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The inverse normalizing transformation (INT) represents a generalization of the inverse of the
Box-Cox transformation. It is shown that several well-known and widely used property
correlation equations, such as the Antoine, the truncated Riedel, the Rackett, and the
Guggenheim equations can be derived from the INT. Its use is demonstrated for modeling the
temperature dependence of vapor pressure, solid and liquid heat capacity, vapor and liquid
viscosity, and surface tension data. It is shown that the INT can represent satisfactorily curves
of different shapes and, as such, its use can be beneficial in modeling the temperature dependence
of various physical and thermodynamic properties.

1. Introduction

Mathematical modeling and simulation of chemical
processes and substances require precise equations to
represent the physical and thermodynamic properties
as a function of state variables such as temperature,
pressure, and composition. Most of the model equations
that are used for calculating or predicting these proper-
ties are based on a physical theory,1 while the theory-
based terms are often complemented by empirical terms
in order to achieve higher accuracy. The parameters of
the model are evaluated by regression analysis of
experimental data. If the latter appear to be scarce, it
is often necessary to use the fitted expression for
extrapolation to regions where experimental data are
not available.

There are many physical theory-based relationships
that can represent accurately data for a certain class of
substances and for a particular property. Fitting pro-
cedures that would help determine the parameters of
these relationships are routinely based on the least-
squares methodology, and if linearization of the rela-
tionship is feasible, some form of a stepwise linear
regression is commonly employed (refer, for example,
to ref 2). In the latter case, ensuring the validity of the
underlying assumptions of linear regression analysis
(like the normality of the residuals) is essential to
guarantee the validity of the derived conclusions.

There are, however, many properties (like solid
properties) where the systematic variation of the inves-

tigated property as a function of some state variables
is not understood well enough to construct theory-based
model equations. Furthermore, even if a theoretically
based first approximation does exist, discrepancies are
sometimes observed that still require an empirical
refining of the approximation. In such cases, some
general empirical equations (polynomials, for example)
are often used. Polynomials, however, may be highly
inaccurate unless high-degree powers are used. In the
latter case, unwarranted inflections may be introduced
which render interpolation and extrapolation very inac-
curate. Furthermore, attempting to use unduly high
degree polynomials for noisy data may result in “over-
fitting” that could cause a high level of collinearity
between the polynomial terms. This may render the
polynomial representation highly unstable (see, for
example, ref 3).

A third situation where empirical equations may be
needed is when the accurate theory-based models may
require critical constants and/or a large set of data for
obtaining reliable estimates of the model parameters.
Often, not enough data are available, and attempting
to use models that contain many parameters when data
are insufficient may lead to poor or even misleading and
absurd results.

In this paper we apply a new statistical-distribution
theory-based equation to model the temperature depen-
dence of physical and thermodynamic properties. The
general form of the equation has been developed by
Shore,4 and it may be considered to be a generalization
of the inverse of the well-known Box-Cox5 normalizing
transformation, which has been widely applied since its
inception in 1964. The equation proposed by Shore4

models the quantile of a dependent variable, which is
not necessarily normal, in terms of the corresponding
standard normal quantile. The resulting expression is
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called an inverse normalizing transformation (INT), and
the normal and the log-normal quantile functions are
exact special cases. Several derivatives of the “origin”
INT, with a reduced number of parameters, have also
been developed. Their accuracy was demonstrated to
many and variously shaped distributions like the bino-
mial, Poisson, gamma, Weibull, and extreme value. The
theory underlying the new INTs seems to be as valid
and applicable when the relationship between various
physical and thermodynamic properties is the subject
of the modeling effort.

The structure of the paper is as follows. In the next
section (section 2), some basic concepts including the
Box-Cox5 transformation are briefly reviewed. In sec-
tion 3, we outline the theory behind the new group of
INTs and depict some of the new INTs. In section 4,
the relationship between the general INT equation and
some physical theory-based property correlation equa-
tions is investigated. In section 5, a particular form of
the general equation (the simplified INT, SINT), found
to be most appropriate for physical and thermodynamic
property correlation, is presented. The SINT is tested
and compared with existing correlation equations by
correlating vapor pressure, solid and liquid heat capac-
ity, vapor and liquid viscosity, and surface tension data,
in section 6. Section 7 summarizes the study and offers
some conclusions.

The calculations reported in this study were
carried out with Mathematica [a trademark of Wol-
fram Research, Inc. (http://www.wolfram.com)] and
POLYMATH 5.0 [copyrighted by M. Shacham, M. B.
Cutlip, and M. Elly (http://www.polymath-software-
.com)] computational packages.

2. Basic Concepts

Let us assume that there is known to be a relationship
between a dependent variable Y and an independent
variable X. Assume further that there is a set of N data
points, {xi, yi}, which may be used to model and estimate
this relationship. A general form of the regression model
to represent Y in terms of X is

where â is a vector of p parameters and {εi} are
independent normally distributed errors with constant
variance. The values of the parameters â0, â1, ..., âp are
usually estimated to minimize the sum of squares of the
errors:

Dependent on the nature of function F, parameter
fitting employed by the least-squares approach is carried
out by either linear or nonlinear regression techniques.
Various models fitted to the same data are usually
compared using the value of the variance, the distribu-
tion of the residuals, and the confidence intervals
associated with the estimated parameter values. A
smaller variance indicates a better fit, while a nonran-
dom residual distribution may imply an inappropriate
model. Large confidence intervals (in particular, confi-
dence intervals that are larger than the respective
parameter values) may indicate the presence of col-
linearity among the terms containing the independent
variable X (overcorrelation) or the presence of outliers
in the data. For a general discussion of regression
diagnostics, see, for example, the book by Belsley et al.6

For application of regression diagnostics to the modeling
of thermophysical data, refer to refs 7 and 8.

A large variety of regression models have been
proposed for representing the temperature dependence
of various physical and thermodynamic properties. The
most widely used models have been recently reviewed
and compared by Daubert.9 Most model equations are
based on physical theory (Reid et al.1), while some
empirical terms are added to compensate for variations
not accounted for by the existing theory. Addition of
empirical terms is done by use of stepwise regression
(see, for example, ref 2) or by simple trial and error.

A different approach to modeling, which has gained
popularity also in chemical engineering applications, is
to transform the dependent variable so that when a
linear model for F is used, constancy of the error
variance and normality of the error distribution are
obtained. Most widely used in this context is the Box-
Cox5 transformation. The one-parameter version of the
latter is

If this transformation is effective, then y(λ) is expected
to be well represented by a linear function of a standard
normal variable x, F(x;â) ) â0 + â1x. The value of λ that
best satisfies this condition can be found by the “maxi-
mum likelihood” procedure, described in ref 5. The
maximum likelihood method was implemented, for
example, in the Simusolv program,10 which has been
widely used for reaction-rate data correlation. It has
been noted11 that the Box-Cox transformation is useful
in the correction of skewness of the distribution of error
terms, unequal error variances, and nonlinearity of the
regression function. Thus, this transformation can be
helpful in modeling the temperature dependence of
physical and thermodynamic properties, in particular,
in cases where the change of the property as a function
of the temperature is not well enough understood to
enable the development of a physical theory-based
model equation.

In the next section, the INT method, which stems
from a generalized representation of the inverse of the
Box-Cox transformation, is presented. This method
would provide a general framework for modeling the
regression equations derived in this paper.

3. General Form of an INT (Shore4)

The Box-Cox transformation can be used as the basis
for developing an INT from which functions represent-
ing curves of various shapes and having various error
distributions can be derived. Based on the premise that
y(λ) can be represented as a linear function of x, eq 3
yields

where the middle term in each case is rewritten on the
right-hand side to preserve the median of Y, M.

Shore4 examined a large number of differently shaped
distributions and found eq 4 to deliver generally poor
representation of the quantile relationship between y
(the quantile of a nonnormal variable Y) and the
corresponding standard normal quantile, X. To improve

yi ) F(xi,â) + εi (1)

s2 ) min
â

∑
i)1

N

[yi - F(xi,â)]2 (2)

y(λ) ) {yλ - 1
λ

(λ * 0)

log(y) (λ ) 0)
(3)

y ) {[λ(â′0 + â′1x) + 1]1/λ ) M(1 + â0x)â1, λ * 0
exp(â0′ + â1′x) ) M exp(â2x), λ ) 0

(4)
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the fit, let us rewrite the two parts of eq 4 as a product
of the two terms, thus effectively eliminating the
discontinuity built into the original Box-Cox transfor-
mation:

Generalizing the log term by presenting it as a Box-
Cox transformation (therefore, introducing an additional
parameter), we obtain from eq 5

This is a four-parameter INT, where the median serves
as a scale parameter and is preserved by the INT
(namely, when x ) 0, y ) M). The remaining four
parameters need to be determined by an appropriate
fitting procedure. Note that the normal (â2 ) 0, â3 ) 0,
and â1 ) 1) and the log-normal (â3/â0 ) 1) are exact
special cases of eq 6. It is easy to see that, by proper
choice of the parameters, different functions which are
widely used to represent monotonically convex (or
concave) functions can be derived. A comprehensive
description of these functions may be found in ref 4. In
particular, for â2 ) 0 and â3 ) 0, the equations y ) A +
Bx (linear increase, â1 ) 1) and y ) (A + Bx)k (power
increase, â1 * 1), where k is a real-valued parameter,
are obtained (these are the cases derived from the
inverse of the Box-Cox transformation). Introducing â3/
â0 ) 1 yields an “exponential increase” function, y )
exp(A + Bx), while for â0 f 0, the “exponential-
exponential increase” function is obtained.

4. Deriving Physical Theory-Based Models from
the INT Equation

The examples shown at the end of the previous section
demonstrate the versatility of the new INT and its
potential to serve for modeling various relationships
that are commonly encountered in chemical engineer-
ing. In particular, it may be used to represent the
change of physical and thermodynamic properties as a
function of temperature. This option will be explored
by deriving the Antoine12 equation for vapor-pressure
correlation, Rackett’s13 equation for liquid density cor-
relation, Guggenheim’s14 equation for surface tension
correlation, and a truncated Riedel’s equation for liquid
viscosity correlation.

The Antoine equation is usually written as

where A, B, and C are constants determined by the
regression of experimental data. This equation is widely
used for vapor-pressure correlation and gives a fairly
accurate representation provided that the temperature
range is not too wide. The Antoine equation can be
derived from eq 6 by introducing y ) P, x ) T, â3/â0 )
λ ) -1, â2 ) 0, 1/â0 ) C, â1/â0 ) B, and ln(M) + â1 ) A,
resulting in â0 ) -â3 ) 1/C, â1 ) B/C, â2 ) 0, and ln(M)
) A - B/C.

Rackett13 has suggested the following equation for
liquid density in terms of temperature:

where FL is the liquid density and A, B, C, and D are

parameters to be determined. Daubert9 compares Rack-
ett’s formula with other alternatives that have appeared
in the literature and concludes that Rackett’s equation
is the most appropriate for modeling the liquid density
over the entire range of temperatures from the triple
point to the critical point. When eq 8 is compared with
eq 6, it is obvious that eq 8 is a special case of eq 6,
with y ) FL, x ) T, â0 ) -1/C, â1 ) -D log B, â2 ) 0, â3
) -D/C, and M ) -A/B2.

Guggenheim14 has suggested the following correlation
equation for surface tension:

After comparing several correlation equations, Daub-
ert9 recommends the use of Guggenheim’s equation for
correlating surface tension data. It can be shown that
eq 9 is a linear transformation of a special case of eq 6.
Introducing in the latter y ) σ, 1 + â0x ) T/TC, â3/â0 )
λ ) 0, â1 ) C, â2 ) 0, and M ) R, we obtain

which is a linear transformation of eq 9.
For viscosity of liquids, Daubert9 recommends the use

of a truncated Riedel15 equation:

It is claimed therein that “an evaluation with two dozen
disparate compounds with data available over most of
the range for most compounds confirmed the accuracy
of this expression in correlating, interpolating, and
extrapolating liquid viscosity data”.

It is can be seen from eq 6 that with â3/â0 ) λ ) -1
the reciprocal term in eq 11 is obtained, while with λ )
0 the log term is obtained. Thus, instead of linearly
combining these two terms, it is expected that an
intermediate value of λ will provide a good fit for the
liquid viscosity that would be at least as good as that
delivered by eq 11.

5. SINT

Inspection of the curves representing the temperature
dependence of various physical and thermodynamic
properties (see, for example, ref 10) shows that those
functions are monotonically convex (concave) functions
of temperature. Assuming that the temperature (the
independent variable) has a symmetric ditribution, then
the property (say y) is positively skewed (negatively
skewed). From a comprehensive study of theoretical
distributions,4 with a skewness value that ranged from
zero to over 11, â0 was consistently found to be very
small. Assuming â0 f 0, eq 6 can be transformed into
the following double-exponent form:

where θ is the standardized temperature: θ ) [T -
median(T)]/[s.d.(T)], T is the temperature in K, y is the
pertinent physical property, and a, b, c, and d are the
model parameters. Note that â1, â2, and â3 are renamed
as b, c, and d for the sake of simplicity and the median
of y, M, is replaced by an additional adjustable param-

y ) M{exp[â1 log(1 + â0x) + â2x]} (5)

y ) M exp{â1[(1 + â0x)â3/â0 - 1]/
(â3/â0) + â2x} x > -1/â0 (6)

ln P ) A + B
T + C

(7)

log(FL) ) log(A) - [1 + (1 - T
C)D] log(B) (8)

σ ) R[1 - ( T
TC

)C] (9)

M exp{(â1/λ)[( T
TC

)λ
- 1]} ) R exp[log( T

TC
)C] )

R( T
TC

)C
(10)

log(µL) ) A + B
T

+ C log(T) (11)

y ) a{exp(b[exp(cθ) - 1] + dθ)} (12)
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eter a. Also note that, because T is assumed to be
symmetrically distributed, standardization is carried
out with the median of T rather than with the conven-
tional mean.

Equation 12 can be rewritten in a form commonly
used in the correlation of various properties by taking
the logarithm of both sides:

where a′ ) ln(a). This form contains only one parameter
in a nonlinear expression and thus can alleviate the
computational complexity in deriving the least-squares
estimates of the parameter values. Equations 12 and
13 will, henceforth, be denoted as simplified INT (SINT).
This SINT will be used for the correlation of vapor
pressure, heat capacity of solid and liquid, viscosity of
gas and liquid, and surface tension of liquid. In the
following section, the details of the performance of these
analyses are described.

6. Correlation of Physical and Thermodynamic
Properties with the SINT

Vapor Pressure between the Triple Point and
the Critical Point. Wagner et al.2,16 had published
high-precision data for the vapor pressure for argon,
nitrogen, and oxygen. The ranges of the data were from
the triple point to the critical point for argon and
nitrogen and from the normal boiling point to the critical
point for oxygen. Some additional information for char-
acterization of these data, together with the results of
fitting eq 13 to these data, is given in Table 1.

It can be seen that the regressed model fits the data
very well. The variance [based on ln(P)] ranges from
1.76 × 10-7 for oxygen up to 2.04 × 10-6 for nitrogen.
All of the confidence intervals on the model parameters
are smaller by, at least, 2 orders of magnitude than the
parameter values. The experimental vapor-pressure
data and calculated curve (for oxygen) are plotted versus
the temperature in Figure 1, showing that all of the
experimental data points are virtually located on the
calculated curve (very small errors). Similar results
were obtained for argon and nitrogen. It should be noted
that the vapor pressure increases exponentially with the
temperature and the curve has a convex shape.

The performance of SINT for a wide range of vapor-
pressure data was compared with the performance of
the Antoine equation (eq 7), Wagner’s2 equation, and
the extended Riedel equation.9 The Wagner equation is
the four-parameter equation:

where a, b, c, and d are adjustable parameters, TR is
the reduced temperature (TR ) T/TC, where TC is the
critical temperature of the particular substance), PR is
the reduced pressure (PR ) P/PC, where PC is the critical
pressure of the particular substance), and τ ) 1 - TR.
The extended Riedel equation is a five-parameter equa-
tion:

where A, B, C, D, and E are adjustable parameters.
The results of this comparison are shown in Table 2.

It can be seen that the accuracy of the SINT correlation
is significantly higher than that of the three-parameter
Antoine equation and only slightly lower than the
accuracy of the five-parameter extended Riedel equa-
tion. Wagner’s equation provides the most accurate
correlations for the vapor pressure of oxygen, argon, and
nitrogen, but it should be noted that this equation was
actually optimized (by stepwise regression) for the very
same substances. From the results of this comparison,
it can be concluded that the general purpose SINT
competes favorably with the most accurate specific
vapor-pressure equations for representing data covering
a wide temperature range.

Table 1. Data Characterization and Fit of the SINT Equation: Vapor-Pressure Data

oxygen argon nitrogen

parameter value confidence interval value confidence interval value confidence interval

a′ ) ln(a) 0.305 958 7 9.79 × 10-5 2.502 048 2.73 × 10-4 1.841 746 5.08 × 10-4

b -0.855 077 0.004 937 5 -0.857 77 0.009 228 7 -0.963 51 0.012 837 1
c -0.603 461 0.001 565 1 -0.718 57 0.003 376 3 -0.705 34 0.004 006 1
d 0.533 671 2 0.001 530 1 0.626 196 0.003 415 9 0.626 073 0.004 672 1
variance 1.76 × 10-7 4.33 × 10-7 2.04 × 10-6

sample size (N) 183 57 68
temp units K K K
temp range 90.188 154.581 83.804 150.651 63.148 126.2
median T 125.1 120.1 97.04
pressure units MPa bar bar
pressure range 0.101 28 5.043 37 0.6895 48.578 0.1252 34.002
median ln(P) 0.3008 2.5047 1.84

Figure 1. Experimental data and calculated curve (using SINT)
for oxygen’s vapor pressure.

Table 2. Comparison of Vapor-Pressure Correlation
Equations

variance at optimal solutioncorrelation eq
(no. of param) oxygen argon nitrogen

Wagner’s (4) 6.32 × 10-9 4.62 × 10-8 4.726 × 10-8

modified Riedel’s (5) 1.38 × 10-7 1.83 × 10-7 2.73 × 10-7

SINT (4) 1.76 × 10-7 4.33 × 10-7 2.04 × 10-6

Antoine (3) 4.06 × 10-5 5.09 × 10-5 7.85 × 10-5

ln P ) A - B
T

+ C ln T + DT 2 + E
T 2

(15)

ln(y) ) a′ + b[exp(cθ) - 1] + dθ (13)

ln PR ) aτ + bτ1.5 + cτ3 + dτ6

TR
(14)
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Heat Capacity of Liquids and Solids. The SINT
was fitted to heat capacity data of solid ammonia,17 solid
acetonitrile,18 and liquid butanoic acid.19 It should be
mentioned that in the case of the butanoic acid one
outlying measurement was removed from the data. Solid
acetonitrile has a phase transition point at T ) 208.98
K, and only the data below this temperature were used
in the regression. Some additional information for
characterization of these data is shown in Table 3.
Because heat capacity data are usually modeled using
Cp (not the logarithm of Cp) as a dependent variable,
eq 13 has been used for modeling the data. The regres-
sion results are also shown in Table 3.

It can be seen that the regressed model fits the data
well. The variance ranges from 0.0038 for solid ammonia
up to 0.019 for solid acetonitrile. All of the confidence
intervals on the model parameters are smaller than the
parameter values. The experimental heat capacity data
and calculated curve are plotted versus the temperature
in Figure 2 (for solid ammonia) and that in Figure 3
(for liquid butanoic acid). For the case of butanoic acid,
all of the experimental data points are virtually located
on the calculated curve, while for the solid ammonia,
there are some small discrepancies with the experimen-
tal data. It should be emphasized that the shapes of
these curves are completely different from the shape of
the vapor-pressure curve. For solid ammonia, the curve
is moderately concave, and for liquid butanoic acid, the
curve is slightly convex.

Heat capacity data for liquids and solids are usually
modeled with polynomials (see, for example, ref 9).
High-order polynomials are often needed to represent
the data accurately, but high-order polynomials can
become unstable (indicated by confidence intervals
which are larger than the respective parameter values).
Even if instability is not detected based on the confi-
dence intervals, often addition of more polynomial terms

may add unwarranted inflections, resulting in poor
interpolation or extrapolation. Use of extreme care is
recommended9 when fitting third- and fourth-order
polynomials.

The performance of the SINT for the heat capacity
data was compared with the performance of polynomials
of various orders. The results of this comparison are
summarized in Table 4. In this table the variance and
the relative variance ()1 for SINT) of the various fits
are shown. The variance of the SINT is smaller than
that of the second-order polynomial in all cases. At-
tempting to fit a higher order polynomial to the data of
liquid butanoic acid yields unstable models where the
confidence intervals on the parameters are larger than
the parameter values. For the case of third-order
polynomials, in one case (solid ammonia) the variance
is larger than that of the SINT fit and in the other case
it is smaller. Increasing the order of the polynomials
yields an unstable model in one case and further

Table 3. Data Characterization and Fit of the SINT Equation: Heat Capacity Data

ammonia (solid) acetonitrile (solid) butanoic acid (liquid)

parameter value confidence interval value confidence interval value confidence interval

a 6.060 926 1 1.72 × 10-4 7.181 925 1 9.92 × 10-2 187.575 92 5.79 × 10-2

b -0.110 722 8 2.17 × 10-5 -0.253 187 0.029 361 0.031 031 1 0.015 356 3
c -2.161 970 5 2.12 × 10-4 -2.962 873 2 0.186 825 0.346 169 3 0.085 793 5
d 0.323 073 3 2.56 × 10-5 0.294 771 1 0.012 295 0.052 612 8 0.002 731 7
variance 0.003 805 5 0.019 278 3 0.012 722 8
sample size (N) 42 30 31
temp units K K K
temp range 15.04 191.09 15.63 208.98 272.75a 373.06
median T 95.88 62.105 324.4
heat capacity units cal/K‚mol cal/K‚mol J/K‚mol
heat capacity range 0.176 11.94 0.409 18.7 169 209
median Cp 6.0015 7.1025 187.2

a An outlying measurement was deleted at T ) 300.18 K.

Figure 2. Experimental data and calculated curve (using SINT)
for solid ammonia’s heat capacity.

Figure 3. Experimental data and calculated curve (using SINT)
for liquid butanoic acid’s heat capacity.

Table 4. Comparison of the Heat Capacity Correlation
Equations

variance at optimal solution
(normalized to SINT)

correlation ammonia acetonitrile butanoic acid

fifth-order
polynomial

0.0019
(0.4969)

0.0084
(0.4380)

unstable

fourth-order
polynomial

0.0026
(0.6772)

unstable unstable

third-order
polynomial

0.0083
(2.1693)

0.0157
(0.8130)

unstable

SINT 0.0038
(1.0000)

0.0193
(1.0000)

0.0127
(1.0000)

second-order
polynomial

0.0090
(2.365)

0.1325
(6.8724)

0.0151
(1.1901)
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reduction of the variance in other cases. Thus, in
general, SINT yields better fits than low-order polyno-
mials (second or third order). Higher order polynomials
may become unstable or enable further reduction of the
variance; however, high-order polynomials tend to
introduce unwarranted inflections, as we have men-
tioned earlier.

Fitting SINT to Curves of Various Shapes. To test
the capability of the SINT to model the complete variety
of curve shapes that appear in modeling of physical and
thermodynamic property data (see a detailed demon-
stration in ref 9), additional properties, namely, the
viscosity of vapor and liquid and the surface tension of
liquid, were also modeled with the SINT. The quality
of the representation was similar to the quality of the
representation for vapor pressure and heat capacity
data.

The shapes of the various curves that are represented
with high precision using the SINT are listed in Table
5. It can be realized that vapor pressure, heat capacity,
and vapor viscosity are increasing functions of the
temperature, while liquid viscosity and surface tension
are decreasing functions. Vapor pressure and liquid heat
capacity are convex functions (high convexity for vapor
pressure and slight convexity for heat capacity), while
viscosity, surface tension, and solid heat capacity are
concave functions (high concavity for liquid viscosity,
moderate concavity for vapor viscosity and solid heat
capacity, and slight concavity for surface tension). Thus,
the SINT can accurately model the entire range of
function shapes that appear in the representation of
physical and thermodynamic data as a function of
temperature for pure substances.

7. Conclusions

It has been shown in this paper that the “origin” INT
(eq 6) is a generalization of several well-known and
widely used physical property correlation equations. The
pertinent equations include the Antoine equation for
vapor-pressure correlation, the truncated Riedel equa-
tion for vapor pressure and liquid viscosity correlation,
the Rackett equation for liquid density correlation, and
the Guggenheim equation for surface tension correla-
tion. The ability of the INT equation to adjust to so
many different equation forms proves its versatility.
Furthermore, it shows that the experimental data
provide links between physical theory-based models and
models based on the statistical distribution of the data.
These links can be utilized for a better understanding
of the data modeling process.

The SINT equation, one of the derivatives of the
“origin” INT, is found to be more convenient for routine
use in the regression of physical and thermodynamic
data. It has proved to represent properly vapor-pressure
data for a temperature range extending from the triple
point to the critical point, temperature dependence of
solid and liquid heat capacity, vapor and liquid viscosity,
and surface tension. Temperature dependencies of these

properties show curves of very different shapes such as
increasing-decreasing, highly, moderately, or slightly
convex, and highly, moderately, or slightly concave. The
versatility of the SINT equation to represent curves of
different forms makes it an ideal tool to model the
temperature dependence of various physical and ther-
modynamic properties especially in cases where no
physical theory-based models exist, when only small
amounts of data are available, or when noisy data do
not permit fitting of models with many parameters.
Because of its limited number of parameters, the new
SINT model can be expected to be also accurate and
stable in interpolation, extrapolation, and property
prediction.
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Table 5. Shapes of Curves Representing Change of
Various Properties as a Function of Temperature

no. property
change with

increasing temp shape of the curve

1 vapor pessure, liquid increasing highly convex
2 heat capacity, solid increasing moderately concave
3 heat capacity, liquid increasing slightly convex
4 viscosity, gas increasing moderately concave
5 viscosity, liquid decreasing highly concave
6 surface tension, liquid decreasing slightly concave
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