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Van Laar and Margules Equations 
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Linearization is used extensively in regression and model testing of experimental data. In this work, 
Margules and Van Laar equation parameters have been calculated, for one sample data set, using 
several different linearization methods. The  resultant parameter values were compared with values 
obtained by nonlinear regression. The increase in absolute error and change of its distribution due 
to  the transformation of the data were also analyzed. It is concluded that  linearization may lead 
to  inaccurate or even completely incorrect parameter values which do not describe the original data 
adequately. The  commonly used statistical tests may not detect the inaccuracy of the calculated 
parameter values. The ultimate test is the accurate recovery of the original activity coefficient data. 

Introduction 
Linearization is used extensively in regression and model 

testing of experimental data, because it can be carried out 
graphically and also because linear regression software is 
more readily available than nonlinear software. Unfor- 
tunately, linearization may lead to false conclusions 
(Wisniak, 19931, and the statistical tests used to check the 
goodness of fit will often not detect that the parameters 
are incorrect. 

We have used the Margules and Van Laar equations to 
illustrate the problems that arise when linearization is 
used. The Van Laar and Margules equations are exten- 
sively used for the correlation of activity coefficients, 
particularly in binary solutions. They are mathematically 
simple and require only two adjustable parameters. 

There are many ways in which these parameters can be 
calculated from experimental data (King, 1969). Of these, 
we will only analyze the ones that involve linearization of 
the basic equations. The accuracyof the different methods 
will be compared using equilibrium data for l,l,l-trichlo- 
roethane (1) and propanol (2) a t  96.7 kPa determined by 
Kumar and Rao (1991) and reported in Table I. 

Margules Equation (Walas, 1985) 

energy as follows: 
The Margules equation describes the excess Gibbs 

g = GdRT = x1 In y1 + x 2  In y2 = x1x2(Ax, + Bx,) (1) 

where x1 and xp are mole fractions of components 1 and 
2, respectively; y1 and yp are the activity coefficients; and 
A and B are two constants, independent of the temperature 
and composition, characteristic of the components. 

The pertinent expressions for the activity coefficients 
are 

y1 = exp[x;(2B - A) + ~ x , ~ ( A  - B ) ]  (2) 

y2 = exp[x12(2A - B )  + 2x13(B - All (3) 

The coefficients A and B can be determined from either 
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Table I. Activity Coefficient Data 

311 xz 71 YZ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0.0246 
0.0496 
0.0648 
0.0996 
0.1498 
0.2999 
0.3718 
0.4548 
0.5549 
0.6397 
0.8031 
0.8698 
0.9478 

0.9754 
0.9504 
0.9352 
0.9004 
0.8502 
0.7001 
0.6282 
0.5452 
0.4451 
0.3603 
0.1969 
0.1302 
0.0522 

5.2313 
4.9516 
5.0295 
4.6721 
3.959 
2.4264 
2.0725 
1.781 
1.549 
1.3695 
1.1698 
1.0745 
0.9998 

1.0036 
1.0084 
1.0153 
1.0283 
1.0502 
1.1865 
1.2918 
1.4699 
1.7619 
2.1246 
3.2094 
4.6223 
6.5437 

eq 1 (full population of data) or eqs 2 and 3 (50% of data 
population), as follows: 

1. Nonlinear Regression, Full Population. The best 
values of A and B in the least-squares-error sense will be 
found by minimizing directly the nonlinear objective 
function: 

where n is the number of data points and y? and yiy are 
calculated from eqs 2 and 3, respectively. 

2. Nonlinear Regression, Half Population. Utili- 
zation of eq 4 requires the use of an objective function 
which is the sum of two different objective functions. Some 
nonlinear regression programs will not allow the use of 
such combined expression. Equation 4 can be separated 
into two different objective functions: 

If there is no experimental error, it can be expected 
from theory that the values of A and B calculated from 
eqs 5 or 6 are equal. They are expected to be equal since 
y1,i and y2,i are not measured independently but calculated 
from the same measurements. 
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1. Nonlinear Regression, Full Population. Equa- 
tion 4 is used again, but 79““ and yidc are calculated from 
eqs 16 and 17, respectively. 

2. Nonlinear Regression, Half Population. Equa- 
tions 5 and 6 are used again with the appropriate rp and 
y p  values. 

3. Multiple Linear Regression, Half Population. 
Multiple linear regression can be used only in an iterative 
fashion. There is no advantage in using it for half 
population; hence, this case will be discussed in connection 
with full population multiple regression. 

4. Straight Line Regression, Half Population. By 
manipulating eqs 16 and 17, the following expressions can 
be obtained: 

3. Multiple Linear Regression, Half Population. 
Taking In of both sides of eqs 2 and 3 gives 

These expressions can be linearized by defining new 
transformation variables: y1 E In 71; y2 = In 72; XI’ = x12; 

XI’‘ = 2x13; x2‘ = xz2; and x i ‘  = 2 ~ ~ ~ .  Introducing the new 
variables into eqs 7 and 8 leads to 

4. Straight Line Regression, Half Population. 
While eqs 9 and 10 are linear in A and B,  graphical methods 
cannot be used to find the parameters. To allow the use 
of graphical methods, eq 7 can be divided by xz2 and eq 
8 by x12. Then the following transformed variables can be 
defined 

z1 f In yl/x$; z2 In y2/x12; x< = 2x1; x,’ = 2x2 

Using these transformations, the following expressions are 
obtained: 

z2 = (2A - B )  + xl’(B - A )  (12) 

5. Multiple Linear Regression, Full Population. 
The combined eq 3 is used in this case. Defining the 
transformed variables 

u E x1 ln y1 + x 2  In y2; x< xlx,2; x i  x2x12 

and substituting into (1)  gives 

u = Ax( + Bx,’ (13) 

6 .  Straight Line Regression, Full Population. In 
this case, the transformation function 

x1 71 + x2 7 2  

X l X 2  
W I  

is defined. Dividing both sides of eq 3 by ~1x2 ,  noting tht 
x1 = 1 - 2 2 ,  leads to the following expression: 

w = ( A - B ) x 2  + B (14) 

Van Laar Equation (Walas, 1985) 

follows: 
The pertinent equations for the Van Laar model are as 

y2 = exp(B/[l+ (x2/x1)(B/A)l2)  (17) 
The coefficients A and B can be determined as follows: 

=-+-- 1 X 2  B1I2 1 
(In y2)lJ2 B1I2 XI A 

Specifying the transformed variables 

x i  = XdX1 

the following linear functions are obtained 

z2 = A” + B”x,’ (21) 

where A’ = 1/A1J2, B‘ = A1J2/B,  A” = 1/B112, and B“ = 
B1J2/A. 

5.  Multiple Linear Regression, Full Population. 
Equation 15 can be rewritten 

x1 In y1 + x 2  In y2 = x , A / [ l +  (xl/x2)(A/B)12 + x $ ? / [ l +  
(x2/xl)(B/A)12 (22) 

Using the definition of the transformed variable u = 
XI In 71 + x2 In 7 2  the following iterative procedure can 
be used to find A and B: (i) estimate an initial value for 
the ratio r = A / B  (r = 1 can be a good estimate), (ii) define 
transformed variables XI’ f 1/11 + (xl/x2)(r)l2 and x2’ = 
1/[1 + ( x d x ~ ) ( l / r ) l ~ ,  (iii) solve the multiple linear regres- 
sion problem 

V =  Ax( + Bx,’ (23) 
for A and B,  and (iv) calculate a new value for r = AIB. 
If it is close enough to the previous value, end the iteration, 
otherwise, go back to step ii. 

6. Straight Line Regression, Full Population. 
Equation 15 can be rearranged to give 

= L + . E  (24) 
X1 

X 1 1 ” Y l + X , I n Y 2  A Bx2 
Defining 

W P  X I  and x < = x 1 / x 2  
x1 71 + x2 In Y2 

yields 
w = A’ + B’q‘ (25) 

where A’ = 1 / A  and B’ = 1/B. 
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Table 11. Errors in the Dependent Variables for the 
Margules Equation. 

5 . 5 8 -  

4.58 . -  

3.58.-  

71 
2.58.-  

I .  58 . -  

8.58- 

Table 111. Errors in the Dependent Variables for the Van 
Laar Equation. 

used in ea variable lcalcd - obsd valuel relative error, % used in ea variable lcalcd - obsd valuel relative error. % 

2 71 
3 YZ 
9 In 71 

10 In YZ 
11 21 

12 22 
13 U 
14 W 

0.0335 
0.0767 
0.03171 
0.0167 
1.877 
0.022 
0.0298 
0.26 

3.12 
0.4 
44.0 
1.096 
44.0 
1.1 
11.4 
11.38 

XI = 0.8698, 71 ,ob  = 1.0745, x z  = 0.1302, Y Z , ~ ~  = 4.6223, y1,ealc = 
1.041, yz,eale = 4.5456 (the latter two values calculated using A = 
1.7614 and B = 2.11). 

Error Analysis of the Transformation Functions 
For the least-squares error regression to give the best 

parameter values, we have to satisfy the assumptions that 
only the dependent variables (in this case y1 and yz) are 
subject to experimental error and that the independent 
variables ( X I  and x z  in this case) are accurate. These are 
reasonable assumptions in this particular case, since the 
liquid composition can be accurately analyzed. 

The arithmetic operations used in the different linear- 
ization schemes may change the error a t  a particular point 
considerably and change the distribution of error through- 
out the range of the measurements. The changes in error 
distribution will be demonstrated first theoretically and 
then numerically for a particular measurement point. Let 
6y indicate the absolute error in the measured value of y 
and R ( y )  the relative error. Thus, R ( y )  = I6yl/y. 

According to the general error propagation formula 

thus, the error in In y is 

and the relative error 

(26) 

(28) 

Let us investigate the case where X I  is very close to 1 
(say X I  > 0.9), so y1 is very close to 1, say y1= 1 + e where 
c < 0.1. In this case, In y1 - e; thus, the relative error in 
In y1 is a t  least 10 times larger than the relative error in 
y1 itself. 

If we calculate, for example, z1 = In y1/xz2, the relative 
error will not change very much, but the absolute error 
will be multiplied by 1 / ~ 2 ~  were x2 = 1 - XI < 0.1. Thus, 
the error will multiply by more than 100 times. 

Similar analysis can be carried out for the other 
transformed dependent variables (v, w, etc.). The general 
conclusion is that transformation of variables increases 
the error in them, and the change will depend on the values 
of XI and x2. As a consequence, the absolute error 
distribution throughout the range of measurements (0 < 
X I  < 1) will change. 

To demonstrate the change of error introduced by the 
different transformations, the error has been calculated 
for point no. 12, where XI = 0.8698, close to 1. To estimate 
the exact values of y1 and 7 2  at  these points, A and B were 
calculated using nonlinear regression with eq 5. These A 
and B values were then used to calculate y$i and ye:  
values. 

Afterward, these values were used to calculate the error 
for various linearization methods. The results for the 
Margules method are summarized in Table 11. 

~~~ 

15 71 0.0351 3.26 
16 YZ 0.1963 4.24 
17 In 71 0.0332 46.0 
17 In Y2 0.0434 2.83 
20 21 1.356 36.0 
21 22 0.011 14.0 
23 U 0.03458 13.2 
25 W 0.505 15.2 

XI = 0.8698, ~ 1 , o b  = 1.0745, x z  = 0.1302, ~ 2 , o b  4.6223, TI,& = 
1.0394, yz,ulC = 4.42592 (the latter two values calculated using A = 
1.7667 and B = 2.1291). 

R * Regression datn 

C a l M  vdw 

A =  1.7614 
B =2.11 

Point No. 
Figure 1. Y I , ~ ~  and y1.ealc when nonlinear regression with eq 5 is 
used. 

The absolute error in y1 is 0.033 57, and the relative 
error is 3.12%. After taking the In of 71, the absolute 
error remains about the same (0.034 711, but the relative 
error grows considerably, to 44 % . After dividing In y1 by 
xz2 to obtain 21, the absolute error is multiplied by more 
than 50 to become 1.877, while the relative error still 
remains 44 % . 

In calculating w, the error growth is more moderate 
because all four variables, XI, X Z ,  71, and 7 2 ,  are involved. 
The absolute error in this case is 0.26, and the relative 
error 11.38%. 

The results for the Van Laar equation are summarized 
in Table 111. These results are very similar to the results 
obtained with the Margules equation. The absolute error 
increases significantly with the use of some of the 
transformations (21, for example). 

Change of the Error Distribution Because of 
Linearization 

The methods described previously were used to calculate 
A and B for the Margules equation. 

Figures 1-4 show plots of the calculated and observed 
values of the variables when using the different approaches 
for regression of the data. The calculated constants (A 
and B) are also indicated. 

Figures 1 and 2 show that when using nonlinear 
regression and plotting values of y1 and yz the fit between 
the observed and calculated data is fairly good and that 
the differences between the calculated A and B values are 
not very substantial. Similar pictures are obtained when 
plotting In y1 and In yz. This can be surprising, considering 
that we have shown the relative error in In y1 can be as 
high as 44 7%. But the least-squares method minimizes 
the sum of squares of the absolute error and is not affected 
by the relative error. In addition, in graphic representation 
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Table IV. Parameter Values, Sum of Error, and Linear 
Correlation Coefficient for the Margules Equations 

methodno. eqno. A B s2 R2 
1 4 1.75752 2.11316 0.381871 
2 5 1.7614 2.11 0.382905 

6 1.5975 2.1436 1.8538 
3 9 1.7752 2.0304 0.608528 0.9928 

10 1.759 2.084 0.412967 0.9955 
4 11 1.755 2.20 0.684788 0.07513 

12 2.3486 1.2211 37.3059 0.3914 
5 13 1.7157 2.2472 1.07381 0.9951 
6 14 1.8557 2.1659 1.4022 0.4685 

5.48 6*601 
72 8.60 ::::u 1.88 

E 2 4 6 8 1 8 1 2  
Point No. 

Figure 2. Y Z , ~ ~  and y2,dc when nonlinear regression with eq 6 is 
used. 

2 . 5 8  

In n 
xi? 

1 . 5 8  
- 

0 . 5 0  

-a. SH 
0 2 4 6 8 1 0 1 2  

Point No. 
Figure 3. Z I , ~ ~  and z1,dc when half population linearization with 
eq 11 is used. 

* Regressiondata 

0 Calculatedvalue 

A = 2.3486 

B = 1.2211 

0 2 4 6 E l H 1 2 1 4  
Point No. 

Figure 4. z ~ . ~ a s  and z2,de when half population linearization with 
eq 12 is used. 

the absolute error is dominant. Using the half or full 
population linearization transformations, the results in- 
dicate large errors. This is shown for the half population 
case in Figures 3 and 4. Large errors were indeed expected, 
based on error analysis, because division by very small 
numbers causes the absolute error to be multiplied many 
times at  certain points when using these transformations. 
The calculated values of A and B are reasonably close to 
those calculated by other methods in some cases (see Figure 
3, for example), but they are completely wrong in one case 
(Figure 4). 

These results lead to the following conclusions: Lin- 
earization which does not involve significant change in 
the absolute error of the data can give parameter values 
which are almost as accurate as the parameters obtained 
by nonlinear regression. Linearization which involves 
significant increase in the absolute error may give com- 
pletely incorrect parameter values. Plotting the linearized 
data in such cases will give a totally unrealistic picture of 
the error distribution in the measured data. 

* Regressiondata 

0 Calculatedvalue 

-I 
14 

Data Recovery 
The real measure of the accuracy of the constants that 

have been found is how well they fit the experimental 
data for y1 and y2 and thus how far is the sum of squares 
of errors from the global minimum. Table IV shows the 
parameter values calculated using the different methods 
for Margules equations, the respective values of the sum 
of squares of errors, and the coefficient of determination 
(R2). 

There are several interesting observations that can be 
made regarding the results in Table IV. The best values 
of A and B (with minimal value of S2) are obtained as 
expected by nonlinear regression of the full population. 
Surprisingly accurate results are also obtained when 
nonlinear regression with half population (71 only) is used. 
But when the second half of the population ( 7 2 )  is used, 
the results are much less accurate. Thus, using half 
population even without linearization can cause substantial 
error. 

The combined effect of linearization and using only half 
population can be unpredictable. Using eq 10 (with 
linearization) gives much better results than eq 2 (without 
linearization), but the use of linearization in eq 12 gives 
completely wrong results. 

The coefficient of determination R2 (Weisberg, 1980) is 
a frequently used statistical tool to test the hypothesis 
that the data points lie on a straight line or can be correlated 
as a linear function of the coefficients. The value of R2 
is between 0 and 1. R2 close to 1 indicates very high 
probability that the data can be well correlated by the 
linear function. If R2 is close to 0, this hypothesis should 
be rejected. 

The R2 value shown for eq 11 in Table IV is very close 
to 0 (R2 = 0.07291, but the parameters obtained from this 
equation are very accurate, as can be seen from the small 
value of S2. The reason for possible failure of the statistical 
test in this case is that the test is performed on the 
transformed data, where the error distribution is com- 
pletely different from the distribution in the original data. 

Figure 5 shows the location of the parameter values 
calculated using the various methods on a contour plot of 
S2 (eq 4) versus A and B. It can be seen that this plot gives 
excellent indication of the parameter value’s accuracy in 
reproducing the original activity coefficient data. The 
parameters that are best in reproducing the original data 
can be expected to predict most accurately new data. 

Figure 6 gives a detailed comparison between the 
experimental data and the most accurate (eq 9) and the 
least accurate (eq 12) correlations. The best correlation 
gives a very good representation of the data, while the 
worst correlation gives completely false results, in par- 
ticular for low concentrations of either component (high 
y1 or y2 values). 

Table V shows the parameter values calculated using 
the different methods for the Van Lam equation, the 
respective values of the sum of squares of errors, and 
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Margules Equation Van - Laar Eauation 

"t El Eq. 4,s 

eEq. 6 

+ Eq. 9 

mEq. IO 

t E q .  12 

AEq. II 

13 
A Eq. 14 

..- - 
1.5 1.75 2 .o 225 2.50 

v 
A 

Figure 5. Contour plot of S2 versus A and B for Margules equation. 

Margules Equation 

X" 

c c 
aJ 
0 
.- 
.- 
L u- aJ 
8 
+- .- > .- 
c 

2 
h- 

5.5 

4.5 - 
3.5 

2.5 - 

- 

I I I 
\ 

6.5 

5.5 

4.5 

3.5 

2.5 

1.5 

0.5 
0 Cl25 0.50 0.75 1.00 
Mole fraction of l,l,l-trichloroethane, X I  

Figure 6. Observed and calculated activity coefficients using the 
most and least accurate correlation for Margules equation. 

Table V. Parameter Values, Sum of Error, and Linear 
Correlation Coefficient for the Van Laar Equations 
methodno. eqno. A B S2 R2 

1 4 1.76343 2.12554 0.372776 
2 5 1.7667 2.1291 0.37441 

6 1.6498 2.1579 1.2289 
4 20 1.4112 2.722 14.4018 0.9884 

21 1.791 0.566 49.5998 0.9742 
5 23 1.7281 2.3063 1.42504 0.9956 
6 24 2.088 2.019 9.34062 0.9953 

the linear correlation coefficients. It can be seen that the 
Van Laar equation is much more sensitive to errors 
introduced by linearization than the Margules equation. 
Only the multiple linear regression of full population (eq 
23) yields somewhat inaccurate, but acceptable, results. 
Using nonlinear regression with half population yields very 
accurate results when using the data of y1 and less accurate 
results when using the data for 72. This is very similar to 

7.5 

6.5 - o Experirkental &\a [Z] I 

55 

4.5 

35 - 
2.5 - 
1.5 - 

- 
- 

m- 
I I I 

25 c \  \ 
0.5 I I I I 1 
0 0.25 0.50 0.75 1.00 
Mole fraction of 1,1 ,I-trichloroethane, X I  

Figure 7. Observed and calculated activity coefficients using the 
most and least accurate correlation for Van Laar equation. 

what was observed in the Margules equation. The 
coefficient of determination R2, calculated for the cases 
where it is applicable, obtained a value very close to 1 (R2 
> 0.97) in all cases. This should mean accurate correlation, 
contrary to what the sum of errors indicates. Plotting the 
most and least accurate correlations versus the data for 
the Van Laar equation (Figure 7) yields the same con- 
clusion as for the Margules equation. 

Conclusions 

The objective of this paper was to test the hypothesis 
that regression of data for the Van Laar and Margules 
equations, using linearization techniques andlor only half 
population of the data, can yield parameter values with 
acceptable accuracy. 

It has been demonstrated that this assumption may lead 
to completely incorrect results. The reason is that any 
transformation of data may cause significant change in 
the absolute error distribution which in turn may cause 
significant differences in the optimal value of the param- 
eters calculated. Linearization can certainly be viewed aa 
data transformation, but the same is true regarding the 
use of 'half population". Even though 71 and 7 2  are 
calculated from the same set of measured data, the 
calculation itself represents transformation of the data. 

Statistical tests performed to check the quality of the 
fit between the data and the calculated curve can be 
meaningless if they are performed using transformed data. 
We have found that locating different seta of parameter 
values on a contour plot of S2 versus A and B, as was done 
in Figure 5, provides the best indication of the accuracy 
of the parameters. 

The most accurate coefficient values can be obtained, 
undoubtedly, by using nonlinear regression on the full 
population (eq 4). But as it has been shown, some of the 
linearization methods, even when using half of the 
population, can give surprisingly accurate results. So if 
there is a need to rely solely on such methods, we 
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Greek Letters 
y = activity coefficient 
6( ) = absolute error of a variable 
e = a small number 
Subscripts 
1,2 = subcomponenta 1 and 2 
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recommend wing several of them and selecting the best 
coefficients using data similar to the data shown in Tables 
IV and V. 
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Nomenclature 
A = Margules or Van Laar equation constant 
B = Margdes or Van Laar equation constant 
g = Gibbs energy 
R = universal gas constant 
R2 = coefficient of determination 
R( ) = relative error of a variable 
r = the ratio AIB 
S2 = sum of squares of errors 
T = temperature, K 
V = transformed variable 
v = transformed variable 
w = transformed variable 
x = mole fraction in the liquid phase 
y = mole fraction in the vapor phase 
z = transformed variable 
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