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Abstract

Construction of an optimal, of highest precision and stable regression models is
considered. A new algorithm is presented which starts by selecting the independent
variables included in a linear model. If such a model is found inappropriate, increasingly
more complex, higher precision models are considered. These are obtained by addition
of nonlinear functions of the independent variables and transformation of the dependent
variables. The proposed algorithm is incorporated in the SROV toolbox (Shacham, M.
and N. Brauner, 2002, Computers chem. Engng., in press). Using an example, it is
demonstrated that the algorithm generates several optimal models of gradually
increasing complexity and higher precision from which the user can select the most
appropriate model for his needs.

1. Introduction

Analysis, reduction and regression of experimental and process data are critical
ingredients of various CAPE activities, such as process design, monitoring and control.
The accuracy and reliability of process- related calculations critically depend on the
accuracy, validity and stability of the regression models fitted to experimental data. It is
usually unknown, a-priori, how many explanatory variables (independent variables
and/or their functions) should be included in the model. An insufficient number of
explanatory variables result in an inaccurate model, where some independent variables
that under certain circumstances significantly affect the dependent variable are omitted.
On the other hand, the inclusion of too many explanatory terms renders an unstable
model (Shacham and Brauner, 1999). Often transformations (such as the Box and Cox,
1964 "maximum likelihood" transformations) of the dependent and/or some of the
independent variables should be applied in order to obtain the most accurate and stable
regression model.

The presently available stepwise regression programs have several shortcomings for use
in CAPE related computations. They do not search for optimal value of the Box-Cox
transformation parameters for the dependent and/or the independent variables, thus the
search should be conducted manually. They may be highly sensitive to numerical error
propagation caused by collinearity among the independent variables and yield
inaccurate results without giving any warning concerning the inaccuracy. Most of them
do not consider the accuracy of the data available in determining the number of
variables to be included in the model, thus may yield an unstable regression model.
Development of better programs for stepwise regression and data reduction is hindered
by the lack of data sets, which are large enough and representative to CAPE related



applications, and can be used both for defining the needs for further developments and
for testing the software. In order to address this need, we have started developing a web-
based library, which includes data such as physical and thermodynamic properties,
process monitoring data and data used for estimating properties from descriptors of
molecular structure. Some data sets contain over a hundred independent variables and
over 200 data points. The library contains the data sets including information
concerning the experimental error, pertinent references and optimal models that we have
found.

In the course of library development, we have found that in general, applying stepwise
regression and/or Box-Cox transformations separately does not yield all the optimal
models. These and additional techniques should be applied in a systematic, procedural
manner in order to obtain the best results. In the next section, some basic concepts will
be reviewed and the proposed algorithm for the selection and identification of optimal
regression model will be presented. In section three, the proposed procedure will be
demonstrated using refinery data that were extensively discussed in the literature
(Daniel and Wood, 1980). All the calculations are carried out with a modified version of
the SROV program of Shacham and Brauner (2002).

2. Basic Concepts

A standard linear regression model can be written:
Y =B+ BiX; + BoXy .+ BX, +E (1)

where y is an N-vector of the dependent variable, x; j = 1,2, ... n) are N vectors of
explanatory variables, f,, f,.....5, are the model parameters to be estimated and € is
an N vector of stochastic terms (measurement errors). It should be noted that an
explanatory variable can represent an independent variable or a function of one or more
independent variables The vector of estimated parameters ﬂ ,BO, ,Bl, ..... ,Bn can be
calculated via the least squares error approach by solving the normal equation:

X'XB = X"y @

where X=[1, xi, X,... X,] is an N(n+1) data matrix and X"X=A is the normal matrix.
This method is rarely used for actual calculations, since it is subjected to an accelerated
propagation of numerical errors in cases of colinearity (see for example, Brauner and
Shacham, 1998). The condition number of the normal matrix, k(A), (the ratio of the
absolute values of the maximal to minimal eigenvalues) is used as a convenient measure
of the ill-conditioning of the regression problem. Alternative methods for least-squares
regression are described by Bjorck (1966).

The SROV program combines stepwise regression with QR decomposition to find the
optimal regression model. The QR decomposition solves the equation Xp =y by
decomposing X into the product of a matrix Q of orthogonal columns, and an upper
triangular matrix, R. The SROV algorithm generates the Q matrix using the Gram-
Schmidt method (see for example, Bjorck, 1966). Variables are selected to enter the
regression model according to their level of correlation with the dependent variable and



they are removed from further consideration when their residual information gets below
the noise level. Addition of new variables to the model stops when the residual
information of all remaining variables gets below their noise level. A detailed
description of the SROV algorithm and the criteria used for variables selection and
replacement can be found in Shacham and Brauner (1999,2002).

The quality of the regression model is assessed in view of numerical and graphical
information, which includes the model variance, confidence intervals on the parameter
estimates, the linear correlation coefficient, residual and normal probability plots. The
model variance is defined: s* =[(y — §')T(y - 9)]/ v, where yand y are the measured
and calculated vectors of the dependent variable respectively, v is the number of
degrees of freedom (v= N—(k +1)) and k is the number of independent variables
included in the model. The linear correlation coefficient is defined by
R? =[(y- y)T(y - )7)]/[(y - j)T(y - y)] , where Y is the mean of y. The variance and
R* are used for comparison between various models, where a regression model that
yields a smaller variance and the R value closer to 1 is considered superior.

The confidence interval on parameter j (A[? ;) is defined by A,B ;=tv,a) s’a i
where g is the diagonal element of the inversed normal matrix, and #(v,a) is the
statistical ¢ distribution corresponding to v degrees of freedom and a desired confidence
level, a. A model where one or more of the confidence intervals are greater in absolute
value than the associated parameter values (parameter value is not significantly different
from zero) is considered unstable (or even ill-conditioned). Therefore, it is usually
considered as unacceptable. The signal-to-noise ratio indicators, which are used by the
SROV program for variable selection, usually remove from the model variables
associated with insignificant parameter values. However, the removal of the free
parameter (f3p) is the user's responsibility. This may be required based on theoretical
considerations or due to excessive confidence intervals on this parameter.

If the distribution of the errors in the residual plot (plot of Y — ¥ versus Y ) is random,
so that no clear trend can be identified, the model can be considered as appropriate
representation of the data. Otherwise, the use of Box-Cox transformation and/or
addition of nonlinear functions of the independent variables should be considered. The
Box-Cox transformation is a power transformation of the dependent variable: y' = y* ,
where the parameter A is selected so as to minimize the variance of the resultant
correlation. In order to enable a meaningful comparison of the variances of regression
models obtained with different A values, the dependent variable must be standardized.
The standardized variables employed for the search are : w =K ( yi 1) for A#0
and w=K,1Iny for A=0 , where K, =4[]y, and K, =1/(AK;™") . In case the
Box-Cox transformation with linear terms of the independent variables does not yield a
random distribution of the residuals, adding nonlinear functions of the independent
variables should be considered. It is customary to use a full quadratic model (containing
nonlinear functions of the form x;x; and x7) or polynomial model (including higher
powers of x') as an initial bank of explanatory variables for carrying out the stepwise
regression, unless theoretical considerations suggest different functional forms. It is
worth noting that quadratic and polynomial models tend to be ill-conditioned if many
terms or high powers of the independent variable are included in the model. IlI-
conditioning of the model is indicated by a very large value of the condition number of
the normal matrix. Such ill-conditioning can be prevented by transformation of the
independent variables to the [-1, +1] (or similar) range. One of such transformation



supported by the SROV program is the standardization, where the transformed variable
is defined by z = (x — X)/ st.dev(X).

3. The Procedure for Constructing Optimal Regression Models

For the sake of brevity, only cases where there is no prior information (from theoretical
considerations and/or from experience) on nonlinear functions of the independent
variables to be included in the regression model, are considered. For the dependent
variable, the commonly used function Iny can be used as starting point for the search
instead of y. Based on the principles outlined in the previous section, the search
procedure for the optimal regression model can be outlined:

1. The Box-Cox parameter is set at 4 =1 for using y as dependent variable or 1 =0 for
using Iny as dependent variable. A search for the independent variables to be included in
the optimal linear model is carried out using SROV. The search is repeated with f, set at
zero and the best model is selected according to the variance and R? values. The
residual plot for the selected model is examined. If the errors are randomly distributed
finish, otherwise proceed to step 2.

2. A search for the Box-Cox parameter value that yields a minimal variance is carried
out, using the SROV in an internal loop to select the independent variables to be
included in the model with each value of 4. The residual plot for the selected model is
examined. If the errors are randomly distributed finish, otherwise proceed to step 3.

3. Step 2 is repeated using a quadratic model (in case of several independent variables)
or a polynomial model (one independent variable). The condition number of the normal
matrix is checked. If it is not much larger than that of the linear model, finish.
Otherwise proceed to step 4.

4. Step 3 is repeated using transformed independent variables. Note that transformation
of the variables requires adding a free parameter to the model even if it was omitted in
previous steps. The most appropriate model is selected by comparing the models
obtained in steps 1 — 4 on the basis of the variance, Rz, the residual plots and additional
practical considerations (complexity of the model, derivatives etc.)

4. Operation of a Petroleum Refining Unit — An Example

This example was first introduced by Gorman and Toman (1966) and since then was
extensively used in the statistical literature. The data set contains 36 data points of 10
dependent variables and one independent variable, where each row in the data set
represents one day of operation of a petroleum refining unit. The complete data set of
this example is given in Daniel and Wood (1980). They have also carried out a stepwise
regression analysis of the data set using a linear model that includes a free parameter
and the transformation In y for the dependent variable. This corresponds to Step 1 of the
proposed algorithm with A = 0. The optimal solution obtained for this case by SROV is
shown in Table 1. Note that the range of the dependent variable, the parameter values
and the variance correspond to w = K, In y = 128.68 In y. Six out of the ten variables are
included in the regression model. In terms of stability, this is a borderline case, since the
confidence interval on f, is very close to the parameter (absolute) value itself. The



residual plot for this model is shown in Figure 1, indicating a clear trend in the error
distribution. For low values of the dependent variable (w), the residuals tend to be
negative and for high values, the residuals are mostly positive. Thus, it is necessary to
proceed to the following steps of the proposed algorithm.

The optimal results obtained by SROV in the various steps of the algorithm are
summarized in Table 2. The insignificant value of /3, obtained in step 1 implies that it
can be removed from the model (step 1.2). Indeed, using a linear model with 4 = 0, but
without a free parameter improves the results in several respects. The variance
decreases, R” gets closer to one, there are only six parameters in the model and all the
parameter values are significantly different from zero. The residual plot, however, still
indicates an opportunity for further model refinement. Proceeding to step 2 with a
search for an optimal Box-Cox parameter (Aopima = 0.3) results in only a marginal
reduction of the variance.

Introducing a quadratic model in step 3 increases the number of the potential
explanatory variables to 65. As shown in Table 2, the inclusion of quadratic terms leads
to significant improvements, where a stable model with 9 parameters and with a
variance of about half the value obtained with the previous linear models. Obviously,

introducing non-linear effects of the independent variables may change the optimal
value of the Box-Cox parameter. Thus, a search for the optimal value of 4 is carried out
simultaneously with the search for the variables to be included in the model. However,

Table 1 Optimal regression model for . 53 955 G D T
A=0, (K, = 128.68) linear model *
including a free parameter. “ v+
Parameter Value Confidence 0 . ' .
(variable) interval §zu ***j Lt
Bo 758.0123 2671427 2 " oL
B () -11.4787 4697 £t LT '
B (X3) -223.1336 175.5181 & L
B3 (xs) -1078.4844 755.9046 e :: +
B 4 (Xo) 136.0463 85.1292 @ .
B s(xs) 9.855 7.5778 .
ﬁ . (XIO) 54129 36777 400 450 500 iﬁ(ﬂdependﬁeﬂﬁ Va,ia;i? 700 750 800
no. of parm. 7
variance 1322.05 Figure 1. Residual plot for optimal
R’ 0.851540 regression model: A =0, linear
K(A) 5:4228E+05 model including a free parameter.




Table 2 Results summary of optimal models of the various stages of the algorithm.

Algorithm stage 1.1 1.2 2 3 4
A 0 0 0.3 0.55 0.618
model linear linear linear quadratic quadratic
transformation no no no no yes
free parm. yes no no no yes
no. of parm. 7 6 6 9 13
variance 1322.05 1190.50 1060.72 588.54 344.51
R? 0.85154 0.86266 0.86799 0.94024 0.97098
K(A) 5.4228E+05  5.7534E+07  5.7534E+07 1.7786E+13  99.2685

since the condition number of the resulting quadratic model is greater by several orders
of magnitude compared to those of the linear models, a transformation of the
independent variables is advisable (step 4).

The optimal model obtained by SROV, using the quadratic model with transformed
variables, includes 12 explanatory variables (13 parameters), where all the confidence
intervals are significantly different from zero. The variance is the smallest of all the
models tested and R’ is the closest to one. The condition number is very small in
comparison to the other models, thus this solution can be considered highly accurate.
The linearity of the normal probability plot for this case indicates normal distribution of
the residuals.

5. Conclusions

It has been demonstrated that the proposed algorithm suggests a considerable progress
in modeling and regression of data, especially in cases where there is no a-priori
information on the model structure neither from theory nor from experience. The
algorithm starts by identifying the independent variables of an optimal (of the lowest
variance and stable) linear model and gradually progresses to models of increasing
complexity and precision as necessary. Along the route, the algorithm generates several
optimal models from which the user can select the one that is most appropriate for his
needs, while considering the model complexity and precision.
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