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The performance of algorithms for solving constrained systems of non-linear
algebraic equations is investigated with the objective of developing a method, which
can converge to a feasible solution even in presence of discontinuities in the
functions, without requiring user intervention. Using as an example a CSTR model, it
is demonstrated that certain types of problems can be very difficult to solve using
purely numerical algorithms. Symbolic manipulation of the equations may be required
to remove the discontinuities from the feasible region in order to alleviate the
numerical solution process.

Introduction

Mathematical models of chemical processes may occasionally yield physically
infeasible solutions. Typical examples include a fractional conversion factor that is
greater than one, or concentration of a component which is negative in a chemical
reactor, negative value of the compressibility factor when using a cubic equation of
state and temperature crossover in a heat exchanger. Although such solutions do
satisfy the mathematical model being used, the results indicate that the model is
used outside of its region of validity. In a simulation environment, where the solution
of the nonlinear algebraic equations can be just one phase of a complex
computational scheme, it is important to ensure that the feasible solution is obtained
(and/or selected) without users intervention.

It is possible to add constrains to the process models, which will force the variables
to stay inside the feasible region. Several algorithms are available that can solve
constrained systems of nonlinear algebraic equations: the "constrained' algorithm of
Shacham [1], the iterative linear programming (LP) methods of Bullard and Biegler [2]
and Wilhelm and Swaney[3] and the multidimensional bisection method of Gupta [4].
The "constrained' algorithm combines the step-length restricted Newton-Raphson
method with the Levenberg-Marquard algorithm (when the Jacobian matrix happens
to be singular) and with a continuation approach (if no feasible solution is reached) to
keep the variables inside the feasible region and eventually reach a solution in this



region. In the iterative LP technique, linear programs are solved that combine local
Jacobian and global bounding information to generate search directions that satisfy
region feasibility. In the multidimensional bisection method a sequence of one
dimensional problems are solved using bisection in order to ensure that the variables
stay inside the feasible region.

The successful uses of Shacham's [1] 'constrained' algorithm for simulation problems
are widely documented. Lorenzini et al [5] carried out simulation of the ethylene-
alpha-olefin co-polymerization process using this method. Sarkar and Gupta [6] used
this method for steady state simulation of continuous-flow stirred-tank slurry
propylene polymerization reactors. Von Bergen et al [7] applied the 'constrained’
algorithm for calculating vapor-liquid equilibrium and density of complex mixtures
using the lattice fluid model equations of state. Three most recent applications of this
method include simulation of polymer absorption at the solid liquid interface by a
continuum model (Juvekar et al [8]), simulation of micro-phase enhanced reactions
(Hasnat and Roy [9]) and modelling the acid separation behavior of weak base ion
exchange resins (Bhandari et al. [10]) .

Shacham's [1] constrained algorithm was implemented in POLYMATH 5.0
(POLYMATH is copyrighted by M. Shacham, M.B. Cutlip and M. Elly,
http://www.polymath-software.com) numerical computation package and has been
used extensively for simulation of various processes (see, for example, Shacham et
al [11]). We have noticed that the algorithm may occasionally fail to reach a feasible
solution and user intervention is needed to enable it to converge (after rearranging
the equations, for example). User intervention may not be a viable approach,
especially if large-scale problems are concerned. Therefore, to improve the
algorithm's performance it is important to identify the reasons for its failure.

In this paper an example is presented where the 'constrained' algorithm (as well as
all the other algorithms tested) failed to reach the solution using the basic formulation
of the equation set. The reason for the failure is analyzed and possible ways for
improving the algorithm are discussed.

An example - consecutive reactions in a CSTR (Fogler [12])

The description of the model equations and the output variables for the example are
shown in (tab. 1). The equations represent material and energy balances on a CSTR
operating at steady state, in which the consecutive reactions 2A+B->3C, C+2B->D
and D->E are carried out. The first five equations are material balance equations
(see the "Model Equations' column in (tab. 1)) on species A, B, C, D and E,
respectively. These are implicit equations which should be zero at the solution. The
sixth equation is also an implicit equation, representing the energy balance on the
CSTR. The additional equations are explicit equations, including the Arrhenius
expressions for defining the reaction rate coefficients as function of the temperature
(8) to (10), definitions of additional terms of the energy balance equation (7) and of



some constants (11) to (13). The equations are shown in a format compatible with
POLYMATH 5.0 package, where an "output' variable is selected for every equation
(including the implicit equations) for documentation and bookkeeping purposes.

We have attempted to solve this system of equations using the 'constrained'
algorithm and two "globally convergent' algorithms from the Numerical Recipes book
[13]. The latter algorithms combine search for the minimum of the sum of squares of
the function values along the direction assigned by Newton's method or Broyden's
method. All three algorithms failed to converge to a solution irrespective of the initial
guess used.

A solution could be found by the 'constrained' method only after the equations were
modified by multiplying equations (1) to (5) by the respective expressions appearing
as denominators, thus eliminating in these equations division by the unknowns.
Using the initial guesses shown in (tab. 1), the constrained method converged to the
following solution: T= 372.7646 K, CA= 0.002666, CB = 0.033464, CC = 0.837066,
CD = 3.97E-04 and CE = 0.808538 (all concentrations are in mol/dm?). The "globally
convergent' methods failed to solve the system even in this modified form.

In an attempt to further alleviate the solution of the problem, the variables T and CA
were selected as implicit variables. This allows explicit expression of CA using eq.
(1), of CC using eq. (3), of CD using eq. (4) and of CE using eq. (5). With this
formulation, only two simultaneous equations have to be solved and all three
methods converged to the solution (from the initial guess shown in (tab. 1)).
Disregarding the constraints an additional, physically infeasible solution was also
found when the iteration was started from large values of CB as initial estimates (like
CB =1). The infeasible solution found is T= 328.8334, CA= -0.002, CB=-1.65354,
CC=0.001725, CD= 0.004905 and CE= 1.646368.

Discussion and Conclusions

To investigate the reasons for the failure of all the methods tested, with the original
problem formulation, one of the functions (f(CD), eq. (4) in (tab. 1)) is plotted versus
the temperature in the vicinity of the solution, (fig. 1). It can be seen that the function
value changes very sharply over a very small temperature interval. At T = 372.70 K
the function value is 350, at T = 372.7646 K the function value is practically zero and
at T = 372.79128 K the function value is unbounded as the denominator in eq. (4)
approaches zero. Thus, for a temperature difference smaller than 0.04 K (relative
change = 0.01 %), the function value goes from zero to infinity.

The major difficulties associated with the solution of this problem in its original
formulation can be summarized as follows. 1. There are points and regions where
functions are undefined within the physically feasible region. 2. Some of these
discontinuities are extremely close to the solution. The question arises whether there



is an existing numerical algorithm that can successfully deal with such difficulties
and, if not, whether such an algorithm can be developed.

The iterative LP ([2] and [3]) and the "multidimensional bisection' [4] algorithms are
not suitable for solving this example, because both methods assume function
continuity inside the feasible region. In general, all methods that assume function
(and derivative) continuity are due to fail for the same reason. Minimum seeking
methods, which do not necessarily require continuous functions (such as Powel's
method of search, see reference [13], for example), are unsuitable because of the
extremely high resolution needed in the line search in order to locate the minimum
between two very high function values. Moreover, no convergence to the global
minimum can be assured.

Based on the example presented, it seems that the viable approach to solve similar
problems is to remove the discontinuities in the feasible region by elimination of the
denominators containing unknowns from the equations. This is a simple task for the
small-scale example as presented here. However, for large systems of equations
and/or more complicated expressions, this could be a rather complicated task. To
eliminate discontinuities in the feasible region, without relying on user intervention, a
symbolic manipulation program that carries out this task has to be developed.

Table 1: Model Equations and Output Variable Description for the Example

Output variable

Initial Model Equations - Consecutive

No. Name Definition estimate Reactions in a CSTR |POLVERO05_3

Concentration
_ f(CA) =V - vo*(CAO-
1 CA of react%ntA CA(0)=.5 CA)/(2*k1B*CA*CB) #
(mol/dm®)
Concentration
_ f(CB) = V - vo*(CBO-
(mol/dm®)
Concentration
_ f(CC) =V - vo*CC/( 3*(k1B*CA*CB) -
3 CC of produgt C CC(0)=1 k2C*CC*CBA2 ) #
(mol/dm®)
Concentration
_ f(CD) = V- vo*CD/(-k3E*CD +
4 CD of product3 CD(0)=.01 k2C*CC*CBA2) #
D(mol/dm?)
Concentration
5 CE ofproductD CE(0)=1 f(CE) =V -vo*CE/K3E*CD #
(mol/dm®)

Temperature in
the reactor (K)

f(T) = 5000*(350-T) - 25*(20+40)*(T-
300) + V*SRH #
Heat of reaction SRH = (2"k1B*CA*CB)*20000 -
7 SRH (calls) 2*k2C*CC*CB"2*10000 +
5000*k3E*CD #

T(0)=420



Reaction rate
coefficient, 1

B KB roett cammol k1B = 0.4%exp((20000/R)*(1/300-1/T)) #
s)
o kpc Reactionrate coefficient, o5 — 4grexp((5000/R)*(1/310-1/T)) #

2" react (dm®/mol*-s)

Reaction rate
10 k3E coefficient, 3™ k3E = 10*exp((10000/R)*(1/320-1/T)) #
react (1/s)

Gas constant

11 R (cal/mol*K) R=1987#

12 v Reaactor volume V = 500 #
(dm”)
Feed flow rate _

13 vo (dm3/S) vo=75/3.3#
Concentration of A in the _

14 CAO feed (mol/dm3) CAO =25/vo #
Concentration

15 CBO of B in the feed CBO =50/vo #
(mol/dm3)
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