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Abstract

An extensive test problem library of nonlinear algebraic equations (NLE) has been created and implemented on the World Wide
Web. This web-based test problem library contains complete problem descriptions with the following information: the model
equations in the same form as the input for the numerical solver, the explicit definitions of constraints on the variables, the initial
estimates and function values at the initial estimates, and the variable values and function values at the solution. All variables and
function values are reported with the full precision of the numerical solution. This library improves upon existing test problem
collections regarding the type of information included and the form in which this information is stored and presented. The NLE
library can be accessed through the Web site: http://www.polymath-software.com/library. It contains presently over 70 problems
of various dimensions on lower, average, and higher difficulty levels. Some of the problems exhibit multiple solutions in the
feasible and/or the infeasible subspaces, discontinuities, and false solutions that are identified as true solutions by most numerical
solvers. This library can be of significant benefit to users and developers of NLE solvers for verifying the robustness and reliability
of NLE solvers. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Steady state and dynamic simulations of chemical
processes require numerical solution of large systems of
nonlinear algebraic, ordinary differential, and differen-
tial-algebraic equations. It is often assumed that the
numerical software packages and their solution al-
gorithms will find the correct solution for a given
problem if it exists or that warning messages will be
issued when the accuracy and/or correctness of the
solution is in doubt. Unfortunately, the solution pro-
vided by numerical solvers cannot always be trusted
(see for example, Brauner, Shacham, & Cutlip, 1996;
Shacham, 1984 and Shacham, Brauner, & Pozin, 1998).
Reliability testing of software requires problem solu-

tions for a large set of benchmark problems that are
unusually challenging.

The need to validate software is common to both the
numerical and statistical software. For statistical soft-
ware, a group of statisticians from NIST, National
Institute of Standards and Technology of the USA,
took the initiative and placed a large set of test prob-
lems on the Web.1 This library contains problems re-
lated to: analysis of variance, linear and nonlinear
regression, and univariate summary statistics. In the
case of nonlinear regression, for example, the data set
contains the data points, the correlation model equa-
tions, and ‘certified’ values of the calculated parameters
including their standard deviation and the resultant
variance. The problems are of various size and
difficulty level and can be downloaded as ASCII files
for testing software packages.

* Corresponding author. Tel.: +972-8-646-1481; fax: +972-8-647-
2916.
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Table 1
Hiebert’s (1983) version of the ‘combustion of propane in air’ test problem

x*bNo. Equations Variable f(x*b)x0 x*a f(x*a)

2.9976 −3.55E-051 f1=x1+x4−3=0 x1 2 2.995 0
3.37E-042 f2=2*x1+x2+x4+x7+x8+x9+2*x10−R=0 x2 5 3.967 2.00E-04 3.9664
−5.34E-053 f3=2*x2+2*x5+x6+x7−8=0 x3 8040 79.999 1.72E-04

0.0023645 6.04E-044 f4=2*x3+x5−4*R=0 x4 1 0.005 −9.72E-04
−1.99E-085 f5=x1*x5−0.193*x2*x4=0 x5 0 0.001028 −7.50E-04 6.04E-04

6 f6=x6*sqrt(x2)−0.002597*sqrt(x2*x4*xs)=0 −1.00E-07x6 0.00136590 0.001916 7.90E-07
0.0645737 f7=x7*sqrt(x4)−0.003448*sqrt(x1*x4*xs)=0 2.57E-08x7 0 0.0622 −3.28E-06

−3.59E-088 f8=x8*x4−1.799e−5*x2*xs=0 x8 0 1.553 −8.80E-07 3.5308
9 f9=x9*x4−0.0002155*x1*sqrt(x3*xs)=0 1.45E-06x9 26.4320 12.043 −4.21E-06

0.004499810 -1.56E-13f10=x10*x4ˆ2−3.846e−5*xs*x4�2=0 x10 5 8.19 2.05E-04
11 R=40

117.0002112 xs=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10 108.81714

a Solution obtained by Bullard and Biegler (1991).
b Solution obtained by Shacham (1984).

We have developed a similar test problem library for
systems of nonlinear algebraic equations, NLEs. This
library is based on collections of test problems pub-
lished in the literature (see for example Bullard &
Biegler, 1991; Hiebert, 1983; Shacham, 1984, 1990;
Shacham et al., 1998). Additional problems have been
obtained by personal communications with individuals
who needed assistance in solving particular types of
equations. During the preparation of this library, at-
tempts to reproduce the results obtained from various
sources in the literature revealed many of the limita-
tions of these test problem collections. These limitations
helped to identify and refine the type of information
that should be included in the library including: the
problem definition, the desired form in which this infor-
mation should be stored and displayed, and the general
structure of the library.

The computations related to this article were carried
out with the NLE solver program of the polymath 5.0
package, 2 using double precision computation, on a
PC. Three NLE solver algorithms were used:
Shacham’s (1986) CONLES constrained algorithm and
the subroutines mnewt and newt from the Numerical
Recipes’ book (Press, Teukolsky, Vetterling, & Flan-
nery, 1992). The subroutine mnewt implements the clas-
sical Newton–Raphson (NR) method. The newt
algorithm employs the NR method with a line search.
The CONLES algorithm combines the step-length re-
stricted NR method with the Levenberg–Marquard
algorithm, when the Jacobian matrix happens to be
singular, and with a continuation approach, if no feasi-
ble solution is reached, in order to keep the variables
inside the feasible subspace and eventually reach a
solution in this subspace.

2. Limitations of existing test problem collections

The limitations of the existing test problem collec-
tions can be demonstrated with reference to the prob-
lem of ‘combustion of propane in air’, which was used
as a test problem, for example, by Bullard and Biegler
(1991), Hiebert (1983), Meintjes and Morgan (1990)
and Shacham (1984). The equations as presented by
Hiebert (1983) are shown in Table 1. It should be
pointed out from the outset, that Meintjes and Morgan
(1990) had found that this model is chemically incorrect
and does not represent a physical system. This illus-
trates a very important point that many of the pub-
lished test problems contain typographical errors. The
only way to avoid such errors in the library version is
to use electronic transfer of the problem’s equations
from the numerical solver to the library and vice versa.
Following this principle, the equations in Table 1 are
shown in the form as they were copied from the input
data set of the numerical solver.

This set of equations is very difficult to solve because
the system may have several solutions, and some of
them are physically infeasible (xi represents number of
moles of various components, thus all xi must be non-
negative). This illustrates that constraints are an integral
part of the mathematical model and, as such, they must
be explicitly displayed in the library. In this particular
example, the solution algorithm is challenged by the
need to calculate the square root of some of the vari-
ables, which may attain negative values along the solu-
tion path, especially if the solution itself is very close to
zero.

Bullard and Biegler (1991), Hiebert (1983) and
Shacham (1984) solved the set of equations of Table 1
for several different values of the parameter R and
from several different starting points. Some of the data
and the results for R=40 and one set of initial esti-
mates (x0) are also shown in Table 1. The initial

2 POLYMATH is copyrighted by M. Shacham, M.B. Cutlip and M.
Elly (http://www.polymath-software.com/).
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estimates have been reported in those studies; how-
ever, the corresponding function values were not re-
ported. The information regarding f(x0) is essential
for reproducing the results since differences in func-
tion values at the initial estimate signal errors in the
problem set-up. Such errors can be detected irrespec-
tive as to whether convergence to a solution is
achieved by the software that is being tested. The
function values at the initial estimates can also
provide some information regarding the order of
magnitude of the various terms comprising a particu-
lar function. The order of magnitude of the various
terms is important for determining the attainable ac-
curacy, as indicated by the function value at the solu-
tion point. The information that can be derived from
f(x0) is easier to interpret if different initial estimates
are used for the different variables. Thus, use of an
initial estimate of zero value for five of the ten vari-
ables, as shown in Table 1, can hide some important
information that can be deduced from f(x0).

Hiebert (1983) attempted to solve this system of
equations using nine different software packages and
reported the relative performance of the various pack-
ages. The values of the variables at the solution were
not reported. This makes the reproduction of the re-
sults rather difficult and uncertain, as the user can
never be sure whether the same solution is found or
even whether the same problem is solved.

Bullard and Biegler (1991) found two solutions to
this system using an iterative linear programming
strategy. Their first solution is shown in the column
marked with x*a in Table 1. Shacham (1984) found
one solution to this problem using the CONLES al-
gorithm. The latter is shown in the column marked
with x*b. The three solutions are completely different.
For example, x10=8.19 in x*a, x10=0.0044998 in
x*b, whereas x10=6.465 in an additional solution re-
ported by Bullard and Biegler (1991) (not shown in
Table 1).

The existence of three different solutions to this
problem raises several considerations: (1) the problem
has multiple solutions and all of the solutions are
valid; (2) there are errors in the problem set-up in
one or more of the cases; (3) the solution method
converged to a local minimum instead of the zero of
the system of equations. In order to find out which
of the reported solutions are valid solutions of the
problem, the function values should be checked. Nei-
ther Bullard and Biegler (1991) nor Shacham (1984)
reported function values at the solution. Introducing
the values shown under x*a and x*b into the equa-
tions yield the function values shown in Table 1
(columns marked with f(x*a) and f(x*b)). It can be
seen that in both cases the largest function values are
of the order of 10−4, a number that can be consid-
ered as a nonzero value.

One reason for the large function values obtained
at the solution point is the low precision used for
reporting the xi* values. Bullard and Biegler (1991)
reported x* with a precision of four decimal digits in
most cases. For numbers greater than one (in abso-
lute value), it is understandable that even in a linear
equation, the function value can exceed 10−4 due to
error introduced by rounding the numbers to four
digits. Thus, in order to verify that x* is indeed a
solution of the system of equations, the results should
be reported with a much higher precision, preferably
with the working precision of the computer program;
most NLE solver programs work with double preci-
sion, approximately 15 significant decimal digits.

In this particular case, the solution provided by
Shacham (1984) has been verified utilizing the CON-
LES algorithm, which converged to the same solution
as shown in the column x*b of Table 1 with 15 deci-
mal digits of accuracy. The corresponding highest
function value is of the order of 10−14, which can be
considered safely as zero in double precision compu-
tation.

The solutions reported by Bullard and Biegler
(1991) are suspected to be incorrect. This can be seen,
for example, by considering the values of the two
terms comprising f10 at the reported solution. The
first (positive) term value is: 8.19*0.0052=2.05*10−4.
The value of the second (negative) term is −
3.846*10−5*108.817*0.0052= −1.046*10−7. Thus,
the function value is equal to the value of the posi-
tive term, the negative term is insignificant, hence this
solution cannot be considered a zero of f10.

This example illustrates the structure and the infor-
mation to be included in a test problem library:
1. The model equations must be stored in the same

form as the input for the numerical solver, to pre-
vent introduction of typographical and other errors.

2. Constraints on the variables are an integral part of
the mathematical model and should be included
explicitly in the library.

3. It is preferable to use different values as initial
estimates for the different variables, and function
values at the initial estimate must be reported in
order to enable detection of errors in the problem
set-up.

4. The variable values at the solution must be reported
with the same precision that the solution was ob-
tained (15 significant decimal digits for double
precision).

5. Function values at the solution must be included. In
case the function values are suspected to be too
high, the order of magnitude of the various terms
comprising the function must be examined to vali-
date that the reported solution is a zero of the
function.
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3. Implementing the preferred structure for the
‘combustion of propane in air’ example

Many of the difficulties associated with the example
presented in Section 2 could have been detected easily if
the physical nature of the model and the various vari-
ables were known. Although the inclusion of the de-
scription of the physical basis of the model in the
library is not essential, it can be rather helpful in many
cases. If the description is simple, it can be included as
part of the model (as ‘comments’) otherwise reference

to the pertinent literature source should be provided.
Meintjes and Morgan (1990) have traced the problem

‘Combustion of Propane in Air’ back to a paper from
1943 by Damkohler and Edse (1943). The stoichiomet-
ric equation of the reaction is C3H8+0.5R(O2+
4N2)�Products, where R is a parameter expressing the
relative amounts of air and fuel. The list of products is
shown in Table 2. Given this list of species, R must be
greater than three for a physically feasible solution to
exist; if R�10, the combustion is ‘fuel rich’, if R�10
it is ‘lean’.

Table 2 shows the equations (as provided by Meintjes
& Morgan, 1990) in the form they are stored in the test
problem library (after slight rearrangement for a more
concise presentation). The unknowns n1, n2,…,n10 rep-
resent the number of moles of product i formed per
mole of propane consumed. An output variable, which
appears on the left-hand side, is designated to each
equation. In explicit equations, the output variable is
assigned according to the calculation order, whereas in
implicit equations, the assignment is arbitrary in order
to allow the presentation of the variables, function
definitions and values in a concise and compact format.
The description of the variables and the equations are
included as comments, separated from the equation by
the csign. Constraints on the variables are an integral
part of the problem definition and appear in a separate
column of Table 2. All the unknowns represent moles
of product formed, thus they all must be non-negative
at the solution point. A constraint that must be satisfied
all the way to the solution is marked by (a). This is
necessary in order to avoid a negative value inside the
square root function, in this particular example.

The introduction to the problem, as presented in the
previous paragraph, and the data in Table 2 represent a
complete definition of the problem. This includes the
mathematical model and the physical basis. The equa-
tions as they appear in the second column of Table 2
can be copied directly into the polymath 5.0 program
for solution. If other programs are used for solution
(such as matlab3 or mathematica4), some modifications
may be required. The required editing can be easily
performed with a text editor.

The initial estimates, function values at the initial
estimates, the solution and the function values at the
solution are shown in Table 3. It can be seen that when
15 decimal digits are used for n*, the largest absolute
value of f(n*) obtained is of the order of 10−14, raising

Table 2
Meintjes and Morgan (1990) version of the ‘combustion of propane
in air’ test problem

No. Equationsa Constraintsb

f(n1)=n1+n4−3 cMol of Carbon1 �=0 (a)
Dioxide–Carbon Balance

2 �=0 (a)f(n2)=2*n1+n2+n4+n7+n8+n9+
2*n10−R cMol of Water-Oxygen
Balance
f(n3)=2*n2+2*n5+n6+n7−8 cMol of3 �=0 (a)
Nitrogen-Hydrogen Balance

�=0 (a)4 f(n4)=2*n3+n9−4*R cMol of Carbon
Monoxide–Nitrogen Balance

5 �=0f(n5)=K5*n2*n4−n1*n5 cMol of
Hydrogen-Equilibrium Expression

�=06 f(n6)=K6*sqrt(n2*n4)−sqrt(n1)*n6*sqrt-
(p/nt) cHydrogen atom-Equilibrium
Expression

�=07 f(n7)=K7*sqrt(n1*n2)−sqrt(n4)*n7*sqrt-
(p/nt) cHydroxyl Radical-Equilibrium
Expression

�=0f(n8)=K8*n1−n4*n8*(p/nt) cOxygen8
Atom-Equilibrium Expression

�=09 f(n9)=K9*n1*sqrt(n3)−n4*n9*sqrt(p/nt)
cMol Nitric Oxide-Equilibrium
Expression

10 f(n10)=K10*n1ˆ2−n4ˆ2*n10*(p/nt) �=0
cMol of Oxygen-Equilibrium Expression

11 nt=n1+n2+n3+n4+n5+n6+n7+n8+
n9+n10 cTotal Number of Moles of
Combustion Products

12 K5=0.193 cEquilibrium Constant at
2200 K
K6=2.597e-3 cEquilibrium Constant at13
2200 K

14 K7=3.448e-3 cEquilibrium Constant at
2200 K
K8=1.799e-5 cEquilibrium Constant at15
2200 K
K9=2.155e-4 cEquilibrium Constant at16
2200 K
K10=3.846e-5 cEquilibrium Constant at17
2200 K
R=10 cAir to Fuel Ratio18

19 p=40 cPressure (atm.)

a An implicit equation is indicated by f( ). Output variables as-
signed arbitrarily for implicit equations.

b Constraint on the output variable. An (a) indicates that the
constraint must be always satisfied.

3 MATLAB is a trademark of The Math Works, Inc. (http://
www.mathworks.com).

4 Mathematica is a trademark of Wolfram Research, Inc. (http://
www.wolfram.com).

http://www.mathworks.com
http://www.mathworks.com
http://www.wolfram.com
http://www.wolfram.com
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Table 3
Initial estimates and solution for the ‘combustion of propane in air’ test problem

f0 n*Function and variable number f(n*)Initial value

1 n1(0)=1.5 −1 2.915725423895220 −3.11E-15
5.563 3.960942810808880n2(0)=2 −7.11E-152

n3(0)=353 −3.855 19.986291646551500 3.55E-15
30.024 0.084274576104777n4(0)=0.5 −8.53E-14
0.118 0.022095601769893n5(0)=0.05 1.94E-155
−0.0032339 0.0007227665908846 3.61E-16n6(0)=0.005
−0.0209598 0.033200408251574n7(0)=0.04 1.16E-167

n8(0)=0.0038 −0.0013330 0.000421099693392 −2.98E-17
−0.0076095 0.027416706896918n9(0)=0.02 −3.25E-179

n10(0)=510 −1.1332377 0.031146775227006 −7.59E-19
44.118nt 27.062238

no doubt with regard to the solution validity. All
mole numbers are positive and their values make
physical sense. This is an indication that the model is
correct in contrast to the formulation in Table 1,
where the nitrogen balance, for example, is grossly off
because of an error in equation (4).

4. Structure of a problem page in the library

The structure of the library that has evolved from
the principles presented in the previous sections is
demonstrated with reference to another example in-
volving nonideal, isothermal flash calculation for a
binary mixture of isobutanol and water. The problem
definition section of this example is shown in Table 4.

Each problem is assigned with an identification
number, which is associated with the number of im-
plicit equations included in the problem (e.g. Threeq2
marks the second problem including three implicit
equations). The source and pertinent references are
provided, where more detailed information regarding
the physical nature of the problem can be found.

The number of implicit equations and the set of
independent variables associated with these equations
are listed. Most sets of equations can be revised easily
to include more or less implicit equations. In fact,
some of the problems in the library represent differ-
ent formulations of the same problem, where the
number of implicit equations has been changed to
alter its difficulty level.

The difficulty le�el of the problem is classified as
low, average, or high. The difficulty level is assigned
according to the performance of the subroutines newt,
mnewt and CONLES starting from several initial esti-
mates that are close and far from the solution. If all
the programs converge from all the starting points,
the problem is considered to be of lower difficulty
level. If for some initial estimates none of the pro-
grams converge, or only the constrained method, that

keeps the variable values inside the feasible range
throughout the iterations converges, the problem is
considered to be of the high difficulty level.

Table 4
Single problem definition in the library

Name Threeq2—Two phase flash of a nonideal
binary mixture (isobutanol–water)
Henley and Rosen (1969)Source

Reference(s) Cutlip and Shacham (1999)
Three implicit equations, independent variablesModel
alpha, x1 and x2
Higher difficulty level
Constraints: 0�=alpha�=1, 0�=x1�=1,
0�=x2�=1
Discontinuities: Undefined for
(x1+B*x2/A)=0 and (A*x1/B+x2)=0
Initial estimates: 1. alpha=0.5, x1=0, x2=1,
2.alpha=0.9, x1=0.5, x2=0.5;
3. alpha=0.9, x1=0.4, x2=0.6 4.
alpha=0.5, x1=0.1, x2=0.9
Shacham, M., polymath 5.1, build 230, 4.4.01Solved by

Model equations Two phase flash of a nonideal binary mixture
(isobutanol-water)�polver05–0
f(x1)=x1−z1/(1+alpha*(k1−1)) c
f(x2)=x2−z2/(1+alpha*(k2−1)) c
f(alpha)=x1+x2−(y1+y2) c
p1=10�(7.62231−1417.9/(191.15+t)) c
p2=10�(8.10765−1750.29/(235+t)) c
gamma2=10�(B*x1*x1/((x1+B*x2/A)ˆ2)) c
gamma1=10�(A*x2*x2/((A*x1/B+x2)ˆ2)) c
k1=gamma1*p1/760 c
k2=gamma2*p2/760 c
y1=k1*x1 c
y2=k2*x2 c
t=88.538 c
B=0.7 c
A=1.7 c
z1=0.2 c
z2=0.8 c
x1(0)=0
x2(0)=1
alpha(0)=0.5
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Table 5
Function and variable values at the initial estimate and at the
solution

Solution valueInitial valueVariable

x1 0 0.0226974766367
f(x1) −1.6296E-02 −3.4694E-18

0.97730252336331x2
3.3895E-02f(x2) 0.0
0.5alpha 0.5322677863643

0.03.4387E-01f(alpha)
p1 357.05282269240357.053

1.00460523451201.000gamma2
498.662p2 498.66206831320

33.36690033259gamma1 50.119
0.65915595273680.656k2

0.656y2 0.6441947758996
23.546k1 15.67598151085

0.35580522410040.00y1
88.538t
0.70B
1.70A

z1 0.20
0.80z2

Several sets of initial estimates are provided. In cases
where multiple solutions exist, a different set of initial
estimates will lead usually to a different solution. In
problems with higher difficulty level, some sets of initial
estimates are close to the solution, thus convergence
can be achieved. For other sets that are far from the
solution, most methods fail to converge.

The model equations are presented in a format so that
they can be ‘copied’ and then ‘pasted’ directly into the
polymath program. Some formatting requirements of
polymath, related to output variables and comments,
are described in Section 3. Polymath reorders the equa-
tions according to the calculation sequence, thus the
order in which the equations are presented is unimpor-
tant. Some other programs (matlab, for example) will
usually require reordering the equations according to
the calculation sequence, before imputing it into the
program. The initial estimates for the variables appear
in the bottom lines of the equation set and are indicated
by the (0) index.

Variable and function �alues at the initial estimate and
at a feasible solution are shown in Table 5. The three
function values at the initial estimate are of the same
order of magnitude, thus apparently, scaling related
difficulties should not be expected. At the solution, the
function values are very small; two of them are inter-
preted as exactly zero by the computer and the third is
of the order of 10−18. All the independent variable
values are between zero and one, thus all of the con-
straints are satisfied at this solution.

When started from the second, third or fourth set of
initial estimates (see Table 4), most algorithms stop
either issuing an error message of converge to an infea-
sible solution or indicating a false solution. Only the
constrained algorithm, CONLES, that keeps alpha, x1
and x2 positive throughout the iterations enables con-
vergence from initial guesses 3 and 4. The variable and
function values at the infeasible and false solutions are
shown in Table 6. At the infeasible solution, the value
of alpha is greater than one (alpha=1.47) implying a
vapor flow rate exceeding the feed flow rate. At the
false solution, x1 and x2 approach very small values
with opposite signs and alpha approaches a very large
value. The function values may get smaller as the
iteration stopping tolerance is set. However, the point
where x1=0 and x2=0 is clearly not a solution of this
system of equations. It should be mentioned that all the
programs tested misidentified the false solution as a
true solution. More research is required in this area for
developing an algorithm that can automatically identify
false solutions of this type.

Infeasible solutions and false solutions are included
in the library in order to caution the users, who may be
unfamiliar with the physical basis of the problem, from
accepting such solutions as valid ones.

Table 6
An infeasible and a false solution for the isothermal flash problem

Variable Infeasible solution value False solution value

0.6867568052506x1 −7.979064911E-13
f(x1) 1.1309E-13−1.3212E-14

0.3132431762583x2 2.545161363E-10
−1.1102E-16 3.8950E-14f(x2)
1.4708209249600alpha −9.143888094E+09
−5.55E-16f(alpha) 1.07E-10
357.05282269240p1 357.0528226924

gamma2 3.1342710428540 1.000094874128
498.66206831320p2 498.6620683132

gamma1 1.10281288233 53.23346661201
2.0565027380050 0.6561965505819k2

1.670126107E-100.6441854496365y2
k1 0.51810849018 25.00942041516
y1 0.3558145314887 −1.995517889E-11

The listed constraints are of physical nature. In the
isothermal flash example, all the independent variables
are constrained. The ratio of moles of vapor to total
number of moles (alpha) is bounded in the range:
0� =alpha� =1. The same bounds apply to x1 and
x2, which represent the mole fraction of the first and
second component, respectively.

Certain combinations of x1 and x2 with opposite
signs may yield discontinuities in the equations for
gamma1 and gamma2 (when x1+B*x2/A=0 or A*x1/
B+x2=0). However, since the discontinuities are out-
side the feasible subspace, they are not of a major
concern. In some of the problems included in the
library, however, discontinuities very close to the solu-
tion render the problem unsolvable practically.
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A plot of the function �alues versus the independent
variable values in the region of interest is also shown on
the problem page for the cases where there is one
implicit equation.

5. Structure of the NLE library

The NLE library can be accessed through the Web
site: http://www.polymath-software.com/library. It con-
tains presently over 70 problems where some of them
are presented using several different formulations. The
number of implicit equations ranges from a single
equation to 14 equations with up to 32 additional
explicit variables. All the problems are based on mathe-
matical models related to physical phenomena like
equations of state, chemical and phase equilibrium, etc.

A section of the main menu from which the problem
pages can be accessed is shown in Table 7. The prob-
lems are ordered according to the number of implicit
equations. The problem identification number, title,
and special characteristics are shown. These special
characteristics include: (1) difficulty level (low, average,
and high, only higher difficulty level is marked); (2)
presence of variable or function scaling related
difficulties; (3) existence of multiple solutions in the
feasible and/or in the infeasible subspaces; (4) existence
of discontinuities inside or on the boundary of the
feasible subspace; and (5) presence of false solutions.

A complete single problem definition page can be
viewed, printed or downloaded as an excel file. The
model equations can be downloaded as a text file or as
a polymath input file. Download files for other com-
mon mathematical packages will be added as they
become available.

6. Discussion and conclusions

A web-based test problem library for NLEs that is
most beneficial for potential users should include more
information and in a different form than that found in
existing test problem collections. Several important as-
pects of this library have been demonstrated by the two
examples presented. In the NLE library created from
this work, the equations are stored in the same form as
the input for the numerical solver, constraints on the
variables are defined explicitly, and initial estimates and
function values at the initial estimates are included.
Variable values at the solution are reported with the
full precision of the numerical solution along with the
function values at the solution. References, which
provide information regarding the physical basis of the
model represented by the system of equations, are also
included as this can be helpful in verifying the physical
validity of the solution.

Additional demonstrated attributes of the test prob-
lem library include: (1) categorization of the problems
according to size, difficulty level, number of solutions
and type of physical model; (2) convergence to infeasi-
ble solution; (3) misidentification of false solutions, and
(4) initial estimate selection for various levels of
difficulty.

References

Brauner, N., Shacham, M., & Cutlip, M. B. (1996). Computational
results: how reliable are they? A systematic approach to model
validation. Chemical Engineering and Education, 30(1), 20–25.

Bullard, L. G., & Biegler, L. T. (1991). Iterative linear programming
strategies for constrained simulation. Computers and Chemical
Engineering, 15(4), 239–254.

Table 7
A section of the NLE libraries’ main menu

File name—Problem title—ProblemNumber
characteristics/difficultiesa

57 Sixeq3—Bubble point of a nonideal binary mixture
(isobutanol–water) �F�

58 Sixeq4a—Modeling of a CSTR for a complex
sequence of reactions—original form. �H � S � DI�
Sixeq4b—Modeling of a CSTR for a complex59
sequence of reactions—revised form. �MO�

60 Seveneq1—Chemical equilibrium �MO�
61 Seveneq2a—Esterification reaction in two consecutive

CSTRs—original form. �H�
Seveneq2b—Esterification reaction in two consecutive62
CSTRs—revised form. �H�F�

63 Seveneq3a—Flow distribution in a pipeline
network—constant friction factor

64 Seveneq3b—Flow distribution in a pipeline
network—calculated friction factor

65 Seveneq4—Water distribution network
66 Nineq1—Three phase flash—ethanol, benzene and

water mixture �H � MO�
67 Teneq1a—Chemical equilibrium problem—R=10

�DB�
Teneq1b—Chemical equilibrium problem—R=4068
�H � DB�
Teneq2a—Combustion of propane in air—R=1069
�DB�
Teneq2b—Combustion of propane in air—R=4070
�H � DB�
Teneq3—Small flow sheeting system with recycle71

72 11eq1—Stirred pot reactor process
13eq1—Gibbs energy minimization �H � DB�73

74 14eq1—Three stage, two component distillation
column

a Legend for problem characteristics/difficulties: L, lower; A, aver-
age; H, higher difficulty level; S, function/variable scaling related
difficulties exist; DB, discontinuity/function undefined on the
boundary; or DI, inside the feasible subspace; MI, multiple solutions
inside; or MO, some outside of the feasible subspace; F, false
solutions.

http://www.polymath-software.com/library


M. Shacham et al. / Computers and Chemical Engineering 26 (2002) 547–554554

Cutlip, M. B., & Shacham, M. (1999). Problem sol�ing in chemical
engineering with numerical methods (2nd ed.). Englewood Cliffs, NJ:
Prentice Hall.

Damkohler, G., & Edse, R. Z. (1943). The composition of associating
combustion gases and the calculation of simultaneous equilibria. Z.
Elektochimika, 49, 178–186.

Henley, E. J., & Rosen, E. M. (1969). Material and energy balance
computations. New York: Wiley.

Hiebert, K. L. (1983). An evaluation of mathematical software that
solves systems of nonlinear equations. ACM Transactions on
Mathematical Software, 8, 5–20.

Meintjes, K., & Morgan, A. P. (1990). Chemical equilibrium systems
as numerical test problems. ACM Transactions on Mathematical
Software, 16, 143–151.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.
(1992). Numerical recipes (2nd ed.). Cambridge: Cambridge Univer-

sity Press.
Shacham, M. (1984). Recent developments in solution techniques for

systems of non-linear equations. In A. W. Westerberg, & H. H.
Chien, Proceedings of the second international conference on founda-
tions of computer aided design (pp. 891–924). Ann Arbor, MI:
CACHE Publications.

Shacham, M. (1986). Numerical solution of constrained nonlinear
equations. International Journal of Numerical Methods in Engineer-
ing, 23, 1455–1481.

Shacham, M. (1990). A variable order method for solution of a
nonlinear algebraic equation. Computers and Chemical Engineering,
14(6), 621–629.

Shacham, M., Brauner, N., & Pozin, M. (1998). Comparing software
for interactive solution of systems of nonlinear algebraic equations.
Computers and Chemical Engineering, 22, 321–323.


	A web-based library for testing performance of numerical software for solving nonlinear algebraic equations
	Introduction
	Limitations of existing test problem collections
	Implementing the preferred structure for the `combustion of propane in air example
	Structure of a problem page in the library
	Structure of the NLE library
	Discussion and conclusions
	References


