
Considering Error Propagation in Stepwise Polynomial Regression

Neima Brauner*

School of Engineering, Tel-Aviv University Israel, Tel-Aviv, 69978 Israel

Mordechai Shacham

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel

The selection of an optimal regression model comprising linear combinations of various integer
powers of an independent variable (explanatory variables) is considered. The optimal model is
defined as the most accurate (minimal variance) stable model, where all parameter estimates
of the orthogonalized explanatory variables are significantly different from zero. The potential
causes that limit the number of terms that can be included in a stable regression model are
investigated using two indicators, which measure signal-to-noise ratios in the variables. The
truncation-to-noise ratio indicator is used to measure the extent of collinearity between the
explanatory variables and the correlation-to-noise ratio indicator to evaluate the significance of
the correlation between an explanatory variable and the dependent variable. It is shown that
the number of terms that can be included in a stable polynomial model (and its accuracy) depend
on the range and precision of the data, the rate of the error propagation during computations,
and the algorithm used to calculate the regression parameters. It is demonstrated that it can
often be advantageous to include nonconsecutive powers of the independent variable in an optimal
polynomial model. An orthogonalized-variable-based stepwise regression procedure is presented,
which enables identifying the optimal model in polynomial regression.

1. Introduction

Polynomials are frequently used for modeling and
regression of thermophysical data, either as a complete
empirical model (heat capacity, for example) or as a
complement to theory-based models to represent devia-
tions that are yet unexplained by the available theory
(see, for example, Wagner’s1 equation for vapor pres-
sure).

Because of the empirical nature of polynomial regres-
sion, it is difficult to determine a priori what the terms
are that should be included in an optimal regression
model. If the regression model contains either an
insufficient number of terms or too many terms, inac-
curacy and instability of the model may result. For
instance, in published collections of regression models
for physical and thermodynamic data, there is a ten-
dency to set an absolute limit to the order of the
polynomial that is fitted to a particular property. The
same order of the polynomial is usually fitted to various
data sets, irrespective of the range and precision of the
available data. For example, in the collection of correla-
tions of thermophysical properties,2 the maximal poly-
nomial order for solid, liquid, or gas heat capacity was
set to four, without considering the large differences in
the range and precision of the data available for the
various phases.

Brauner and Shacham3-5 have demonstrated some of
the ill effects of including too many terms in a polyno-
mial and other types of regression models. These effects
include errors in the estimated values of the dependent
variable, more severe errors in its derivatives with
respect to the independent variables, and drastical
change of the parameter estimates as a result of a small

perturbation of the data (by removing or adding some
data points, for example).

For high-precision data, higher order polynomials
must be used for obtaining a regression model that
predicts values within experimental error. In the chemi-
cal engineering community, there is a reluctance to use
higher order polynomials because of the misconception
that the highest order of the polynomial that can be used
is limited by collinearity (for example, Lapidus6 has set
this limit to six unless orthogonal polynomials are used).
Shacham and Brauner7 and others have shown that this
limit is imposed by near singularities when algorithms
that are extremely sensitive to numerical error propa-
gation are being used for calculating the regression
model parameters.

There are several regression techniques, which pos-
sess low sensitivity to numerical error propagation, such
as QR decomposition8 and principal components regres-
sion, PCR.9 If one of those techniques is used with
precise data, instability caused by collinearity will not
appear, even for very high order polynomials. However,
when those numerically stable methods are applied to
real life, noisy data it becomes apparent that numerical
singularity is not the only cause of imprecision and
instability in polynomial regression.7 The order of the
most accurate, stable polynomial is often limited by the
noise level and range of the independent (and depend-
ent) variables data.

In this paper, the requirements for a most accurate
and stable, optimal polynomial regression model are
investigated and specified. A regression algorithm based
on orthogonalized variables (ROV) is presented. Indica-
tors based on the signal-to-noise ratio in the orthogo-
nalized variables are used to determine the highest
order term that can be included in the regression model.
A new, unified approach, which is based on perturbation
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analysis for estimating the effect of propagated errors,
regardless of their sources, is presented.

It can often be beneficial to use a polynomial regres-
sion model, which does not contain all the consecutive
powers of the independent variable. To select the powers
of the independent variable that should, or should not,
be included in the regression model, a stepwise regres-
sion procedure can be employed. The ROV algorithm
and the various indicators are combined to yield a
stepwise regression procedure (SROV), which deter-
mines the optimal polynomial regression model for a
particular set of data.

Two examples, which demonstrate the use of the
various algorithms and indicators and emphasize their
advantages over traditional statistical methods, are
presented. The numerical calculations were carried out
by the POLYMATH 4.0 (POLYMATH is copyrighted by
M. Shacham and M. B. Cutlip, http://www.polymath-
.software.com) and MATLAB 5.2 (MATLAB is a trade-
mark of The Math Works, Inc., http://www.mathwork-
s.com) packages. All the calculations were carried out
on a PC using double-precision computation.

2. Basic Concepts

Let us assume that there is a set of N data points of
a dependent variable yi versus an independent variable
xi. A generalized polynomial regression model will be
considered:

where â1, ..., ân are the parameters of the model and εi
is the error in yi. The vector of estimated parameters
â̂T ) (â̂0, â̂1, ..., â̂n) can be calculated via the least squares
error approach, by solving the following normal equa-
tion:

The rows of X are xi ) 1, xi, ..., xi
n and XTX ) A is the

normal matrix. Another method to obtain the parameter
values in eq 1 is by solving the following overdetermined
system of equations:

using QR decomposition.8 The ROV procedure, which
will be presented in section 5, can also provide the
parameter estimates. The various methods possess
various levels of sensitivity to numerical error propaga-
tion, as will be demonstrated in a subsequent section.

A numerical indicator used most frequently to test
for the quality of the fit is the sample variance, s2,
obtained by

Thus, the sample variance is the sum of squares of
residuals divided by ν degrees of freedom (ν ) N - (n +
1), where the number of parameters, n + 1, is subtracted
from the number of data points, N ). A smaller variance
indicates a better fit of the model to the data. The
standard error of the estimate, s, is a measure of
variability around the line of regression. It is used to
calculate the confidence interval (∆âj) on a parameter
value and is defined by

where ajj is the diagonal element in the A-1 matrix, t(ν,
R) is the statistical t distribution corresponding a desired
confidence level, R. Clearly, if â̂j is smaller (in its
absolute value) than ∆âj(or ∆âj/|âj| > 1), then the zero
value is included inside the confidence interval, imply-
ing that there is no statistical justification to include
the associated term in the regression model. Note that
when the explanatory variables are strongly correlated,
the individual confidence intervals will usually under-
estimate the uncertainty in the parameter estimates,
as indicated by the confidence region. In this work,
confidence intervals on parameter estimates of orthogo-
nalized variables (no correlation between the variables)
will be used as indicators.

An optimal model is defined as the most accurate
(yields a minimal variance) stable model. Using statisti-
cal indicators, a stable model is defined as one where
all the 95% confidence intervals are smaller than the
respective parameter estimates for orthogonalized vari-
ables. In section 5, stability indicators, which are based
on the signal-to-noise ratio, will be presented.

3. Collinearity and Error Propagation in
Polynomial Regression

Collinearity between the explanatory variables often
limits the number of terms that can be included in a
stable and statistically valid polynomial model. Sha-
cham and Brauner7 investigated the various approaches
to diagnose harmful levels of collinearity in polynomial
regression and derived a criterion to measure the
collinearity level. This criterion can be related to the
mathematical definition of collinearity.

Following Gunst,10 a collinearity is said to exist
among the columns of X ) [x0,x1, x2, ..., xn], if for a
suitable small predetermined η > 0, there exist con-
stants c0, c1, c2, ..., cn, not all of which are zero, such
that

where the notation xj is used to indicate the vector
whose elements are xi

j.
This definition cannot be used directly for diagnosing

collinearity because it is not known how small η should
be so that the harmful effects of collinearity will show.
Equation 6 can be divided by, say, cj(cj * 0) to yield

where ck,j ) ck/cj. k ) 1, 2, ..., n(cjj ≡1). For a finite
number of data points, the coefficients c can be obtained
by regressing xj on the remaining explanatory variables
(or by orthogonal polynomials in the case of an infinite
number of data points). The vector ∆j is the residual of
this representation and is denoted as the "truncation
error" (The term “truncation error” is used for ∆j
because it represents the information lost (truncated)
when xj is removed from the model.). Since the values
of the explanatory variables are subject to an error, the
value of ∆j is also subject to an error, denoted by δj.
Shacham and Brauner7 suggested that in order for xj

to contain useful information, the norm of ∆j must be
larger than the norm of the errors δj. Thus, the trunca-
tion-to-noise ratio (TNR) is defined by

yi ) â0 + â1xi + â2xi
2 + ... + ânxi

n + εi (1)

XTXâ̂ ) XTy (2)

Xâ̂ ) y (3)

s2 )
1

ν
∑
i)1

N

(yi - ŷi)
2 (4)

âj ) â̂j ( ∆âj; ∆âj ≡ (ν, R)sxajj (5)

c0x
0 + c1x

1 + c2x
2 + ... + cnxn ) ∆;

with |∆| < η‚|c| (6)

c0,jx
0 + c1,jx + c2,jx

2 + ... + xj + ... cn,jx
n ) ∆j (7)
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When TNR . 1, there is plenty of useful information
in xj, thus, its inclusion in the model can be justified. A
value of TNR close to 1, or smaller than 1, indicates that
the information in xj that is orthogonal to the other
powers of x is mostly noise. Thus, including xj in the
model will render an unstable and statistically invalid
model.

The error δj can be calculated based on the definition
of ∆j (eq 7). For error propagation calculation, two types
of errors in the data must be separately considered. The
first type is the experimental error caused by the limited
precision of the measuring or control devices and due
to reporting rounded values of the data. The second type
is numerical error, which results from the limit on the
number of digits carried by the computer. When the
explanatory variables are functions of one or more
independent variables (as in polynomial regression), the
errors of the first type are carried over from the
independent variables to their functions. In this case,
the errors in the various terms are not independent, but
correlated. On the other hand, numerical errors are
uncorrelated. The rules of error propagation are differ-
ent for correlated and uncorrelated errors and that
makes the estimation of δj rather cumbersome.

The propagated error can, however, be calculated
using numerical perturbation. Using this technique, all
the steps of the regression are carried out using two sets
of the independent variable data: the original set, x,
and a perturbed set, xe ) x + η‚δj, where the random η
are scaled to yield the corresponding standard deviation
of the error; thus ηi ∈[-5/3,5/3] (for consideration of
scaling η, see, for example, Stewart.11) The norm of the
difference between ∆j calculated using the original data
and the perturbed data provides an estimate for |δj|.

In polynomial regression, collinearity and the conse-
quent ill-conditioning of the problem can be substan-
tially reduced by using certain transformations of the
independent variable data. In this work, the v- and
z-transformations7 will be used. The v-transformation
is defined by vi ) xi/xmax, where xmax is the largest x (in
absolute value). This transformation yields a variable
distribution in the region vmin e vi e 1. The z-transfor-
mation,

yields a variable distribution in the range of -1 < zi e
1.

It is well-known that v-transformation (or no trans-
formation) yields data that is much more sensitive to
the harmful effects of collinearity than the z-transfor-
mation. The v-transformation and inversion of the
normal matrix for regression (eq 2) are used to demon-
strate the ability of the proposed techniques to diagnose
collinearity.

4. Collinearity in Regression with Legendre
Polynomials

It has long been recognized that the use of orthogonal
polynomials can reduce considerably the ill effects of
collinearity.12 In this section the theoretical bound for
the number of terms that can be used in polynomial

regression, before the harmful effects of collinearity will
appear in actual numerical computation, is determined.
To that aim, we consider the independent variable to
be continuous over the entire interval (of the z-trans-
formation) [-1,1].

Legendre polynomials, Pj(z), form a complete orthogo-
nal set on [-1,1]. Furthermore, it can be proved that
for a continuous function, f(z) (satisfying the Dirichlet
conditions), an expansion (as far as the desired degree
of polynomial approximation) in Legendre polynomials
gives the best least squares approximation. The coef-
ficients for representing f(z) ) zj in terms of Pk(z), zj )
∑k)0

j RkPk(z) are tabulated.13 The first six Legendre
polynomials, scaled to yield the respective truncation
error, ∆j are given by

Note that eq 10 defines the coefficients ck,j in eq 7. These
polynomials can be integrated over the [-1,1] interval
to yield the norm of the truncation error

The propagated error in ∆j due to experimental error
in the independent variable, δzc is

Note that in calculating (δj)c, the sign of the various
terms composing ∆j is preserved, since the errors of the
terms are correlated. On the other hand, when applying
the error propagation formula for the numerical (un-
correlated) error δzu), the sign of the various term is
ignored; thus,

The estimation for ||δj|| is obtained by combining the
effects of (δjc) and (δju)

Note that eqs 11-14 can be used for calculating |∆j|
and |δj| for transformations other than the z-transfor-
mation, but the appropriate forms of the Legendre

TNR )
|∆j|

|δj|
(8)

zi )
2xi - xmax - xmin

xmax - xmin
(9)

∆0(z) ) 1

∆1(z) ) z

∆2(z) ) 1
3
(-1 + 3z2)

∆3(z) ) 1
5
(-3z + 5z3) (10)

∆4(z) ) 1
35

(3 - 30z2 + 35z4)

∆5(z) ) 1
63

(15z - 70z3 + 63z5)

∆6(z) ) 1
231

(-5 +105z2 - 315z4 + 231z6)

|∆j| ) x1
2∫-1

1
∆j

2 (z) dz (11)

(δj)c ) |d∆j

dz
|cδzc| (12)

(δj)u ) |c1,j||δzu| + |c2,j||2zδzu| + ... + |jzj-1‚δzu| +

... + |cn,j||nzn-1‚δzu| ) |d∆j

dz
|u|δzu (13)

||δj|| ) {1
2∫-1

1 [|d∆j

dz |c|δzc| + |d∆j

dz |u|δzu|]2

dz}1/2

(14)
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polynomials must be introduced into the equations and
the limits on the integration must be changed.7

The effects of error propagation on the TNR are
demonstrated in Figure 1. The figure shows TNRs
versus the polynomial orders. The range of the inde-
pendent variables was set to xmax) 1000 and xmin) 500.
It was assumed that the data precision is three decimal
digits, yielding an average correlated error of δxc ∼ 0.3,
and that single-precision computation is used with an
average uncorrelated error of δxu ) 3 × 10-5. The figure
was prepared using z-transformation, but the results
are invariant with the transformation. This is expected,
since collinearity is a group phenomenon which is
associated with a set of vectors and is invariant with
linear transformation.

Two curves are shown. In the upper curve, only the
propagation of the correlated (experimental) error is
accounted for; in the second curve both the correlated
and uncorrelated errors are considered. The two curves
are practically identical up to the eleventh order poly-
nomial, indicating that uncorrelated (numerical) error
propagation has a negligible effect on the TNR. From
this point on, the rate of decrease of TNR accelerates
because of propagation of the numerical error. But, even
so, the lowest value of TNR reached for the fifteenth
order polynomial is 12.4, above the limit of TNR ) 1,
where the harmful effects of collinearity will prevail.

It is a common belief that the use of orthogonal
polynomials completely eliminates the collinearity prob-
lem. Theoretically, orthogonal polynomials cannot be
collinear, but with finite precision numerical computa-
tion, a value of a particular term may become small
enough so that the numerical error dominates over its
true value. This is the explanation for the continuous
decrease in the value of the collinearity indicator, (TNR)
with increasing order of the Legendre polynomial, in
Figure 1. The trend of the curve in Figure 1 also
indicates that the theoretical limit on the polynomial
order (based on collinearity considerations alone) is very
high. This leads to the popular misconception stated
above.

5. Using Orthogonalized Explanatory Variables
in Regression

For a finite number of data points, arbitrarily dis-
tributed on [-1,1], the use of orthogonal polynomials
(e.g., Legendre, Chebyshev) may yield normal matrices
with non-zero off-diagonal elements. Therefore, in prac-
tice, numerical orthogonalization of the explanatory
variables, which yields a diagonal normal matrix ir-
respective of the variable spacing is required. It is to
be noted that accounting for the errors propagated in

the orthogonalization process is essential for detecting
the harmful effects of collinearity.

Numerical orthogonalization of the explanatory vari-
ables is carried out by regressing one of the explanatory
variables on the remaining ones (see, for example, pp
99-103, in Mandel14 ). The following implementation
of this orthogonalization method is especially suitable
for polynomial regression, where at every stage, an
additional explanatory variable is added to the model
(as in stepwise regression).

Let us define xj
0 ) xj (j ) 1, 2, ..., n) N vectors of

explanatory variables and y0 ) y is the vector of the
dependent variable. The subscript indicates that the
values are for stage 0 of the ROV (regression using
orthogonalized variables) procedure. For a model that
contains a free parameter, the explanatory and depend-
ent variables are first mean-centered; otherwise, no
mean-centering is required.

At every stage of the regression process, the subse-
quent power of the independent variable is added to the
model and the remaining (explanatory and dependent)
variables are updated. At stage k, where all terms up
to xk have already been included in the model, the
updated values are obtained by

where

is the coefficient of the kth orthogonal polynomial term
and

Using these equations, the regression progresses so
that the variables already included in the model (x1

1,
x2

2, ..., xk
k) are orthogonal to each other and yk repre-

sents the residual of y which is orthogonal to this subset
of explanatory variables.

To enable estimation of the errors propagated to yk

and xk+1
j , the regression is carried out, in parallel,

using two data sets of data. The original set (x, y) and
a perturbed set (xe ) x + η‚δx and ye ) y + η‚E) are
used. Consequently, TNR for the subsequent variable
to be included in the model xk+1 can be calculated from
the following equation:

For the regression model to be accurate and stable,
both the numerator and the denominator in the expres-
sion for âk (eq 15) must be accurate. If TNRk+1 e 1, then
the denominator in eq 15 contains mostly noise. To
check the accuracy of the numerator, another indicator,
the CNR, which measures the signal-to-noise ratio of
the correlation (yk+1)Txk+1

k+1 is employed. In polynomial
regression, when the propagated error is calculated by
numerical perturbation, CNRk+1 can be expressed as

Figure 1. TNR versus polynomial order calculated using Leg-
endre polynomials.

yk+1 ) yk - âkxk
k

âk )
(yk)

Txk
k

(xk
k)Txk

k
(15)

xk+1
j ) xk

j - xk
k[(xk

j )Txk
k

(xk
k)Txk

k]; j ) k + 1, k + 2, ..., n

(16)

TNRk+1 ) [ xTx
(x - xe)

T(x - xe)]
1/2

;[x ≡ xk+1
k+1

xe ≡ (xe)k+1
k+1 ] (17)
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A value of CNRk+1 . 1 implies that xk+1 can be safely
added to the model. If CNRk+1 e 1 then the numerator
of the expression for âk+1 contains mostly noise and xk+1
should not be added to the model. The addition of higher
polynomial terms to the model stops when ill effects of
collinearity prevail, as indicated by TNRk+1 e 1, or when
CNRk+1 e 1.

For a small number of data points the stability limit
on the highest order polynomial may be set by degrees
of freedom rather than data precision consideration. To
detect such a situation, the variance is monitored during
the ROV procedure. An increase of the variance with
increasing the polynomial order may signal instability
caused by severe reduction of the degrees of freedom.
In such a case, the addition of higher order terms stops.

Example 1. Fitting Polynomials to Vapor Pres-
sure Data of Nitrogen. Vapor pressure data are
appropriate for studies related to polynomial regression
because high-precision data are available, and for a
sufficiently wide temperature range, high- (over tenth-)
order polynomials may be needed for appropriate rep-
resentation of the data. (There are, of course, more
appropriate theory-based models to represent vapor
pressure data. See, for example, McGarry.15)

Selected information related to the nitrogen's vapor
pressure data provided by Wagner1 is shown in Table
1. There are 68 data points, spread in the interval
between the triple point (63.148 K) and the critical point
(126.2 K). With the v-transformation, this distribution
yields vmin = 0.5. Following the discussion related to the
experimental errors in Wagner,1 it is assumed that the
data are accurate up to the decimal digits reported,
yielding an average value of δT ) 3 ×10-4and ε ) 3
×10-5.

Figure 2 shows the TNR values for polynomials up
to the fifteenth-order for the vapor pressure data. The
theoretical values of the TNR were calculated using
Legendre polynomials (TNRt), and compared with the
values obtained in regression with numerically orthogo-
nalized polynomials using the z-transform (TNRz) and
v-transform (TNRv). It can be seen that the theoretical
values obtained using the Legendre polynomials are
almost identical to those obtained using ROV with the
z-transform. The TNR values calculated using the
v-transformation follow the same curve up to the
eleventh-order polynomial. From this point on, the rate
of reduction of TNR for the v-transformation accelerates
and gets below TNR ) 1 for the fifteenth-order polyno-
mial. Thus, for the vapor pressure data, if ROV is used
with the z-transformation, no harmful effects of col-
linearity are to be expected, even for a fifteenth-order
polynomial. However, when using ROV with the v-
transformation, collinearity caused by accelerated propa-
gation of numerical error put the stability limit on the
fourteenth-order polynomial.

To investigate the role of the regression algorithm on
the appearance of the harmful effects of collinearity, the
TNR values (up to the fifteenth-order polynomial) were

calculated using three additional algorithms: QR de-
composition, normal equation (eq 2) solved as a system
of linear equations, and normal equation solved by first
inverting the XTX matrix. These calculations were
carried out using both z- and v-transformations.

The results of the calculations have shown that when
the z -transformation is used, the regression algorithm
used has no noticeable effects up to the fourteenth-order
polynomial. The TNR values obtained by all algorithms
are identical to those shown in Figure 2 (obtained using
the ROV procedure). For the fifteenth-order polynomial,
only the method which uses the inverse of the XTX
matrix yields a TNR value which is significantly (3
times) smaller than the TNR obtained using the other
methods.

With the v-transformation, Figure 3 shows that the
effect of the regression algorithm used is much more
pronounced. When the algorithm that solves the normal
equation by inverting the XTX matrix is used, TNR is
considerably reduced already for the sixth-order poly-
nomial and it gets below TNR ) 1 for the seventh-order
polynomial. When the normal equations are solved as
a set of linear equations, the same trend is indicated,
but TNR gets below the threshold value of 1 for the
seventh-order polynomial. The QR decomposition and
the ROV yield identical TNR values up to the eleventh-

Table 1. Selected Information for Vapor Pressure Data
(from Wagner, 1973)

T (K) P (bar) v z

minimal value 63.148 0.1252 0.50038 -1
maximal value 126.2 34.002 1 1
no. of data points 68
avg. δT (K) 0.0003
avg. δP (bar) 0.00003
avg. δv 2.3772 × 10-6

avg. δz 9.5160 × 10-6

Figure 2. TNR versus polynomial order for nitrogen's vapor
pressure datascomparison of the values obtained with Legendre
polynomials (TNR-t), v-transformation (TNR-v), and z-transforma-
tion (TNR-z).

Figure 3. TNR values calculated for example 1 using four
different regression algorithms with v-transformation.

CNRk+1 )
|(y)Tx|

|xT(y - ye| + |yT(x - xe)|
(18)

where
x t xk+1

k+1

xe t (xe)k+1
k+1

y t yk+1

ye t (ye)k+1
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order polynomial; from this point the decline rate of
TNR values starts to be higher for the QR decomposi-
tion. The QR decomposition can be used only up to the
thirteenth-order polynomial; after that the MATLAB
program (used for this purpose) indicates a singular
matrix and reduces the rank of the problem, essentially
preventing the addition of higher order polynomial
terms.

The above analysis suggests that comparison of the
TNR values obtained with a particular data set using
Legendre polynomials (or numerically orthogonalized
polynomials with z-transformation) with those obtained
using numerical orthogonalization with v-transforma-
tion can be a basis for determining the sensitivity of a
particular regression algorithm to numerical error
propagation. The TNR values obtained using the various
transformations can be plotted versus the order of the
polynomial. Comparing such a plot with Figure 3 can
provide an estimate to the sensitivity of the tested
algorithm to numerical error propagation (relative to
ROV or the solution of the normal equation).

It should be emphasized that the theoretical analysis,
using Legendre polynomials, is based on the assumption
of an infinite number of data points. The numerical
results of this example are based on a particular set of
data with 69 data points and for polynomials up to the
fifteenth-order. The use of a too small sample (with a
high-order polynomial model) may lead to different
results of no general value.

Collinearity considerations alone cannot determine
the highest order of a polynomial that can be fitted to a
particular set of data, since the signal-to-noise ratio of
yTx (CNR, defined in eq 18) must also be considered.
To demonstrate this point, the vapor pressure data of
nitrogen were regressed with polynomial models up to
the fifteenth degree. Normalized vapor pressure (πi )
pi/34.002) was used as the dependent variable and v-
or z-transformations of the temperature were used as
the independent variable. The ROV procedure was used
for regression.

Figure 4 shows CNR, s2, and ∆âj/|âj| versus the

polynomial order when the v-transformation is used. It
can be seen that, at the beginning, the variance de-
creases sharply from s2 ) 0.0136 (for a linear model) to
s2 ) 3.63 ×10-9 obtained with the eighth-order polyno-
mial. From this point on, the decrease is much more
moderate and s2 reaches the value of 1.47 ×10-9 for the
fifteenth-order polynomial.

The CNR value decreases from the initial value of
CNR1 ) 7.1 × 104 to CNR14 ) 1.37 . For the fifteenth-
order polynomial CNR15 ) 0.199, indicating that for the
fifteenth term of the model, the noise in yTx is domi-
nant; thus, this term should not be included in the
model. (We may recall that TNR15 was also smaller than
1; see Figure 3). The value ∆âj/|âj| is a mirror image of
the CNR values. For the first-order polynomial, ∆â1/|â1|
) 3.14 × 10-5 and it increases to 0.6799 for the
fourteenth-order polynomial. For the fifteenth-order
polynomial ∆â15/|â15| ) 1.267, indicating that the con-
fidence interval on the respective parameter is larger
than the parameter value itself. In this case, all the
indicators (TNR, CNR, and ∆âj/|âj|) consistently signal
that the fourteenth-order polynomial is the highest
order stable and statistically valid polynomial.

It is interesting to note the similarity of the CNR and
the ∆âj/|âj| curves in Figure 4. The calculation of
confidence intervals is based on statistical principles,
while the calculation of CNR is based on error propaga-
tion considerations; yet, they both show the very same
trend.

The moderate decrease of the variance starting with
the eighth-order polynomial implies that the improve-
ment of the data representation using higher order
polynomials is not very significant. Figure 5 shows the
residual plots for the eighth- and fourteenth-order
polynomials. It can be seen that for the eighth order
polynomial, the error is the largest near the critical

Figure 4. CNR, s2, and ∆âj/|âj| for example 1 when (a) v-
transformation and (b) z-transformation of the temperature are
used.

Figure 5. Residual plots for polynomial representation of the
vapor pressure data, example 1.
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point, where π) p/pc ∼ 1. Increasing the polynomial
order to 14 essentially reduces the errors in this region
to the error level achieved in the rest of the interval.

6. Selection of the Optimal Regression Model

The polynomial model, which consists of sequential
powers of the independent variable, is not necessarily
the optimal model. The ROV procedure can be easily
modified, so that at every stage of the process the
explanatory variable (the particular power of the inde-
pendent variable), which causes the maximal reduction
of the variance, is included in the model.

The strength of the linear correlation between an
explanatory variable xk

j and the dependent variable yk
is measured by

where yk and xk
j are normalized to a unit length. The

value of |YXj| is in the range [0, 1]. In a case of a perfect
correlation between yk and xk

j (yk is aligned in the xk
j

direction), |YXj| ) 1. In case yk is unaffected by xk
j (the

two vectors are orthogonal), YXj ) 0. The inclusion of
xk

p associated with max {YXj} will affect the maximal
reduction of the variance of the regression model.
Further discussion and graphical interpretation of the
YXj values will be provided in connection with example
2. This indicator will be used to select the next variable
to be included in a regression model at each stage of
the stepwise regression (SROV).

If TNRj e 1 or CNRj e 1 for all the variables not
included in the model, the addition of new variables to
the model stops. The model selected this way is often
the optimal model. To verify that the model obtained is
indeed the optimal one, an additional phase of rotation
of the order in which the explanatory (polynomial) terms
are added to the model is carried out, so that each
polynomial term in turn is selected as the last one to
be included in the model.

The selection of an optimal regression model is
explained in more detail and demonstrated in several
examples by Shacham and Brauner.16 The following
example also demonstrates the advantages of the opti-
mal polynomial model over a consecutive-power poly-
nomial model.

Example 2. Correlation of Heat Capacity Data
of Solid Propylene. Heat capacity versus temperature
data are usually correlated by polynomials. Daubert and
Danner,2 for example, used a fourth-order polynomial
to correlate heat capacity (CP) data versus temperature
for solid propylene, as published by Timmermans.17

Selected information from Timmermans’ data is shown
in Table 2. Only the first 19 data points, out of 20
provided by Timmermans,17 were used, since the last

data point (nearly at the melting point) turned out to
be very inaccurate because of premelting.

Polynomials of various orders were fitted to the data
using v- and z--transformations for the independent
variable (temperature) data. The dependent variable
(CP) was normalized by dividing it by the maximal value
of CP.

In Figure 6, mean-centered and scaled (to unit length)
values of various powers of z are plotted versus mean-
centered and scaled values of CP(y) at the various stages
of the SROV procedure. The respective values of YXj and
CNRj are also shown.

At the zeroth stage, it can be seen that the data points
for z1 are aligned almost perfectly along the straight
line with a slope of 1, which represents a perfect
correlation. The respective YX1 value is 0.995. The shape
of the curve of z3 is similar to that of z1, but there is
considerably larger curvature. Consequently, the value
of YX3 (0.945) is smaller than the value of YX1. At this
stage, the linear correlation between y and z2 or z3 is
weak. This is indicated by very small absolute values
of YX2 ()0.0997) and YX4 ()0.0903). However, at this
stage, all TNRj and CNRj are much greater than 1; thus,
stability considerations do not exclude inclusion of any
one of the variables in the regression model.

Because of its highest YXj, z1 is entered into the
model, and in Figure 6, the updated values of z2 and z3

are plotted versus the updated values of y, as obtained
at stage 1. At this stage, there is already a considerable
spread of the data points, but the points of z2 line up
nicely along the straight line of a slope -1, with YX2 )
-0.832. The trend of the points representing z3 is not
well-defined and the value of YX3 is 0.497. Thus, z2,
which was nearly orthogonal to y at the zeroth stage,
becomes strongly correlated with the residual of y,
which is orthogonal to and is unexplained by z1. The
linear correlation between z3 (which was nearly col-
linear to z1 at zeroth stage) and the residual of y is much
weaker at this stage. It is interesting to note that CNR3
was reduced by more than an order of magnitude after
the information which is collinear to z1 has been
subtracted from z3 and y, while the value of CNR2 has
actually increased. Thus, at stage 1, z2 is added to the
basis.

At stages 2 and 3, the situation described for stage 1
is repeated. The variable, which was nearly orthogonal
to the variable that entered the basis in the previous
stage and exhibited a weak correlation with y, turned
to be the one which is most strongly correlated with y.
Thus, z3 is added to the model at stage 2 and z4 at stage
3.

At stage 4, Figure 6 shows the updated values of z5

and z8 versus the updated values of y. In spite of the
increased spread of the data, the trend of the z8 data
points, following the +1 slope line, is clearly distin-
guishable. In comparison, the z5 values are spread
almost randomly with |YX5| ) 0.162. The CNR value is
also much larger for z8 then for z5. Thus, at this stage,
z8 is added to the model and not z5.

After including z8 in the model, stability consider-
ations (CNR and confidence interval values) show that
no more variables can be added.

Table 3 shows the regression results for third-,
fourth-, and fifth-order polynomials and the optimal
polynomial model for the v-transformation. The results
include the parameter estimates, ∆â/|â|, s2, and sum of
squares of errors. It can be seen that, for the third-order

Table 2. Selected Information for Heat Capacity Data
(from Timmermans, 1965)

T (K)
Cp

(cal/g‚K) v z
Cp

(norm.)

minimal value 14.17 0.0271 0.166981 -1 0.079941
maximal value 84.86 0.339 1 1 1
no. of data points 19
avg. δT 0.03
avg. δCp 0.0003
avg. δv 0.000354
avg. δz 0.000849
avg δCp (norm.) 0.000885

YXj ) (yk)
Txk

j (19)
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polynomial, all the ∆â/|â| values are smaller than 1;
thus, significantly different from zero. However, the
residual plot for this polynomial (shown in Figure 7a)
shows a clear trend indicating that the third order

polynomial is unsatisfactory for representing this data.
For the fourth-order polynomial (as recommended by
Daubert and Danner2), the coefficient â1 is insignificant
since ∆â/|â| ) 1.33, and for the fifth-order polynomial,
all the coefficients are insignificant. The optimal model,
which was found using the SROV procedure, contains
all the powers of v, up to v7 except v5. In this model, all
the ∆âj/|âj| values are smaller than one and the residual
plot (Figure 7b) shows a random distribution. Thus, this
seven-parameter model is statistically valid. Its s2 is 14
times smaller than the s2 of the third-order polynomial
and two times smaller than the s2 of the fourth- or fifth-
order polynomial.

Table 4 shows the regression results for the fourth-
order polynomial and the optimal polynomial model
obtained with the z-transformation. In this case, all the
coefficients of the fourth-order model are significant, but
the use of the optimal model (consists of z, z2, z3, z4 and
z8 ) enables further reduction of s2 by a factor of 2. The
s2 value for the optimal model with z-transformation is
also slightly lower than the s2 value for the optimal
model with v-transformation.

Figure 6. y vs zk at various stages of the SROV procedure, example 2.

Table 3. Regression Results for Example 2 (v-Transformation Used)

third-order polynomial fourth-order polynomial fifth-order polynomial optimal

value δâ/|â| value δâ/|â| value δâ/|â| value δâ/|â|
â0 -0.287 18 -0.216 03 -0.075 35 -0.722 87 -0.043 53 -2.962 65 0.2177 18 0.749 626
â1 2.404 99 0.168 4 0.371 259 1.332 224 -0.014 75 -101.537 -3.627 52 -0.595 4
â2 -2.120 93 -0.363 16 4.250 54 0.352 661 5.929 17 1.065 023 24.254 2 0.436 118
â3 0.984 937 0.447 846 -6.956 02 -0.264 38 -10.277 1 -1.192 99 -52.471 3 -0.453 11
â4 3.407 88 0.230 554 6.444 12 1.723 09 46.800 5 0.481 918
â5 -1.040 52 -3.647 32
â6 -26.510 7 -0.522 14
â7 12.338 2 0.468 572
s2 0.000129 1.92 × 10-5 2.01 × 10-5 9.07 × 10-6

Figure 7. Residual plots for polynomial representation of the
propylene heat capacity (v-transformation), example 2.
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Thus, restricting the polynomial model to consecutive
powers of the independent variable may prevent obtain-
ing a statistically valid model because the inclusion of
sufficient consecutive terms for obtaining a random
residual distribution may render an unstable model
with some of the parameter values not significantly
different from zero. Using a stepwise regression proce-
dure (such as the SROV procedure) to select the
particular terms that should be included in the model
yields a stable and statistically valid model that also
represents the data more accurately.

7. Conclusions

It has been shown that the range and precision of the
data, error propagated during computations and the
algorithm used to find the model parameters, have
equally important roles in determining the maximum
number of terms that can be included in the most
accurate, stable polynomial model.

In many cases, the limit on the number of polynomial
terms that can be included in a stable model is imposed
by the harmful effects of collinearity. Collinearity ef-
fects, caused by error propagation, can be measured by
the TNR indicator. For a particular polynomial, repre-
senting a particular set of data, the TNR attains
maximal values (indicating minimal effects of collinear-
ity) when there are an infinite number of data points
and the regression is carried out with orthogonal
(Legendre) polynomials. For a finite number of data
points, using z-transformation and numerical orthogo-
nalization, the obtained TNR values are very close to
the theoretical bound, irrespective of the regression
algorithm used. With the v -transformation and a
regression algorithm which requires calculation of the
normal matrix, the TNR values decline and may reach
a value lower than 1 already for relatively low-order
polynomials. In this case, collinearity puts a limit on
the maximal polynomial order, which may be lower than
that required for accurately representing the dependent
variable data. The QR decompositions, or the ROV
procedures, are insensitive to error propagation and
yield TNR values closer to the theoretical bound ob-
tained using Legendre polynomials. Thus, the use of
these methods for obtaining the parameter values
allows more accurate and stable representation of the
data. If the sensitivity of the regression algorithm used
for error propagation is not known, it is always recom-
mended to verify results obtained using v -transforma-
tion (or no transformation) with those obtained using
the z -transformation, which has much lower sensitivity
to the harmful effects of collinearity.

Often, the maximal order of polynomials is limited
by the combined effects of propagated errors in the
explanatory and the dependent variables. The combined
effects of these propagated errors is measured by the

CNR indicator. This indicator, which is based on error
propagation considerations, shows the very same trend
as the indicator ∆âj/|âj|. The latter is based on statistical
considerations. An important advantage of the CNR
indicator is that because it is based on mathematical
and numerical principles (rather than statistical prin-
ciples), it is not subject to the strict error distribution
assumptions as the statistical indicator. Furthermore,
examining the error terms included in the CNR can
indicate whether the dominant errors are due to the
independent variables or the dependent variables. The
action needed to improve the accuracy of the model can
be decided upon diagnosing the variable that introduces
the dominant error.

It was shown that restricting the polynomial model
to consecutive powers of the independent variable may
yield a much less accurate model than the one that can
be obtained without this restriction. The SROV proce-
dure can help in identifying the optimal polynomial
model.
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Table 4. Regression Results for Example 2
(z-Transformation Used)

fourth-order polynomial optimal

value δâ/|â| value δâ/|â|
â0 0.601 582 0.007 392 0.598 495 0.004 572
â1 0.389 34 0.023 44 0.390 16 0.015 9977
â2 -0.167 28 -0.141 08 -0.116 73 -0.072 7
â3 0.072 1 0.171 845 0.070 882 0.119 422
â4 0.102 561 0.230 594
â8 0.058 788 0.151 108
s2 1.92 × 10-5 8.95 × 10-6
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