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A dynamic physical properties (DPP) library of a new type of architechture is discussed. The
library consists of a property evaluation program and a database which contains original
experimental data and regression models, as well as statistical and graphical information for
assessing their quality. The property evaluation program identifies “smooth” regions, where
optimal regression models are fitted to the data, and discontinuities (transient regions), where
statistically valid models cannot be obtained. The property evaluation program and the databases
can be continuously updated to include the current state of the art regression models,
experimental data, and regression techniques. The advantages of the DPP library structure
over the traditional correlation libraries are demonstrated using an example of correlating heat
capacity for a solid substance, where the experimental data includes smooth and transient
regions.

1. Introduction

Correlation equations of physical and thermodynamic
properties are being used extensively in process calcula-
tions and computations. Those correlations provide the
property values as a function of process conditions, such
as temperature, pressure, and composition. The cor-
relations are developed usually by fitting regression
models to experimental data.

Correlations are presented in forms which are in-
tended to make their use most effective in process
calculations. In the era of the slide-rule calculations,
correlations were presented in the form of graphs and
charts. Nowadays, they are usually presented as model
equations, where the parameters are obtained by re-
gression of experimental data. Such correlations are
collected to form libraries of physical and thermody-
namic properties. The libraries contain correlations for
many different properties for a large number of chemical
compounds. One of the first well-known libraries was
published in the book of Reid et al.1 Libraries that
include more property correlations for many more
compounds are available now (see, for example, Daubert
and Danner2).

The existing correlation libraries have several serious
limitations. They do not include all of the available
information of the experimental data but rather the part
that can be expressed in an acceptable accuracy by the
correlation equation used in the particular library. Thus,
when different regions in the data require different
model equations for their representation, parts of the
range where experimental data are available may be
excluded from the correlation. Because of the time it
takes to develop a large library, the standards that were
set at the initial stages of the project (for model

equations and regression algorithms that are being used
and for the error estimation techniques that are em-
ployed) can be very far from the current state of the art
in later stages of the same project.

Development of new, more accurate and stable re-
gression models for various properties is an ongoing
continuous process. Such a development is made pos-
sible by the availability of high-speed high-precision
computers, where the regression model complexity
becomes a secondary concern to the accuracy of the
calculated properties, and also by the availability of new
stepwise regression algorithms and regression diagnos-
tic techniques. Improved measuring devices and meas-
urement techniques enable one to obtain more accurate
experimental data. Regression of more accurate data
provides model parameters that represent the particular
property with higher precision.

Unfortunately, the current correlation libraries can-
not be regularly updated to include the most accurate
and stable correlations for the various properties. The
structure of those libraries is static, in the sense that
there is one form of correlation (or a limited number of
forms) for a particular property. The library cannot
accept a new correlation of a different form, even if it is
much more accurate. For example, if vapor pressure
data are correlated with the Antoine equation, Wag-
ner’s9 equation cannot be used for a particular com-
pound, even when the latter is proved to be more
accurate. The libraries do not contain the experimental
data that were used for obtaining the regression pa-
rameters for the various correlations. Therefore, the
user has to resort back to the original references of the
experimental data (if those are still available) for
assessing the accuracy of the library model in compari-
son with a new, potentially more accurate model.

In this paper, some of the shortcomings of the
structure and philosophy of the existing libraries will
be demonstrated, and a new concept of the “dynamic
physical properties (DPP) library” will be introduced.

* To whom correspondence should be addressed. Phone:
972-7-6461481. Fax: 972-7-6472916. E-mail: shacham@
bgumail.bgu.ac.il.

1649Ind. Eng. Chem. Res. 2000, 39, 1649-1657

10.1021/ie990681a CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/27/2000



The DPP library contains a property evaluation pro-
gram and databases of experimental data and regres-
sion models. The databases can be continuously updated
and the property evaluation program can be revised, or
even completely replaced, without altering the data-
bases. The dynamic and flexible nature of the DPP
library ensures that property values can be obtained in
the full range where experimental data are available
and that the most up-to-date correlation equations are
used to calculate these values. In addition, the DPP
library can serve as an archive of pertinent experimen-
tal data, making the data easily accessible even when
the associated publications are not.

In section 2 of the paper some basic concepts related
to optimal regression models are briefly reviewed. In
section 3 the principles of the DPP library are described.
In section 4 is an example that demonstrates the
advantages of the DPP library over the current correla-
tion libraries.

2. Basic ConceptssDefinition of an Optimal
Regression Model

The property evaluation program of the DPP library
should provide optimal regression models for calculating
the various properties. Following is a brief review of the
basic concepts related to the definition of optimal
regression models.

Most of the widely used property correlations include
either linear or linearizable equations. A standard linear
regression model can be written as

where y is an N vector of the dependent variable, xj (j
) 1, 2, ..., n) are N vectors of explanatory variables, â0,
â1, ..., ân are the model parameters to be estimated, and
E is an N vector of stochastic terms (measurement
errors). It should be noted that an explanatory variable
can represent an independent variable or a function of
one or more independent variables.

A certain error (disturbance, imprecision, and noise)
in the explanatory variables should also be considered.
Thus, a vector of an explanatory variable can be
represented by xj ) x̃j + δxj, where x̃j is an N vector of
the expected value of xj, and δxj is an N vector of
stochastic terms due to noise. The errors in the depend-
ent variable (E) and the explanatory variables (δxj)
cannot be measured but can be estimated. If estimates
on the experimental errors are available, these can be
used for δxj and E. Otherwise, it is usually assumed that
the data are correct up to the last decimal digit reported.
In such cases, the average rounding error can be used
(approximately 3 × 10-t, where t is the number of
reported digits after the decimal point; see Stewart3).
If functions of the independent variables are used or
data transformation is carried out, the error propagation
formula can be used to calculate the resultant δxj.

The vector of estimated parameters, â̂T, is usually
calculated via the least-squares error approach, by
solving the normal equation XTXâ̂ ) XTy, where X )
[1, x1, x2, ..., xn] is an N(n + 1) data matrix and XTX )
A is the normal matrix. An alternative option is solving
the overdetermined system of equations, Xâ̂ ) y using
QR decomposition (Press et al.4). The QR decomposition
method requires more arithmetic operations than the
solution of the normal equation but is known to be less

sensitive to numerical error propagation (see Brauner
and Shacham5).

From among the widely used statistical tests and
criteria, the variance and confidence intervals on pa-
rameter estimates are used in this study for assessing
the accuracy and stability of regression models. The
sample variance s2 ) ∑i)1

N (yi - ŷi)/(N - n - 1) is a
measure of the quality of the fit. The confidence interval
(∆âj) on a parameter estimate is defined by

where ajj is the jth diagonal element of A-1, t(ν,R) is the
statistical t distribution corresponding to ν degrees of
freedom (ν ) N - (n + 1)) and a desired confidence level
R, and s is the standard error of the estimate. Clearly,
if |â̂j| < ∆âj, then the zero value is included inside the
confidence interval and the parameter value is not
significantly different from zero. A model which includes
insignificant parameters is unstable. The most severe
effects of instability are incorrect representation of the
derivatives and absurd property values for even a small
range of extrapolation (see, for example, Brauner and
Shacham10). To eliminate the influence of the correlation
between explanatory variables on the individual confi-
dence intervals, confidence intervals on orthogonalized
variables (no correlation between the variables) are used
as indicators.

A statistically valid model is defined as a model where
all of the parameter estimates are significantly different
from zero (all |â̂j| > ∆âj for orthogonalized variables).
The optimal model is a statistically valid model which
yields a minimal variance.

It should be noted that in some cases theory dictates
a nonlinear regression model for concise representation
of a particular property (instead of using series expan-
sion, such as polynomial or quadratic representation).
In such cases initial application of nonlinear regression
to obtain the optimal parameters of the nonlinear model
is recommended. Additional model terms can then be
added, as necessary, considering the residual as the
dependent variable.

3. Principles of a Dynamic Physical Properties
(DPP) Library

The DPP library is envisioned as consisting of two
parts: a property evaluation program (PEP) and a
database containing experimental data and optimal
regression models. The basic unit in the database is the
“single compound-single property worksheet”. The
worksheet is divided into two sections: the data section
and the correlation’s section. In the data section, the
raw experimental data, error estimates for both the
independent and dependent variables, and references
for the data and error estimates are stored. It should
be emphasized that the original experimental data are
kept without any smoothing or removal of outliers and
other uncertain data. The error estimates are used by
the PEP to determine the most accurate model for
representing a particular property in view of the un-
certainties in the data.

The correlation’s section contains the optimal model
for smooth regions and the pertinent experimental data
for transient regions. For the optimal model of a
particular region, the complete model definition includ-
ing the parameter values, 95% confidence intervals, a
plot of experimental data versus calculated values, and

y ) â0 + â1x1 + â2x2 + ... + ânxn + E (1)

âj ) â̂j ( ∆âj; ∆âj ) t(ν,R) sxajj (2)
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a residual plot are included. The reference for the
particular model (when it was developed and by whom)
is also shown. For a transient region the pertinent
experimental data and a plot of these data are dis-
played.

The user can directly access the worksheet of a
particular property in order to assess the precision of
the data or the available correlations. More frequently,
the database will be accessed by the PEP in order to
provide numerical point values, derivatives of a par-
ticular property, or an integral of the property over a
range of the independent variable, according to requests
from a calling program (i.e., a process simulator). The
PEP may use the stored correlations for this purpose,
or it may use the stored data to obtain new correlations.
The algorithms for the operation of the PEP, for the case
where new correlations are requested, follow.

Evaluation of Point Property and Derivatives.

1. Identify smooth and transient regions in the
experimental data and set boundaries for the various
regions. Store this mapping of data for future use.

2. Characterize the region where the property value
or its derivative is requested. If this is a transient
region, go to 4; otherwise, proceed to 3.

3. Fit an optimal (most accurate and stable) model to
the data in the selected region. Store the optimal model
for future use.

4. Calculate the requested value (property or its
derivative) using the optimal model (in the case of a
smooth region) or linear interpolation (in the case of a
transient region).

5. If additional values in the same region are re-
quested, go back to 4; if additional values in a different
region are requested, go back to 2; otherwise, exit.

Evaluation of Integrals of the Property over a
Space of the Independent Variables.

1. Identify smooth and transient regions in the
experimental data and set boundaries for the various
regions. Store this mapping of data for future use.

2. Characterize all of the regions that are included in
the requested integral range. If no smooth regions are
involved, go to 4; otherwise, proceed to 3.

3. Fit optimal (most accurate and stable) models to
the data in the selected smooth regions. Store the
optimal models for future use.

4. Calculate the integral by integrating the optimal
model, using symbolic manipulation to obtain the
analytical expression, if possible (in the case of a smooth
region), or via interpolation (in the case of a transient
region).

5. If additional integrals involving the same regions
are requested, go back to 4; if additional integrals in
different regions are requested, go back to 2; otherwise,
exit.

If stored correlations are used, only the fourth and
fifth steps of the two algorithms are executed.

It should be noted that during construction of the
optimal model the PEP can exclude one or more
insignificant independent variables from the model. If
differentiation or integration with respect to such a
variable is requested, a warning message is issued by
the program.

Descriptions of the algorithms for the selection of the
optimal regression model and the identification of
smooth and transient regions follow.

Selecting the Optimal Regression Model Using
the SROV Procedure.6 For fitting the optimal model
in the smooth regions, the use of the SROV procedure
is proposed. This procedure is a stepwise regression
program based on orthogonalized variables. It uses an
initial pool of explanatory variables (the independent
variables and/or their functions) to select the ones that
should be included in the optimal model (optimal in the
sense described in section 2) and to calculate the
respective parameter values. The same procedure also
yields various indicators that can identify the dominant
cause preventing the addition of more variables to the
model, thus limiting its precision.

The SROV procedure is described in detail by Sha-
cham and Brauner.6 In this procedure, the selection of
a new variable to enter the model is based on three
indicators: a correlation indicator (YXj), a collinearity
indicator (TNRj), and an indicator which measures the
signal-to-noise ratio in the correlation indicator (CNRj).
The SROV procedure consists of successive phases,
where in the first phase an initial (nearly optimal)
solution is found. In the subsequent phases the variables
are rotated in an attempt to improve the model. Every
phase of the procedure consists of successive stages,
where at each stage one of the explanatory variables is
selected to enter the regression model as an additional
variable (basic variable). The remaining explanatory
variables (nonbasic variables) and the independent
variables are updated by subtracting the information
which is collinear with the variables already included
in the model. This updating generates nonbasic vari-
ables and a residual of the dependent variable, which
are orthogonal to the basic variables set.

At each stage, the strength of the linear correlation
between an explanatory variable xj and a dependent
variable y is measured by YXj ) yTxj, where y and xj
are centered and normalized to a unit length. The value
of |YXj| is in the range [0, 1]. In the case of a perfect
correlation between y and xj (y is aligned in the xj
direction), |YXj| ) 1. In case y is unaffected by xj (the
two vectors are orthogonal), YXj ) 0. The inclusion of a
variable xp, which has the highest level of correlation
with y (YXp value is the closest to 1) in the basic set,
will affect the maximal reduction of the variance of the
regression model. Therefore, the criterion xp ) xj{max
|YXj|} is used to determine which of the nonbasic
variables should preferably be included in the regression
model at the next stage, provided that the CNRp > 1
and TNRp > 1 tests are both satisfied. The addition of
new variables stops when for all of the nonbasic
variables either CNRj > 1 or TNRj >1, which indicates
that the information included in these variables and/or
in the residual of y is already at the experimental noise
level.

Identification of Smooth Regions, Transient
Regions, and Discontinuities. There are many in-
stances where a particular property cannot be ac-
curately represented by a single model equation over
the whole range of interest. Typical examples include
properties of solids where abrupt changes in properties
may occur because of phase transitions between various
possible crystal structures. The change may be gradual,
in which case the transitional region can be represented
by a statistically significant model (albeit different
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models may be required for representing adjacent
regions), or it may occur abruptly, introducing discon-
tinuities and inconsistent changes in the property
values. A region where the property changes are incon-
sistent with theory or with accepted models is herein
denoted a “transient region”, whereas regions that can
be represented by statistically valid models (that are
appropriate for that particular property) are denoted as
“smooth regions”.

The SROV procedure can be helpful in identifying the
boundaries of the various regions, because inclusion of
a data point belonging to a different region will usually
seriously impair the quality of the fit between the
optimal model and the data. Typically, this impairment
will show up as a large increase in the variance and in
the confidence intervals, a considerable increase in the
number of terms included in the optimal model, and a

nonrandom residual plot. To use the SROV procedure
effectively for this purpose, a preliminary identification
of the potential boundary points is required. This
identification can be done by inspection of the plot of
the experimental data or by use of the “difference from
a moving average” (DFMA) technique (see below) to
identify data points belonging to different regions.

In the DFMA procedure, the difference of each data
point (dependent variable) from the moving average (the
average of two adjacent points) is calculated. All data
points for which this difference is larger (in absolute
value) than the average value of the differences are
suspected as being boundary points, belonging to tran-
sient regions or being outliers. Following this prelimi-
nary identification, the SROV procedure is used for final
determination of the topology of the data set.

In the next section an example will be presented.
This example demonstrates the use of the DFMA and
SROV procedures for identification of the various re-
gions and for fitting of the optimal regression models
in smooth regions. The example also demonstrates
the proposed library structure and some of its advan-
tages. The calculations related to this example were
carried out with the regression program of the POLY-
MATH 5.0 [copyrighted by M. Shacham, M. B. Cutlip,
and M. Elly (http://www.polymath-software.com)] pack-
age. The SROV procedure was implemented with MAT-
LAB 5.2 [trademark of MathWorks Inc. (http://www.
mathworks.com)]. The database of the library was
implemented with Excel [trademark of Microsoft Corp.
(http://www.microsoft.com)].

4. Correlation of Heat Capacity Data of Solid
HBrsAn Example

Data of heat capacity versus temperature of solid
HBr, which was published by Giauque and Wiebe,7 are
used in this example. The original data were sorted in
an increasing order of the temperature values in order

Table 1. Worksheet Section Describing Part of the Solid
Heat Capacity Data of HBr

name: hydrogen bromide, hydrobromic acid; HBr
property: solid heat capacity
reference: Giaugue and Wiebe7

notation: T ) temperature (K)
Cp ) heat capacity (cal/mol‚K)
del T ) estimated error in T
del Cp ) estimated error in Cp

data: no. of points: 70

no. T Cp del T (K) del Cp (%)

1 15.72 1.831 0.05 0.30
2 17.81 2.16 0.05 0.30
3 19.57 2.615 0.05 0.30
4 22.32 3.01 0.05 0.30
5 25.49 3.459 0.05 0.30
6 30.16 3.955 0.05 0.30
7 34.58 4.415 0.05 0.30
8 39.15 4.827 0.05 0.30
9 43.75 5.16 0.05 0.30

10 48.32 5.453 0.05 0.30
11 52.93 5.832 0.05 0.30
12 57.8 6.171 0.05 0.30

Figure 1. Heat capacity of solid HBr (Cp on a logarithmic scale).
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to make the analysis easier. The section of the single
component-single property worksheet, where part of
the data are listed, is shown in Table 1. The precision
of the temperature measurements (as reported by
Giauque and Wiebe7) is δT ) 0.05 K for all of the data
points. The estimated error of the heat capacity data
for most of the points is ε ) 0.3%; for a few points (not
shown in Table 1) there is an uncertainty regarding the
precision of data.

In Figure 1 the heat capacity is plotted versus the
temperature, where a logarithmic scale is used for heat
capacity. Solid HBr exhibits two phase transitions,
which are associated with discontinuities in the heat
capacity versus temperature curve, as shown in Figure
1. This plot can be used for a preliminary identification
of the boundaries of the various regions just by inspec-
tion. Alternatively, the DFMA procedure can be used
for an automatic preliminary identification. In Figure
2 the calculated difference of each data point from the
moving average is plotted versus the temperature. The
two straight lines in this plot represent positive and
negative values of the averaged absolute differences
()0.154). All points lying outside these two bounds are
presumed as excluded from the current smooth region.

The descriptions of the five regions that were identi-
fied (by both inspection and the DFMA procedure) are
shown in Table 2. Further validation of the region
boundaries and the characterization of a particular
region (smooth or transient) using the SROV procedure
will be discussed in conjunction with the identification
of the appropriate model for the various regions.

Discussion of the construction of the optimal regres-
sion models for the various regions follows.

Construction of the Optimal Regression Model
for Region 5. Region 5 is the only region that has been
included in the correlation library published by Daubert

and Danner.2 They have recommended the use of a
fourth-order polynomial to model the data in this region.
Shacham and Brauner8 investigated collinearity con-
siderations in polynomial regression using these data.
We will be using the algorithm proposed by Brauner
and Shacham5 to construct the optimal polynomial
model for the data. Using this algorithm, the temper-
ature data are first transformed to yield a variable
distribution in the range of [-1, 1] [via the z transfor-
mation, z ) (2x - xmax - xmin)/(xmax - xmin)] and the heat
capacity data are normalized by dividing all of the
values by the maximal value in the range. Various
powers of z (up to the 15th power) are used as an initial
pool of explanatory variables that can potentially be
included in the regression model. The SROV procedure
is used to identify the explanatory variables that should
eventually be included and to calculate the respective
model parameters.

In Figure 3 the section of the worksheet describing
the optimal regression model is shown. The description
includes the model equations, the parameter values
(including 95% confidence intervals), and the variance.
The model includes nonconsecutive polynomial terms
z, z2, and z5 and a free parameter. The stability of the
model is implied by its statistical validity (all of the
confidence intervals are smaller than the respective
parameter values). The model description includes also

Figure 2. Difference between point values and moving average values for the heat capacity data.

Table 2. Description of the Regions of the Heat Capacity
Data

region
no.

point
range

temperature
range (K) type

est. error
in T (δT; K)

est. error
in Cp (ε; %)

1 1-29 15.72-89.23 smooth 0.05 0.30
2 30-38 89.39-91.23 transient 0.05 uncertain
3 39-45 92.01-111.47 smooth 0.05 0.30
4 46-52 113.31-117.09 transient 0.05 uncertain
5 53-70 118.99-182.09 smooth 0.05 0.30
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a plot of the experimental data points along with the
calculated data points and the residual plot. As shown,
the residuals are randomly distributed, the maximal
error is about 0.66%, and the average error is about
0.3%, the same as the estimated experimental error in
the heat capacity data. Thus, the fit is satisfactory.
Daubert and Danner2 estimated the accuracy of their
correlation (obtained for part of region 5) to be (3%,
which is significantly less accurate than the herein
proposed model.

The form of the model description as shown in Figure
3 is appropriate for dual use. A computer program for
carrying out additional calculations can import the
definition of the model equations, the parameter values,

and the bounds on the range of its applicability. In
addition, a user can directly access the model definition
for assessing the precision of the experimental data and
the available correlations.

To verify that the bound of this region is indeed at T
) 118.99 K (as found in the preliminary analysis and
shown in Table 2), the SROV procedure was applied to
the data of this region including an additional point (at
T ) 117.09 K). In this case, an optimal (statistically
valid) model containing seven nonconsecutive poly-
nomial termssz5, z7, z9, z11, z12, z13, z14, and z15shas
been found, with a variance of 4.372 × 10-5. Thus, with
the inclusion of the additional point, the number of
terms in the model has increased from four to eight, and

Figure 3. Section of the worksheet describing the optimal model for region 5.
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at the same time the variance has increased by almost
an order of magnitude. The residual plot for this case,
shown in Figure 4, demonstrates most dramatically that
the point added does not belong to the same population
as the rest of the data in this region.

Construction of the Optimal Regression Model
for Region 1. An attempt to fit a polynomial model to
the data in region 1 may yield poor results, as can be
seen in Figure 5, where a fifth-order polynomial has
been fitted to the data. The model is statistically invalid,
because some of the confidence intervals are larger than
the (absolute) parameter values and the variance is very
large (see Table 3). Using a large pool of polynomial
terms and the SROV procedure to select the terms that
should be included in an optimal model yields more
accurate results. Still, the model does not provide a
random error distribution, implying that it can be
further improved.

The exponential increase of Cp values, starting at
about T ) 85 K, can be moderated by fitting a curve to
log(Cp) instead of Cp itself. Employing the SROV pro-
cedure on normalized values of log(Cp) versus z yields
the results shown in Figure 6. The optimal model
includes 10 nonconsecutive polynomial termssz, z4, z5,
z6, z8, z10, z12, z13, z14, and z15sand a free parameter.
While this model seems to contain excessively large
number of terms, it is statistically valid and stable,
because all of the confidence intervals are smaller than
the respective parameter values.

Figure 6 includes also a plot comparing the experi-
mental data points for region 1 with the calculated
values. The fit looks satisfactory. The residuals plot for
the optimal model shows that the error is randomly
distributed and the maximal error is about 1% in log(Cp)
and about 2% in Cp values. Thus, the average error in
this case is considerably higher than the estimated
experimental error, implying that there may be a more
appropriate model of higher accuracy.

The results for this example demonstrate that in some
cases regression models with a large number of terms
should be used in order to achieve a high level of
accuracy. Considering that the level of complexity is not
a major issue, when the model equations and the
parameter values are directly imported by other pro-
grams, there is no need to refrain from the use of

Figure 4. Residual plot of the optimal model in region 5 when
the point at T ) 117.09 K is included.

Figure 5. Experimental values versus calculated curve, region 1, fifth-order polynomial representation.

Table 3. Fifth-Order Polynomial Representation of Heat
Capacity versus Temperature in Region 1 (Model: Cp )
a1TK + a2TK2 + a3TK3 + a4TK4 + a5TK5)a

variable value 95% confidence interval

a1 0.888 226 7 0.891 986 9
a2 -0.076 540 7 0.077 662 8
a3 0.002 593 7 0.002 316 8
a4 -3.609 × 10-5 2.862 × 10-5

a5 1.762 × 10-7 1.253 × 10-7

a Variance ) 4.568 094 2.
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complex models as long as they are statistically valid
and of high accuracy.

Analysis of the Data in a Transient Region
(Region 2). Figure 7 shows the section of the worksheet
describing the pertinent information for a transient
region (region 2). The description includes the experi-
mental data, its range, and plot of the heat capacity
versus temperature in this region. An attempt to fit a
model to these data has indicated that there is no
statistically significant polynomial model representation
in this region, implying that a high level of uncertainty
is associated with calculations involving such a region.
One of the working assumptions that can be adopted is
that the measured data points are more accurate than

any (statistically insignificant) model fitted to the data.
Based on this assumption, the use of linear interpolation
for calculations involving such regions can be justified.

Regions 3 (smooth) and 4 (transient) are basically not
different from the regions that were discussed so far,
and therefore their analyses are not presented.

5. Conclusions

The proposed DPP correlations library can provide
more information and of higher accuracy than the
existing traditional libraries. The information in the
DPP library is easily accessible and updateable. Higher
accuracy is achievable by identifying and separately

Figure 6. Section of the worksheet describing the optimal model for region 1.
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treating smooth and transient regions and by using
state of the art regression techniques for modeling the
data in the smooth regions. Thus, the most accurate
representation of the data is provided for the whole
range where data are available.

The user is provided with the information needed to
analyze the appropriateness of the suggested correla-
tions for his purposes and may request the generation
of new correlations with different model equations as
necessary. The plots included in the library can show
the user the true effects of extrapolation outside the
smooth regions, so that he can select a more sensible
calculation method if extrapolation leads to absurd
results.

The whole set of experimental data and the model
equations of the various regions (including the param-
eter values) are available for import by other programs.
Because there is no need to manually copy equations
and numbers, the complexity of the regression model
becomes a minor concern. Therefore, it is no longer
necessary to rely on simple, compact models, which may
sacrifice the accuracy that is available in the experi-
mental data. Complex, more precise models can be used
as long as they are proven to be stable.

The library can be easily updated by copying the
single component-single property worksheet and in-
troducing the necessary changes: addition of new data,
fitting of a different model, or employment of a more
up to date regression package, to obtain a more precise
correlation in a new copy of the worksheet.

The proposed library structure fits very well into the
current trend of using “open system architecture” in
software development in general and in process simula-
tion in particular. Thus, it can be expected that this

structure will replace the traditional structure in the
development of correlation libraries.
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Figure 7. Section of the worksheet presenting the data of region 2.
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