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Abstract

A new stepwise regression program (SROV) for the construction of optimal (stable and of highest possible accuracy) regression

models comprised of linear combination of independent variables and their non-linear functions is described. The program uses for

regression QR decomposition based on Gram�/Schmidth orthogonalization, which is highly resilient to numerical error

propagation. Variables are selected to enter the regression model according to their level of correlation with the dependent

variable and they are removed from further consideration when their residual information gets below the noise level. The use of this

program is demonstrated in two examples. In both examples the program identifies an optimal and stable regression model and

several sub-optimal models. The existence of sub-optimal models provides additional insight regarding the relationships that exist

between the explanatory variables, between the explanatory variables and the dependent variable and information on model related

uncertainties caused by sample size and experimental error.
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1. Introduction

Precise analysis, modeling and regression of experi-

mental data are key requirements for realistic and

accurate modeling and simulation of physical phenom-

ena. As model based simulation, design, control and

optimization of chemical processes become increasingly

more widespread, the requirements for more precise

regression models for representing input data (e.g.

physical and transport properties, phase equilibrium)

become increasingly more severe.

Regression models can be partially theory based or

completely empirical. In both cases, it is not known a-

priori how many explanatory variables (independent

variables, and/or their functions) and parameters should

be included in the model for obtaining an optimal

regression model. An insufficient number of explanatory

variables result in an inaccurate model, which is

characterized by a large variance. Some independent

variables, which may have critical effects on the

dependent variable under certain circumstances, may

be left out of the correlation. On the other hand,

including non-influential variables and/or variables

which are collinear, renders an unstable model. The

instability is characterized by typical ill effects, whereby

adding or removing an experimental point from the data

set may drastically change the parameter values. Also,

the derivatives of the dependent variable are not

represented correctly and extrapolation outside the

region, where the measurements were taken, yields

absurd results even for a small range of extrapolation.

Shacham and Brauner (1997), Brauner and Shacham

(1998a,b) provide several examples where regression

models published in the chemical engineering literature

are grossly inaccurate and/or unstable.

Over the years, many procedures have been intro-

duced for selection of the optimal model in linear

regression (for detailed reviews, see for example Daniel

& Wood, 1980; Neter, Wasserman & Kutner, 1990).

Wagner (1973) and Setzmann and Wagner (1989) have
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applied such procedures extensively to models of

physicochemical and thermodynamic properties. In

those procedures, various statistical tests, such as the

F -test, t-test, Rp
2-criterion, Cp-criterion, PRESSp-criter-

ion, residual plot and other diagnostic plots are used to

compare between different models and to decide which

of the explanatory variables should be included or

removed from the model in order to arrive at the

‘best’ subset of explanatory variables. (For details of

the various statistical tests used, see for example, pp.

433�/470 in Neter et al., 1990). Those tests may be

applied while considering all possible combinations of

the explanatory variables or in the framework of a

stepwise regression procedure (such as forward stepwise

regression, backward elimination, ridge regression, see

for example Marquardt & Snee, 1975).

Stepwise regression programs that use statistical tests

do not take advantage of the information concerning the

signal to noise ratio in the data. This information is

usually available when working with experimental data,

but it is less common in observational data that

statisticians usually work with. Shacham and Brauner

(1999a,b) have described the principles and the algo-

rithm of a new stepwise regression procedure with

orthogonal variables (SROV), which uses indicators

based on ‘signal-to-noise’ ratio. They have also demon-

strated some of the potential applications and the

advantages of the use of this procedure (Shacham &

Brauner, 1999a,b; Brauner & Shacham, 1999). Experi-

ence in using the SROV algorithm for solving a wide

range of problems has identified some necessary mod-

ifications of the algorithm.

In this paper the modified and extended SROV

algorithm is presented. The algorithm has also been

implemented as a MATLAB
1 program and it has become

available on the Internet for downloading. The use of

this new program is demonstrated in the paper.

In the next section two motivating examples that

demonstrate the need for using stepwise regression, are

presented. In Section 3, the revised and extended SROV

algorithm is described while Section 4 includes details of

the SROV program implementation and use. In Section

5, the motivating examples are solved using SROV.

Finally some conclusions regarding the benefits in using

SROV are presented.

The computations reported in the paper were carried

out with MATLAB 5.3 and POLYMATH
2 5.1

2. Motivating examples

2.1. Example 1. Calibration of a near infrared reflectance

instrument (Fearn, 1983)

This example concerns data analysis from a series of

experiments performed to calibrate a near infrared

reflectance (NIR) instrument for the measurement of

protein content in ground wheat samples. Fearn (1983)

reports the results of the experiments in two separate

sets of data: a ‘Calibration set’ (shown in Table 1) and

‘Prediction set’ (shown in Table 2). The six independent

variables L1�/L6 are measurements of the reflectance of
the NIR radiation by the wheat samples at six different

wavelengths. These measurements are taken on a log(1/

R ) scale, where R is the reflectance, and are commonly

referred to as ‘log values’. The protein content (depen-

dent variable) was measured by the standard Kjeldahl

method. The objective of the calibration is to find a

linear combination of the log values, which predicts the

protein content. For this purpose, the linear equation:

y�b0�b1L1�b2L2�b3L3�b4L4�b5L5

�b6L6 (1)

is fitted to the data, where y is the protein content and

b0, b1, . . ., b6 are the model parameters. The calculated

parameter values, the 95% confidence intervals on the

parameter values, the variance and the linear correlation
coefficients (R2) for the two data sets are shown in Table

3. Note that in this table, as in the other tables reporting

regression results, the number of significant digits seems

excessive in light of the precision of the data. However,

reporting the results with many significant digits is

necessary for keeping the internal consistency of the

results (parameter, variance and confidence interval

values) and for comparing the accuracy achieved by
different regression programs.

Let us examine first the results for the ‘Calibration

set’ of data. The residual plot for this set is shown in Fig.

1. The first impression is that the model represents the

data adequately. There is a random distribution of the

residuals with a maximal error below 5% and R2�/

0.982. But comparing the parameter values with their

95% confidence intervals shows that some of the
confidence intervals are much larger than the respective

parameter values. Such a situation usually arises if non-

influential independent variables are included in the

model, or/and there is colinearity between some of the

variables. Colinearity between the variables, or the

inclusion of non-influential variables, renders the model

unstable. The ill-effects of the instability of this parti-

cular model can be clearly seen by comparing the
parameter values obtained by regressing the ‘Calibration

set’ with those obtained by regressing the ‘Prediction

set’. The sign of three of the coefficients (/b̂1; b̂2 and b̂5)

1 MATLAB is a trademark of The Math Works, Inc. (http://

www.mathworks.com).
2 POLYMATH is copyrighted by M. Shacham, M.B. Cutlip and

M. Elly (http://www.polymath-software.com).
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Table 1

Results of calibration experiment with 24 samples for Example 1 (Fearn, 1983)

Sample number L1 L2 L3 L4 L5 L6 Protein (%)

1 468 123 246 374 386 �/11 9.23

2 458 112 236 368 383 �/15 8.01

3 457 118 240 359 353 �/16 10.95

4 450 115 236 352 340 �/15 11.67

5 464 119 243 366 371 �/16 10.41

6 499 147 273 404 433 5 9.51

7 463 119 242 370 377 �/12 8.67

8 462 115 238 370 353 �/13 7.75

9 488 134 258 393 377 �/5 8.05

10 483 141 264 384 398 �/2 11.39

11 463 120 243 367 378 �/13 9.95

12 456 111 233 365 365 �/15 8.25

13 512 161 288 415 443 12 10.57

14 518 167 293 421 450 19 10.23

15 552 197 324 448 467 32 11.87

16 497 146 271 407 451 11 8.09

17 592 229 360 484 524 51 12.55

18 501 150 274 406 407 11 8.38

19 483 137 260 385 374 �/3 9.64

20 491 147 269 389 391 1 11.35

21 463 121 242 366 353 �/13 9.7

22 507 159 285 410 445 13 10.75

23 474 132 255 376 383 �/7 10.75

24 496 152 276 396 404 6 11.47

Table 2

Prediction set with 26 samples for Example 1 (Fearn, 1983)

Sample number L1 L2 L3 L4 L5 L6 Protein (%)

1 486 144 266 393 373 26 8.66

2 485 136 260 393 395 6 7.9

3 482 136 260 388 423 �/2 9.27

4 443 112 232 346 355 �/18 11.77

5 478 134 257 382 390 �/5 9.7

6 449 113 233 351 343 �/18 10.46

7 461 121 243 366 378 �/14 10.17

8 503 155 280 403 414 6 11.1

9 493 146 271 390 378 �/3 12.03

10 368 40 158 275 250 �/63 9.43

11 462 114 237 367 331 �/19 8.66

12 438 109 229 333 326 �/28 14.44

13 478 127 252 384 378 �/11 8.5

14 405 73 193 311 305 �/44 10.41

15 498 146 273 403 415 0 9.72

16 442 106 226 341 303 �/28 11.69

17 457 118 240 354 327 �/23 12.19

18 439 103 224 339 325 �/29 11.59

19 500 146 272 404 398 5 8.76

20 427 85 207 334 319 �/36 8.6

21 479 128 253 384 382 �/10 8.54

22 444 102 224 350 333 �/27 9.34

23 458 118 239 362 355 �/16 10.09

24 518 162 290 426 464 16 8.72

25 465 124 247 369 386 �/13 10.87

26 457 120 242 363 411 �/15 10.89
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has changed, thus there is uncertainty even in the

direction of change in the dependent variable (the

protein content) as a result of changes in the values of

L1, L2 or L5. To obtain a stable model some of the

variables must be removed. In Section 5, the SROV

program will be used for the selection of variables to be

included in a stable, accurate model.

2.2. Example 2. The cracking of n-heptanes to acetylene

Kunugi, Tamura and Naito (1961) investigated the

thermal cracking of hydrocarbons (n-heptanes and

methane) to acetylene. Himmelblau (1970) presented

16 data points from the results obtained by Kunugi et al.

(1961). The data reported by Himmelblau are shown in

Table 4. The independent variables are the reactor

temperature (x1), the mole ratio of hydrogen to n -

heptanes (x2) and the contact time (x3). The dependent

variable, y , is the conversion of n -heptane to acetylene.

All the variables were normalized (divided by the largest

Table 3

Regression results for Example 1 for a linear model containing all six variables

Parameter Calibration set Prediction set

Value 95% confidence interval Value 95% confidence interval

b0 23.07423 20.88694 29.37223 13.18371

b1 0.028124 0.17327 �/0.16928 0.129687

b2 0.001667 0.183913 �/0.15365 0.105771

b3 0.234909 0.163315 0.533368 0.153156

b4 �/0.24044 0.13339 �/0.13627 0.081847

b5 0.011839 0.012927 �/0.00825 0.009345

b6 �/0.03558 0.096068 �/0.06154 0.027228

Variance 0.048549 0.027176

R2 0.982149 0.991224

Fig. 1. Residual plot for Example 1 (calibration data set, linear model containing all six variables).

Table 4

Data for Example 2

Sample number x1� x2 x3 y

1 1300 7.5 0.012 49

2 1300 9 0.012 50.2

3 1300 11 0.0115 50.5

4 1300 13.5 0.013 48.5

5 1300 17 0.0135 47.5

6 1300 23 0.012 44.5

7 1200 5.3 0.04 28

8 1200 7.5 0.038 31.5

9 1200 11 0.032 34.5

10 1200 13.5 0.026 35

11 1200 17 0.034 38

12 1200 23 0.041 38.5

13 1100 5.3 0.084 15

14 1100 7.5 0.098 17

15 1100 11 0.092 20.5

16 1100 17 0.086 29.5

*, Definition of the variables: x1, reactor temperature (8C); x2, mole

ratio of hydrogen to n -heptane; x3, contact time (s); y , conversion of

n -heptane to acetylene (%).
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absolute value of the variable) before carrying out the

regression.

Himmelblau (1970) suggested fitting a linear model to

the data in Table 4:

y�b0�b1x1�b2x2�b3x3 (2)

Regression yields the following parameter values

(including 95% confidence intervals): b̂0/�/�/

2.40137839/2.3919682, b̂1/�/3.26554449/2.3661164, b̂2/

�/0.15856689/0.1756745 and b̂3/�/�/0.03691359/

0.4563804. The variance is s2�/0.0055645 and R2�/

0.919815. The residual plot for this model is shown in

Fig. 2. Comparing the parameter values to their

confidence intervals shows that the model is unstable.

For two of the parameters, the confidence intervals are

larger than the parameter values and in the case of b̂3;
there is more than an order of magnitude difference. The

residuals in Fig. 2 show a clear trend, implying an
inadequate model.

Marquardt and Snee (1975) proposed using a full

quadratic model:

y�b0�b1x1�b2x2�b3x3�b4x1x2�b5x1x3

�b6x2x3�b7x2
1�b8x2

2�b9x2
3 (3)

for representation of these data. The calculated para-

meter values, the 95% confidence intervals on the

parameter values, the variance and the linear correlation

coefficients (R2) for the quadratic model are shown in

Table 5 and the residual plot in Fig. 3.

It can be seen that the quadratic model is much more

appropriate for representing the data than the linear

model. The use of the quadratic model yields a random
residual distribution, higher value for R2 (�/0.9977) and

reduces the residual variance by more than an order of

magnitude. But the full quadratic model is unstable:

seven (out of the ten) parameters are smaller in absolute

value than the respective confidence intervals (see Table

5). Thus, also in this case, there is a need to select the
terms (the variables and their functions) to be included

in a stable and appropriate model.

3. The SROV (stepwise regression using ortogonalized

variables) algorithm

The SROV algorithm has been described in Shacham

and Brauner (1999a,b). Incorporation of the algorithm

into a general-purpose program for solving a wide range

of problems, required some modifications and additions

to the algorithm. In the following, the updated algo-

rithm is described.

A standard linear regression model can be written:

y�b0�b1x1�b2x2 . . .�bnxn�o (4)

where y is an N -vector of the dependent variable, xj (j�/

1, 2, . . . n ) are N vectors of explanatory variables, b0,

Fig. 2. Residual plot for Example 2 (four parameters linear model).

Table 5

Regression results for Example 2 for the full quadratic model with ten

parameters

Parameter Value 95% confidence interval

b0 �/71.6282 151.9582

b1 137.0618 307.3667

b2 8.764576 4.795331

b3 26.71481 49.61517

b4 �/8.37465 4.65295

b5 �/26.6841 50.87425

b6 �/0.93886 1.009246

b7 �/64.4778 155.2602

b8 �/0.31784 0.299519

b9 �/2.20258 3.582665

Variance 0.0003186

R2 0.9977042
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b1, . . ., bn are the model parameters to be estimated and

o is an N vector of stochastic terms (measurement

errors). It should be noted that an explanatory variable

could represent an independent variable or a function of
one or more independent variables.

A certain error (disturbance, imprecision, noise) in the

explanatory variables is also considered. Thus, a vector

of an explanatory variable can be represented by:

xj � x̂j�dxj (5)

where x̂j is an N -vector of expected value of xj and dxj

is an N -vector of stochastic terms due to noise.

The vector of estimated parameters b̂
T
� b̂0; b̂1; . . . b̂n

is often calculated via the least-squares error approach

by solving the normal equation:

XT Xb̂�XT y (6)

where X�/[1, x1, x2,. . . xn ] is an N (n�/1) data matrix
and XTX�/A is the normal matrix. This method is

subjected to accelerate numerical error propagation in

cases of colinearity (see for example, Brauner & Shac-

ham, 1998b). An alternative method for calculating the

vector of the estimated parameters is the QR decom-

position. It requires more arithmetic operations than the

solution of the normal equations, but is less sensitive to

numerical error propagation and as such, is more
adequate for a general-purpose stepwise regression

program. The QR decomposition solves the equation:

Xb̂�y (7)

by decomposing X into the product of a matrix Q with

orthogonal columns and an upper triangular matrix R.

The SROV algorithm orthogonalizes the Q matrix by

the Gram�/Schmidt method (see for example Dahlquist,
Bjork & Anderson, 1974), but the order in which the

columns are orthogonalized and the numbers of col-

umns that can be included in the regression model are

determined by the unique algorithm that is described

below.

The generation of the Q and R matrices is carried out

simultaneously with the selection of the variables that
should be included in the regression model. This is done

in sequential steps, where at each step one of the

explanatory variables, say xp , is selected to enter the

regression model. The explanatory variables, which have

already been included in the regression model (at

previous stages) are referred to as basic variables , and

the remaining explanatory variables are the non-basic

variables . At each step, the non-basic variables and the
dependent variable are first updated, by subtracting the

information which is collinear with the basic variables.

This updating generates non-basic variables, which are

orthogonal to the basic variables set. The description of

the operations carried out in a single step of the

algorithm follows.

3.1. Selection of xp and update of the Q and R matrices

and the b̆ vector

The strength of the linear correlation between an

explanatory variable xj and a dependent variable y is

measured by

YXj �yT xj (8)

where y and xj are centered and normalized to a unit

length. The value of jYXj j is in the range [0,1]. In a case

of a perfect correlation between y and xj (y is aligned in

the xj direction), jYXj j�/1. In case y is unaffected by xj

(the two vectors are orthogonal), YXj �/0. The inclusion

of a variable xp , which has the highest level of

correlation with y in the basic set (jYXj j value is the
closest to one) will affect the maximal reduction of the

variance of the regression model. Therefore, the criter-

ion xp �/xj {max (jYXj j} is used to determine which of

Fig. 3. Residual plot for Example 2 (quadratic model of ten parameters).
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the non-basic variables should preferably be included in

the regression model in the next step.

After the selection of xp at step k (xp
k), the Q and R

matrices are updated using the following equations:

rk
j �

(xk
j )T xk

p

(xk
p)T xk

p

(9)

and

qk�1
j �xk�1

j �xk
j �xk

prk
j (10)

This update is carried out for all the columns associated

with non-basic variables. At the same time the para-

meter value associated with xp
k is calculated and the y

vector is updated:

b̆k�
(yk)T xk

p

(xk
p)T xk

p

(11)

and

yk�1�yk�b̆kxk
p (12)

Note that the updated non-basic explanatory variables

include the residual subspace of explanatory variables
that cannot be represented by the basic variables.

Similarly, the updated dependent variable includes the

residuals that cannot be explained by the basic variables.

Thus, the current model variance is:

s2�
(yk�1)T yk�1

n
(13)

where n is the number of degrees of freedom (/n/�/N�/

(k�/1)). The confidence interval, Db̆p on a parameter

estimate can be defined:

Db̆p�t(n; a)
ffiffiffiffi
s2

p
(xk

p)T xk
p (14)

where t (n , a ) is the statistical t distribution correspond-

ing to n degrees of freedom and a desired confidence

level, a .

3.2. Criteria for removing non-basic variables from

consideration

An explanatory variable is removed from considera-

tion for inclusion in the regression model when its

residual information is at the noise level. For this

purpose, two indicators are consulted. The first is the
CNRj , which measures the signal-to-noise ratio of YXj

and is defined by:

CNRk
j �

�
½(yk)T xk

j ½XN

i�1

(½xk
ijo

k
i ½� ½yk

i dxk
ij)

�
(15)

A value of CNRj
k �/1 signals that the correlation

between xj
k and yk is significantly larger than the noise

level. Thus, an accurate value of YXj
k can be calculated.

But when CNRj
k 5/1, the noise in YXj

k , as affected by

dxj
k and ok is as large as, or even larger than jYXj

k j. If

this is the case, no reliable value for YXj
k can be

obtained and the respective variable should not be

included in the regression model.

The second indicator is the TNRj
k , which measures

the signal-to-noise ratio in an explanatory variable xj
k . It

is defined in terms of the corresponding Euclidean

norms (Shacham & Brauner, 1999a)

TNRk
j �

½½xk
j ½½

½½dxk
j ½½
�

�
(xk

j )T xk
j

(dxk
j )Tdxk

j

�1=2

(16)

A value of TNRj
k �/1 indicates that the (non-basic)

explanatory variable xj
k , contains valuable information.

On the other hand, a value of TNRj
k 5/1 implies that the

information included in xj
k is mostly noise, and there-

fore, it should not be added to the basic variables.

It should be noted that the denominators of Eqs. (15)

and (16) represent the error in YXj and xj
k , respectively,

as propagated through the orthogonalization process.

The propagated error is estimated by carrying out the

orthogonalization process simultaneously with two data

sets. The first is the original data set, while to the second
is a perturbed data set obtained after introducing a

normally distributed error with mean of dxj (or o in the

case of the dependent variable). Subtracting the corre-

sponding xj
k (or yk ) vectors obtained using the two data

sets provides the required error estimates.

The selection of new variables (from among the non-

basic variables) to be added to the basic variables in the

SROV algorithm stops when for all the non-basic
variables either CNRj 5/1 or TNRj 5/1.

3.3. Model parameters and confidence intervals in terms

of the original variables

The results of variable selection for inclusion in the

regression model at each stage are stored in the matrices

Q and R and in the vector b̆: Matrix Q is orthogonal; its

columns are associated with the subset of the explana-

tory variables that are included in the regression model.

Matrix R is an upper triangular matrix with 1 (one) on

the diagonal associated with the basic variables. The

vector b̆ contains the regression coefficients associated
with the orthogonalized variables. For practical use,

parameter values associated with the original (non-

orthogonalized) variables (the vector b̆) are preferred.

These can be simply calculated from the following

equation:

b̂�R�1b̆ (17)

To calculate the confidence intervals for the original

parameters, the diagonal elements of (XTX)�1 are

needed. These can be obtained using the (QTQ)�1 and
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(R)�1 matrices:

(XT X)�R�1(QT Q)�1(RT )�1 (18)

Since QTQ is a diagonal matrix and R is an upper

triangular matrix, their inverses can be very easily and

accurately calculated. Therefore, this algorithm yields

results of high accuracy even for problems that are

considered highly co-linear and ill conditioned.

3.4. The two phases of the SROV algorithm

The SROV algorithm consists of two phases. In the

first phase, an initial (nearly optimal) solution is found.
In the second phase, the basic variables are rotated in an

attempt to improve the model.

In the first phase, the steps of basic variable selection,

followed by orthogonalization, are repeated until for all

the non-basic variables either CNRj �/1 or TNRj �/1.

The execution of the first phase may already yield the

optimal solution (stable, with minimal variance) if the

correlation between the original explanatory variables is
weak (they are nearly orthogonal). However, if there is a

considerable colinearity among the explanatory vari-

ables, the order in which they enter the basis may change

their effect on the reduction of the variance. In such

cases, changing the order of variable selection (by

rotation) can lead to a solution with a smaller variance.

Therefore, during the rotation phase, the variables in the

basis are rotated so that each of them is tested versus the
non-basic variables and reselected as the last one to

enter the basis.

Before starting a new (rotation) phase, all the vari-

ables are set back to their original values. Only the order

at which they entered the basis in the previous phase is

retained. If due to this rotation, a new variable enters

the basis, a new rotation cycle (a new phase) is initiated.

Otherwise, when all basic variables are reselected as the
last to enter the basis, an optimal regression model has

been obtained.

4. Implementation of the SROV algorithm and use of the

SROV program

The SROV algorithm was implemented as a collection

of MATLAB M-files. The SROV program can be down-

loaded from the ftp site: ftp://ftp.bgu.ac.il/shacham/

SROV. To use the program, the user should provide
data file/s and an M-file that specify the problem to be

solved. Explanation concerning the content of these files

follows.

4.1. Specification of the experimental data and the error

estimates

The experimental (or observed) data should be stored
column-wise in a text (ASCII) file, where the dependent

variable data is stored in the last column (note that only

one dependent variable is allowed at this time).

There are several options to specify the error. These

options can be selected by setting the value of two

parameters of the SROV program, namely the data_fi-

le_type and the error_type parameters (for description

of the various parameters and their default values, see
Table 6). The estimated error in the data can be specified

as absolute or relative (%) error level for the whole set of

data associated with a variable. Otherwise, an absolute

error can be specified for each individual data point.

This error matrix is stored in a separate file and loaded

to the program.

If the error level is specified, the program generates an

error matrix assuming that the specified error level
represent an average error. Following the suggestion by

Stewart (1987), the elements of the error matrix are

calculated from the equation:

dxij �
5Rn

3
oxj (19)

where Rn is a random number with a zero mean and a

unit variance and oxj is the specified error level in the jth

independent variable. The calculation of the error vector

for the dependent variable is carried out using the same

equation, but replacing oxj by oy and dxij by oj . There are

two options for generating the random numbers. If the

program parameter rand_type is set at zero, the random

number generator is reset to its 0th state in every run of
the program. If rand_type�/1, the random number

generator is reset to a different state for each run.

Error level estimates are often unavailable for ob-

servational or experimental data. In such cases, the

assumption that the data are accurate to all reported

figures and subject only to rounding errors, can provide

error level estimates. Based on this assumption, Stewart

(1987) recommended the use of the expression 0.3�/

10�t for error level estimation, where t is the digit at

which rounding occurs.

4.2. Definition of the regression model

There are several options available for model defini-

tion and they are governed by the parameters: model ,

freeparm , transform and maxorder . The model can be

linear, including only the user-specified independent

variables. If a quadratic model is requested, the program
generates additional explanatory variables by co-multi-

plication of the independent variables. If there is only

one independent variable, a polynomial model can be
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requested, in which case additional explanatory vari-

ables containing various degrees of the independent

variable (up to the degree specified by the parameter

maxorder ) are generated. The options to generate a

linear, quadratic or polynomial model with (freeparm�/

1) or without (freeparm�/0) a free parameter are

offered.
Before generating the additional explanatory vari-

ables, data transformation is carried out, if so requested.

The transformations available are: standardization,

normalization and transformation to the [�/1, �/1]

range. Standardization is a common practice in statis-

tical studies and involves removing the mean and then

normalizing to unit standard deviation each of the

independent variables. Note that the dependent variable

is not transformed.

Normalization is commonly used in engineering and

science to generate dimensionless variables. Dividing

elements of every data column with the maximal

(absolute) value in the same column normalizes the

independent and dependent variables.

Shacham and Brauner (1997) found the transforma-

tion to the range of [�/1, �/1] especially useful in

polynomial regression, as it minimizes the interdepen-

dency between the model parameter values. This trans-

formation is defined by:

z�
2x � xmax � xmin

xmax � xmin

(20)

As in the case of standardization, the dependent variable

is not transformed.

4.3. Controlling user interaction and display of results

The program can carry out the complete SROV

algorithm (as described in the previous section) auto-

matically. However, the user may override the decisions

regarding the variables that are selected to the basis and

regarding the maximal number of variables to be

included. To let the program run without intervention

(batch mode), the parameter inter_level must be set at

zero. In the batch mode, only results obtained after the

completion of the initial phase and after each rotation

phase are reported. These results include all the b̂ and b̆

values, the respective confidence intervals, the variance

and sum of squares of the errors. In the batch mode, no

graphs are plotted.

In the interactive mode (inter_level�/1), the program

stops after every step that involves a decision, waiting

for the user response to either confirm or change the

decision suggested by the program. To assist the user

decision, the values of YXj , CNRj and TNRj are

displayed for the three non-basic variables with the

highest absolute YXj values. In the interactive mode,

various plots can be requested. With plot_level�/1, a

residual plot is displayed for the solution found at the

end of each phase. With plot_level�/2, a normal

probability plot is also displayed and a plot of experi-

Table 6

SROV program parameters, parameter interpretations and default values

Number Parameter Value and interpretation Default value

1 data_file_type 0-No error matrix is specified 0

1-Error matrix is specified

2 error_type 0-Absolute error 0

1-Relative error (%)

3 freeparm 0-No free parameter in the model

1-There is a free parameter in the model 1

4 inter_level 0-Lowest level of interaction 0

1-Highest level of interaction

5 maxorder 1-30-Maximal degree of a polynomial term 20

6 model 0-Linear

1-Quadratic (several independent variables) 1

1-Polynomial (one independent variable)

7 plot_level 0-No graph plotting

1-Residual plot 1

2-Residual, normal probability and calculated versus experimental values

8 prob_title ([‘default problem title’])

9 rand_type 0-Generator is reset to 0th state 0

1-Generator is reset to a different state, every time

10 transform 0-No data transformation

1-Standardization 1

2-Normalization

3-Transformation to the range [�/1,�/1]
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mental data points and calculated curve is prepared

(only in case of one independent variable).

4.4. Loading the data, input of error levels and change of

default parameter values

The commands to load a particular set of data, input

the values of oxj and oy and changing the default

parameter values can be carried out interactively or by

running an M-file which includes these commands. The

details of the various commands will be explained and

demonstrated in the next section in connection with the

two motivating examples.

5. Finding optimal solutions for the motivating examples

with the SROV program

5.1. Example 1

The file that includes the commands for loading the
data, setting the estimated error levels and changing

default program parameter values for Example 1 is

shown in Appendix A. The data for this problem is

stored in the text file Fearn.dat . This file has to be

loaded and its content is transferred to a matrix

xyData0 , which is a variable recognized by the program.

A problem title can be specified for documentation

purposes, by entering it into the variable: prob_title . By
default, the program carries out standardization of the

data. In this example, the original data is used without

any transformation (transform�/0). To obtain a linear

model, the parameter model is set at zero.

There is no information regarding the precision of the

data, thus it is assumed that the data is accurate up to all

reported figures. Following the discussion in the pre-

vious section, the average error level in L1, L2, . . .L6 is
set at 0.3 and in the independent variable (% protein) at

0.003. These values are entered into the vector errx0 and

the variable erry0 .

The data file and the command file (shown in

Appendix A) are sufficient for a complete definition of

this problem. The second part of the Appendix shows

the results that are displayed during the initial basic-

variables selection phase, when an interactive mode of
operation is selected.

At each step of the initial phase, the variable number,

the values of YXj , TNRj and CNRj are displayed for the

first three variables with the highest absolute YXj

values. The program selects the variable with the highest

absolute YXj value to enter the basis next (provided that

both TNRj �/1 and CNRj �/1), but the user can over-

ride this selection. After a variable has entered the basis,
the respective b̆ and confidence interval values, as well

as the current model variance, are displayed. The

statistical indicators (the variance and confidence inter-

vals) are calculated at this stage in order to provide the

user a basis for comparison with the indicators based on

signal to noise ratio and reassessment of the error level

estimates.

In this particular example, YX2 (YXj associated with

the independent variable L2) has the highest absolute

value (YX2�/0.55154). Consequently this variable is

selected to enter the basis first. The order of the first

three non-basic variables (according to their YXj values)

after completion of the first step is L4, L1 and L6,

where all TNRj �/1 and CNRj �/1. Variable L4 is

selected to enter the basis at step two. This addition

leads to reduction of the variance by an order of

magnitude, while its parameter value is significantly

different from zero (the confidence interval is still

significantly smaller (in absolute value) than the respec-

tive parameter value). The order of the first three non-

basic variables (according to their YXj values) after

completion of the second step is L5, L3 and L6, where

only CNR5�/1. Thus, only L5 can be still added to the

regression model. Adding this variable leads to a

moderate decrease of the variance, however, the asso-

ciated parameter value is still significantly different from

zero. At this point, no more variables satisfying the

criterion: CNRj �/1 are left. Hence, the phase of the

initial base selection has been completed and the

regression results, in terms of the original non-orthogo-

nalized variables, are displayed. These results are shown

in Table 7. The model obtained in the initial phase

includes only three, out of the six, variables: L2, L4 and

L5. This model is stable, since all the confidence

intervals are smaller than the respective parameter

values.

The 1st rotation phase identifies a solution that

includes variables L3, L4 and L5, which is also stable

and has significantly smaller variance than the basic

solution. An additional rotation phase shows that this

model cannot be improved further. The results of the 1st

rotation are also shown in Table 7. Comparing the

variance and the R2 values of this stable solution (s2�/

0.05057 and R2�/0.978) with those of the unstable

solution that contains all six variables (s2�/0.04855

and R2�/0.991), see Table 3 shows very little differ-

ences. Thus, the inclusion of additional variables in the

model renders it unstable without improving its accu-

racy.

In Table 8, the final results of the SROV program are

shown for the ‘prediction set’ data and for a data set

that combines the data from the ‘calibration’ and

‘prediction’ sets. It can be seen that in both cases the

stable regression model includes three out of the six

variables: L3, L4 and L6. The coefficients of L3 and L4

are very similar to the coefficients obtained using the

data of the ‘calibration’ set, but in these last two models

L5 was replaced by L6.
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It can be concluded that the SROV has identified a

minimum variance, stable model for both the ‘calibra-

tion’ and the ‘prediction’ sets. However, based on the

limited data of these two samples alone, there is still an

uncertainty whether L5 or L6 should be included in the
regression model as to better represent the whole

calibration curve.

5.2. Example 2

The file that includes the commands for loading

the data, setting the estimated error levels and

changing program default parameter values for Exam-
ple 2 is shown in Appendix B. The data for this

problem are stored in the text file: marquardt.dat . This

file has to be loaded and its content is transferred to a

matrix xyData0 (recognized by the program). The

problem title is entered by the variable: prob_title . By

default, the program carries out standardization of the

data, in this case normalized data (transform�/2) is

used.
The average error levels for the various variables are

determined using the same considerations as in Example

1. The only exception is for the temperature; following

the information provided by Kunugi et al. (1961)

concerning the experimental error, an average error

level of 2.5 8C is assumed.

The results obtained by the SROV program for this

example are summarized in Table 9. At the initial phase,

a regression model containing five variables: x1, x2, x1x2,
x2x3 and x2

2, with a variance of s2�/0.000712 is

identified. Three consecutive rotations yield three addi-

tional solutions with consecutively decreasing variances.

The solution of the lowest variance is obtained at the

completion of the 3rd rotation. The model contains five

variables: x1, x2, x1x2, x2x3 and x1
2. This model is stable

(the 95% confidence intervals are smaller, in absolute

value than the respective parameter values). The values
of the variance and the linear correlation coefficient are

very close to those obtained with the full quadratic

model of nine explanatory variables (s2�/0.0004186 and

R2�/0.99497 for the optimal model, compared with

s2�/0.0003186 and R2�/0.9977 for the full quadratic

model). The residual plot of the optimal model (not

shown) is also very similar to the residual plot of the full

quadratic model (see Fig. 3).
It can be concluded that the SROV program has

identified a stable regression model that represents the

data adequately. In addition to this ‘optimal’ model,

several sub-optimal’ models have also been identified.

These ‘sub-optimal’ solutions may also be considered

Table 7

Results of the SROV program for the ‘Calibration set’ of Example 1

Parameter Initial phase 1st rotation

Value 95% Confidence interval Value 95% Confidence interval

b0 54.65315 6.181407 32.61907 2.792364

b1 0 �/ 0 �/

b2 0.230258 0.025349 0 �/

b3 0 �/ 0.242654 0.018364

b4 �/0.2132 0.030033 �/0.23087 0.021878

b5 0.015601 0.010774 0.008339 0.007428

b6 0 �/ 0 �/

Variance 0.104039 0.0505747

R2 0.954995 0.9781223

Table 8

Results of the SROV program for the ‘Prediction set’ and ‘Combined sets’ of Example 1

Parameter Prediction set Combined sets

Value 95% confidence interval Value 95% confidence interval

b0 23.401965 3.1706242 23.42421 2.920564

b1 0 �/ 0 �/

b2 0 �/ 0 �/

b3 0.2661082 0.0163408 0.259497 0.011405

b4 �/0.2146058 0.0141748 �/0.21018 0.010862

b5 0 �/ 0 �/

b6 �/0.0483577 0.0147088 �/0.04618 0.0139

Variance 0.044495 0.049382

R2 0.983362 0.978452
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for representing the data, particularly in cases where

additional considerations dictate their preference over

the ‘optimal’ solution.

6. Program tests and further developments

In the course of the program development, many

benchmark problems involving data analysis and regres-

sion model identification were solved using SROV.

Some of the results have been already reported in detail.
In Shacham and Brauner (1999a), for example, a

polynomial model is fitted to heat capacity data of solid

1-propanol and a quadratic model was used to correlate

the yield of precipitation of CaHPO4 �/ 2H2O as function

of three variables. Brauner and Shacham (2002) present

two examples. One involves fitting a power-law expres-

sion of dimensionless numbers to heat transfer data

after linearization of the expression (by taking logarithm
of the two sides of the expression). In the second

example, vapor pressure data is correlated using a

bank of 23 nonlinear expressions involving various

nonlinear functions of TR (reduced temperature).

SROV is used to select the variables to be included in

an optimal model to represent ln PR (reduced vapor

pressure).

Work is currently underway to prepare and put on the
web a large collection of benchmark problems, which

were used for testing the SROV program. This library

will contain the data and the optimal model/s that were

identified by SROV.

It may often happen that the dependent variable data

cannot be adequately represented by a linear (or a

quadratic model) because of non-Gaussian error dis-

tribution. Such a situation can be detected using the
residual and normal probability plots provided by the

SROV program. In such cases, the Box�/Cox (maximum

likelihood) transformation of the dependent variable

can be applied to linearize the regression model and

obtain normal error distribution. The SROV program

can at the present be used in conjunction with the Box�/

Cox transformation: the SROV is put in an internal

loop, while in the outer loop, a minimization of the

variance is carried out by changing the Box�/Cox

parameter. Work is currently under way to include the
Box�/Cox parameter search as an integral part of the

SROV program.

7. Conclusions

The use of the SROV program for solving regression

and data analysis problems involving linear, polynomial

and quadratic models has been demonstrated. It has

been shown that if the components of the model (the

explanatory variables) cannot be determined a priory,

using a stepwise regression procedure (such as SROV) is
a must. Including non-influential or collinear explana-

tory variables in the model may lead to an unstable

model where, for example, there is uncertainty regarding

the direction of the change of the dependent variable

due to changes in some of the explanatory variables.

In the examples presented, the SROV has identified

the optimal model (a stable model with minimal

variance) and identified also several sub-optimal mod-
els. The sub-optimal models help to discriminate be-

tween non-influential and collinear variables. Non-

influential variables do not show up in any of the sub-

optimal models and they can be safely removed from

any further consideration. Variables that show up in

some sub-optimal models and do not show up in others,

are associated with a certain level of colinearity. In such

cases and with a limited sample size, the distinction
between the optimal and sub-optimal models may be

sample dependent. A regression model, which seems

optimal for one particular sample may not be the

Table 9

Results of the SROV program for Example 2

Parameter (variable) Value 95% confidence interval

Base solution 1st rotation 2nd rotation 3rd rotation

b0 �/4.6104 �/2.0825 0.39421 7.5908 6.7437

b1 (x1) 5.5134 �/ �/5.4159 �/21.0655 14.598

b2 (x2) 3.387 4.1783 4.5374 7.2047 2.3536

b3 (x3) �/ �/ �/ �/ �/

b4 (x1x2) �/3.1136 �/3.9455 �/4.3427 �/7.2904 2.3302

b5 (x1x3) �/ �/ �/ �/ �/

b6 (x2x3) 0.20879 0.056781 �/ �/0.53664 0.47242

b7 (x1
2) �/ 3.0065 5.9635 14.5226 7.8744

b8 (x2
2) �/0.31782 �/0.2787 �/0.248 �/ �/

b9 (x3
2) �/ �/ �/ �/ �/

Variance 0.00071207 0.00053764 0.00044592 0.00041857

R2 0.994974
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optimal for a different sample of the same accuracy

level, of the same or a different size. Additional user

considerations may dictate replacement of the optimal

model by one of the sub-optimal models.
It can be concluded that in addition to providing an

optimal and stable solution, the SROV program pro-

vides also insight regarding the relationships that exist

between the explanatory variables, between the expla-

natory variables and the dependent variable and in-

formation on model related uncertainties caused by

sample size and experimental errors.

Appendix A: Commands’ file and partial results of the

SROV program for Example 1

Commands file

load Fearn.dat
xyData0�/Fearn;

prob_title�/([‘Calibration of a Near Infrared Reflec-

tance Instrument’]);

transform�/0;

model�/0;

for i�/1:6

errx0(i)�/0.3;

end
erry0�/0.003;

Selection of the variables included in the model in the

initial stage

Starting initial base selection. Press a key to continue

Var. No. x*y (norm.) TNR CNR

2 0.55154 57.814 39.117

3 0.53734 67.448 46.611

1 0.46667 72.266 47.651
The new base variable selected is var. No.2. Press

enter to accept or type in a different number. Type in 0

(zero)to finish �/

Stage No. Beta Variance Conf. interval

1 0.027591 1.3987 0.018

Var. No. x*y (norm.) TNR CNR

4 �/0.95174 9.489 12.44

1 �/0.8832 4.4786 5.9117

6 �/0.71211 4.7727 4.4372

The new base variable selected is var. No.4. Press

enter to accept or type in a different number. Type in 0

(zero) to finish �/

Stage no. Beta Variance Conf. interval

2 �/0.18543 0.13773 0.026439

Var. No. x*y (norm.) TNR CNR

5 0.55972 19.791 2.5538

3 �/0.45512 1.6544 0.93572

6 �/0.30526 3.9019 0.79514
The new base variable selected is var. No.5. Press

enter to accept or type in a different number. Type in 0

(zero) to finish �/

Stage number Beta Variance Conf. interval

3 0.015601 0.099085 0.010482

Initial base selection finished. Press a key to display the

results.

Appendix B: Commands’ file for the SROV program for

Example 2

load marquardt.dat
xyData0�/marquardt;

prob_title�/[‘Thermal cracking of hydrocarbons to

acetylene’];

transform�/2;

errx0(1)�/2.5;

errx0(2)�/0.03;

errx0(3)�/0.0003;

erry0�/0.03;
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