478906554928E−02

87.35913RC 3.8048452536407E−02
−0.03391RD 1.8031747719000E−05

RE 0.042291 3.6751720699192E−02
4.4593962100198E+02SRH 1164944

22.72727Vo 22.72727273
1.1CAO 1.1
1.987R 1.987

500V 500
2.2 2.2CBO
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Fig. 2. Plot of f4 vs. temperature in the vicinity of the solution (example 2).

with the precision used by the numerical solver (15
significant decimal digits for double precision). Func-
tion values at the solution are also reported. It was
shown by Shacham et al. (2002) that reporting the
results rounded to ‘engineering’ precision can be mis-
leading as a local minimum may be interpreted as
solution of the NLE system.

3.3. Example 3. Combustion of propane (Meintjes &
Morgan, 1990)

This example concerns the combustion of propane in
air according to the following equation:

C3H8+
R
2

(O2+4N2)�products (9)

where R is a parameter expressing the relative amounts
of air and propane. There are ten different products,
the unknowns ni (i=1–10) represent the number of
moles of product i formed per mole of propane con-
sumed. The model equations are shown in Table 3.
Physical considerations dictate that all the ni are
positive.

For R=10 all the algorithms converged to the feasi-
ble solution shown in Table 4, from the initial guess
shown in the same table. For R=5 using the same
initial guess, only CONLES converged to the feasible
solution shown in Table 5. The fsol�e converged to a
local minimum in the infeasible region (see Table 5) and
the rest of the programs stopped with an error message
concerning an attempt to calculate a square root of a
negative number. Comparing the results in Tables 4
and 5 shows that for R=5, the values of some of the
variables are much closer to the feasible region
boundary than for R=10 (see the values of n8, n9 and
n10, for example). Consequently the problem is much
more difficult to solve.

4. Eliminating discontinuities from the feasible region

In the previous section it was demonstrated that the
solution of NLE with discontinuities often couldnot be
found with current state of the art numerical software,
irrespective of the initial guess used. Thus, there is a
need to modify those systems to make them solvable.
The approach we suggest for making such NLE solv-
able is eliminating the discontinuities by algebraic ma-
nipulation of the equations, if possible. If this is
impractical, subspaces of the original feasible space are
defined, with the discontinuities located on the sub-
space’s boundaries.

To carry out either type of modification, the sub-ex-
pressions that may introduce discontinuities have to be
identified. This is carried out in a sequential manner,
using the following algorithm for discontinuity removal
and exclusion of regions where functions are undefined.
1. Select an equation from the set.

Table 3
Model equations for combustion of propane (Meintjes & Morgan,
1990) example 3

f1=n1+n4−3=0
f2=2n1+n2+n4+n7+n8+n9+2n10−R=0
f3=2n2+2n5+n6+n7−8=0
f4=2n3+2n9−4R=0
f5=K5n2n4−n1n5=0
f6=K6n1

1/2n4
1/2−n1

1/2n6(p/nT)1/2=0
f7=K7n1

1/2n2
1/2−n4

1/2n7(p/nT)1/2=0
f8=K8n1−n4n8(p/nT)=0
f9=K9n1

1/2n3
1/2−n4n9(p/nT)1/2=0

f10=K10n1
2−n4

2n10(p/nT)=0
where
n=�10

i=1 m
and
K5=0.193, K6=0.002597, K7=0.003448, K8=1.799×10−5,

K9=2.155×10−4, K10=3.846×10−5 and p=40
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Table 4
Initial guess and solution for example 3 (R=10)

Variable SolutionInitial guess

f(x)Value Value f(x)

N1 ( f1) −11.5 2.915725423895220 −3.11E−15
5.563 3.9609428108088802 −7.11E−15N2 ( f2)

35N3 ( f3) −3.855 19.986291646551500 3.55E−15
0.5N4 ( f4) 30.02 0.084274576104777 −8.53E−14

0.118 0.0220956017698930.05 1.94E−15N5 ( f5)
N6 ( f6) 0.005 −0.0032339 0.000722766590884 3.61E−16

−0.0209598 0.0332004082515740.04 1.16E−16n7 ( f7)
0.003n8 ( f8) −0.0013330 0.000421099693392 −2.98E−17
0.02n9 ( f9) −0.0076095 0.027416706896918 −3.25E−17

−1.1332377 0.0311467752270065 −7.59E−19n10 ( f10)
nT 44.118 27.062238

Table 5
CONLES and fsol�e solutions for example 3 (R=5)

Variable CONLES solution Fsol�e solution

f(x) ValueValue f(x)

0n1 ( f1) 2.99973.56128767073319E-01 2.34E−07
0 3.78811.64275227166320E+00 −9.75E−08n2 ( f2)

9.99997007578516E+00n3 ( f3) 0 8.1253 −9.06E−08
2.64387123292668E+00n4 ( f4) 0 2.77E−04 2.68E−08

0 6.73E−052.35376244201401E+00 −4.85E−08n5 ( f5)
8.67E−19 2.95E−05n6 ( f6) −3.59E−085.91308317420100E-03

−4.34E−19 0.423621.05748947136700E-03 −3.65E−05n7 ( f7)
1.03009357100000E-06n8 ( f8) 0 0.068001 2.45E−06
5.98484296890000E-05n9 ( f9) 5.42E−20 3.7495 1.24E−04

8.47E−22 −4.51452.96634425000000E-07 3.47E−04n10 ( f10)
nT 14.6400917.00351653726560

2. Identify a sub-expression that may introduce discon-
tinuity. The identification can be done by inspection
(for small systems) or it can be automated. The
proposed technique for automating this algorithm
will be discussed in Section 5.

3. Sub-expressions that introduce discontinuity on the
boundaries of the feasible region can be left un-
changed. In such a case go to 5, otherwise proceed
to 4.

4. Remove the discontinuity-causing sub-expression by
suitable algebraic manipulation, or replace the sub-
expression by an additional variable. The latter is
then defined in an additional implicit equation as
equal to the sub-expression it represents. A con-
straint on the new variable must also be added, so
that the discontinuity lies on the boundary of the
so-defined subspace.

5. Check the equation for an additional discontinuity
causing sub-expressions. If any remains, go back to
step 3, else proceed to 6.

6. Check for unexamined equations. If any left, go
back to 1, else finish.

7. For the numerical solution stage an initial estimate
that satisfies all the constraints must be selected.

8. Solve the resultant set of equations. Verify the re-
sults by introducing the solution to the original set
of equations.

There are various algebraic manipulations and vari-
able transformations that can remove discontinuities
for particular types of equation sets (see for example
Meintjes & Morgan, 1990). For the general case, how-
ever, the multiplication of the equations by denomina-
tors that include unknowns has proven to be the most
effective approach for alleviating the solution of such
systems. In case the discontinuities are handled by
splitting the feasible space to subspaces, a solution
should be sought in all of the subspaces (the initial
guess should be set inside the particular subspace).

To this aim it can be beneficial to employ state of the
art constrained homotopy continuation methods
(Paloschi, 1995) for locating the roots inside a feasible
subspace. Those methods have the advantage of deter-
mining all of the roots (or that there are no roots) in
the subspace. In some cases physical considerations can
be invoked to reduce the number of feasible subspaces.
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It should be mentioned that in the case where discon-
tinuity elimination is done by multiplication of the
equations by several denominators, it might happen
that the multiplication introduces spurious solutions,
which are not solutions of the original set. While such
a situation is rare (it requires all the denominators to
have a root at the exact same point) it will be detected
at the solution verification step.

The use of the algorithm for discontinuity removal
will be demonstrated with reference to the three exam-
ples presented in the previous section.

4.1. Analysis of example 1

In this example there are two terms that introduce
discontinuity and/or render the function undefined. The
term (0.06–161 rp) must be �0 and the zero value of
the term (373+1.84×106 rp) should be avoided. Since
physical considerations dictate that rp�0 the second
term will never be zero in the feasible region, so it does
not require any further consideration. The first term
may become negative in the feasible region. This
difficulty cannot be avoided by an algebraic manipula-
tion. Accordingly a new variable, x= (0.06–161 rp) is
defined, and the following constrained system of equa-
tions is solved:

f1=rp−0.327x0.804 exp
�

−
5230

[1.987(373+1.84×106rp)]
�

=0

f2=x− (0.06−161rp)=0 (10)

subject to the constrains rp�0 and x�0.
This formulation enables convergence to the solution

using constrained algorithms, such as CONLES. For
example, with the initial guess: rp=0.1 and x=0.5
(satisfying the constraints but is very far from the
solution, actually lying in the region where the original
function is undefined) convergence to the solution in
eight iterations is achieved. The unconstrained al-
gorithms used in this study could not find the solution
even when using this revised formulation.

4.2. Analysis of example 2

Here f1 is undefined for rA=0, f2 is undefined for
rB=0, f3 is undefined for rC=0, f4 is undefined for
rD=0, f5 is undefined for rE=0 and k1B, k2C and k3E

are undefined for T=0 (K). This last discontinuity lies
on the boundary of the feasible region and does not
require any further attention. The discontinuities in-
volving rA, rB and rE lie also on the boundary of the
feasible region (as one, or more, of the concentrations
involved, CA, CB, CC and CD, attains a zero value).
However, rC and rD may become zero inside the feasible
region for various combinations of temperature and
concentration values.

In this example all the discontinuities (except the one
involving T=0) can be removed by algebraic manipu-
lation, namely by multiplying f1 by (−rA), f2 by (−rB)
f3 by rC, f4 by rD and f5 by rE. In addition to removing
the discontinuities, such transformations also reduce
the high level of non-linearity of the original set of
equations in the vicinity of the solution (where some of
the reaction rates, rD in particular, are close to zero).
Using this transformation, only the implicit equations
of the set (Table 2) have to be modified as follows:

f1=V(−rA)−�o(CAO−CA)=0

f2=V(−rB)−�o(CBO−CB)=0

f3=VrC−�oCC=0

f4=VrD−�oCD=0

f5=VrE−�oCE=0

f6=5000(350−T)−25(20+40)(T−300)+V(SRH)

=0 (11a)

With this revised formulation, CONLES converges
to the correct solution from the initial estimate shown
in Table 1 in 11 iterations. The subroutine mnewt also
converged, but the fsol�e and FindRoot algorithms
failed to converge from the initial estimate shown. They
did converge using an initial estimate for the tempera-
ture that is closer to the solution. It should be noted
that even in this revised form and starting close to the
solution, non-constrained algorithms (such as fsol�e
and FindRoot) may converge to an infeasible solution.
This may happen since the feasible solution is very
close to an infeasible one, where T=371.422, CA= −
0.0028 and CB= −0.0351.

The other possible modification of the original for-
mulation is to place the discontinuities caused by zero
values of rC and rD on the boundary of a feasible
subspace. This is accomplished by transforming the
respective equations (as shown in Table 2) to implicit
equations:

f7=rC− (3k1BCACB−k2CCCCB
2 )

f8=rD− (3k3BCD+k2CCCCB
2 ) (11b)

with the following constraints: CA�0, CB�0, CC�0,
CD�0, CE�0, rC�0 and rD�0. Note that the posi-
tive values of the concentrations ensure positive values
of rA, rB and rE. Thus, there is no need to specify
constraints on these variables.

Using this formulation the system is still rather
difficult to solve, but it is definitely solvable using a
constrained algorithm. CONLES, for example, con-
verged to the correct solution within 54 iterations using
the following initial guess: CA=0.005, CB=0.05, CC=
1, CD=0.01, CE=1, T=370, rC=0.04 and rD=
0.00002.
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4.3. Analysis of example 3

In this example, only the square root terms and the
division by nT may cause discontinuity. However, since
all the variables are constrained to have positive values,
all the discontinuities lie on the boundaries of the
feasible region, thus no modification of this equation
set is required. Indeed, a constrained solution algorithm
(CONLES) converged to the solution of this system
without any difficulties.

Using the iterative linear programming method
Bullard and Biegler (1991) solved a slightly different
version of this problem. For R=40 they reported two
solutions. Those solutions were later identified by
Shacham, Brauner and Cutlip (2002) as local minimum,
while CONLES did identify the correct solution start-
ing from the same initial estimates.

5. Automation of the discontinuity elimination process

The automation of the discontinuity elimination pro-
cess can be based on the extension and improvement of
the algorithm of Shacham and Shacham (1990). Ac-
cording to this algorithm every equation in the set is
converted into a binary tree with an operator (such as
‘+ ’ or ‘function call’) in the internal nodes and
‘atomic’ expressions (variable, or constant names and
numerical constants) in the leaves. Different branches
of the tree are connected with ‘+ ’ or ‘− ’ operators,
while sub-branches are connected with ‘*’, ‘/’ or ‘�’
operators or ‘function calls’.

After creating the tree, every branch is examined in
turn for the existence of discontinuity causing sub-
branches. These sub-branches are then removed or
modified in the following steps.
1. Examine the sub-branch and the node it is con-

nected to for the values of the sub-branch that may
introduce discontinuity.

2. Determine whether such values can be obtained in
the feasible subspace of the unknowns.

3. If both of the above conditions are satisfied, proceed
to step 4, otherwise select a different sub-branch and
return to 1.

4. If the discontinuity is caused by a sub-branch is
positioned in the denominator (preceded by a ‘/’
node) and it can attain a zero value in the feasible
subspace, check whether multiplication of the whole
equation by this sub-branch removes it from being a
denominator. If so multiply the equation by the
sub-branch and generate a new equation and a new
tree which replace the old ones.

5. In any case where the discontinuity-causing sub-
branch cannot be ‘multiplied out’, a new variable,
which replaces the sub-branch, has to be defined.
This new variable must be constrained to be non-

zero, negative or positive (according to the opera-
tion or function call that involves the
sub-expression).

The procedure of examination of the branches, addi-
tion of new variables to replace sub-branches and addi-
tion of constraints continues until it is ensured that
none of the branches can become undefined in the
feasible subspace.

Let us consider, for example, the following equation
(Batch distillation at infinite reflux, Paterson, 1986):

f(x)=
1
63

ln x+
64
63

ln
1

1−x
+ ln(0.95−x)− ln 0.9

(12)

This equation is separated into the following four
branches:

1
63

ln x (12a)

64
63

ln
1

1−x
(12b)

ln(0.95−x) (12c)

ln 0.9 (12d)

Examining the various branches of Eq. (12) yields the
following results. In branch Eq. (12a) the sub-branch
‘x ’ is connected to the node with ‘function call’ ‘ln’.
Consequently this branch is undefined for x�0. Thus
the constraint x�0 should be added to the equation.
The sub-branch: (1−x) of branch Eq. (12b) is con-
nected to a ‘/’ operation, it can obtain zero value in the
feasible region and it cannot be multiplied out. Conse-
quently a new variable y=1−x should be defined and
it should be constrained: y� �0. After this replace-
ment is made and branch Eq. (12a) is reexamined, it is
found that 1/y should be positive. This can be achieved
by constraining y to be positive only. Branch Eq. (12c)
can get undefined in the feasible region if (0.95−x)�
0. Thus a new variable z= (0.95−x) has to be defined
and it should be constrained to positive values only.
Branch Eq. (12d) is always defined. This concludes the
analysis of Eq. (12). The resultant set of equations,
which is well defined for the entire feasible subspace is
the following:

f1(x, y, z)=
1
63

ln x+
64
63

ln
1
y
+ ln(z)− ln 0.9

f2(x, y, z)= (1−x)−y

f3(x, y, z)= (0.95−x)−z (13)

with the constraints: x�0; y�0 and z�0.
The example presented involves a single (original)

equation, however, this procedure can be carried out
similarly for systems of equations. Let us consider
example 2, which involves modeling of the CSTR.
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Analysis using the algorithm presented above reveals
that there are five sub-branches (namely rA, rB, rC, rD

and rE) connected to ‘/’ nodes which are not allowed to
attain a zero value. Since all the concentration values
are constrained to positive values, only rC and rD

can attain such a value in the feasible region and they
can be multiplied out. Thus, the automated procedure
can be carried out for systems of equations, which
involve several variables, and it results in the same
equation set that was successfully solved in the previous
section.

The differences between the proposed algorithm and
the S&S algorithm are worth noting. While the S&S
algorithm requires carrying out the analysis in every
iteration of the numerical solution, here, the analysis
and the derivation of the new set of equations is carried
out only once, before the start of the numerical solu-
tion. Also, the S&S algorithm cannot deal with expres-
sions where the zero of a sub-branch cannot be
calculated analytically. In the herein proposed al-
gorithm, new variables can be introduced and con-
straints can be set even if the zero of a sub-branch is
not exactly known.

6. Conclusions

It has been demonstrated that NLE systems with
discontinuities are often very difficult to solve, using
state of the art numerical solvers, even when initial
guesses close to the solution are used. This happens, in
particular, when the discontinuities are located very
close to the solution.

If all the discontinuities lie on the boundaries of the
feasible space, constrained solution methods, such as
the step length restricted NR method, the multidimen-
sional bisection and the iterative linear programming
algorithms, can convergence to a solution located
within this space. This is because these constrained
methods do not require calculation of function and
derivative values outside the feasible space.

Discontinuities within the feasible subspace should be
identified and either removed by algebraic manipulation
of the equations, or put as boundaries of a feasible
subspace. This is accomplished by introducing new
variables, additional equations and constraints. Follow-
ing the algorithm presented for carrying the above
steps, it has been demonstrated that solutions can be
found to originally unsolvable NLE systems by using a

constrained (in some cases even unconstrained) NLE
numerical solvers.
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