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Abstract

Identification and removal of imprecision in polynomial regression, originating from random errors (noise) in the

independent variable data is discussed. The truncation error-to-noise ratio (TNR) is used to discriminate between imprecision

dominated by collinearity, or numerical error propagation, or inflated variance due to noise in the independent variable. It is

shown that after the source of the imprecision has been identified, it can often be removed by simple data transformations or

using numerical algorithms which are less sensitive to error propagation (such as QR decomposition). In other cases, more

precise independent variable data may be required to improve the accuracy and the statistical validity of the correlation.
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1. Introduction

Mathematical modeling and simulation of physical phenomena requires, in addition to an accurate
model, precise equations to represent pertinent physico-chemical properties as a function of state
variables, such as temperature, pressure, and composition. The accuracy of simulations of physical
phenomena critically depends on the accuracy of these correlation equations. Such equations require
fitting some parameters by regression of experimental data.

A general form of a regression model is

y � F�x; b� � � (1)

where y is the dependent variable, x represents a vector of independent (state) variables, b is a vector of
parameters to be fitted to the model and � is (random) error in the measured y values.
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Assuming the model is correct, modern regression techniques allow arriving at equations and
parameter estimates which can predict values within the experimental error, �. However, several causes
may prevent reaching this goal. These are related to the noise in the independent variables data due to
the unavoidable limited precision in their reported values. This noise is eventually transformed to
imprecision of the calculated parameter values due to numerical error propagation and collinearity
amongst the (presumably) independent variables.

Unfortunately, the effects of collinearity and numerical error propagation have not been taken into
account in published correlations of various thermophysical properties (see for example [1] or [2]). As a
result, the correlations may either contain an insufficient number of parameters to represent the data
accurately or too many parameters. If there are too many parameters, the correlation becomes ill-
conditioned, whereby adding or removing experimental points from the data set may drastically change
the parameter values. Also, derivatives are not represented correctly and extrapolation may yield absurd
results even for a small range of extrapolation. Collinearity in polynomial regression was addressed, for
example, by Bradley and Srivastava [3] and Seber [4], who discuss the problems that can be caused by
collinearity and suggested certain measures that can be taken in order to reduce the undesired effects of
collinearity. Shacham and Brauner [5] have proposed an indicator to diagnose collinearity and
suggested several data transformations to reduce collinearity and its undesired effects in polynomial
regression. The use of this collinearity diagnostic has been recently extended to other types of
regression [6,7].

In order to increase the precision of a correlation it is necessary first to identify the dominant cause
for the imprecision. Then, appropriate measures for alleviating its effects and increasing the correlation
precision can be applied.

In this paper, indicators for discriminating among the possible causes of imprecision, which are
related to independent variable data, are presented and methods for alleviating their effects are
suggested. The proposed methods are demonstrated in examples involving regression of vapor pressure
and heat capacity data. The discussion is limited to polynomial regression, but the results can be readily
extended to other forms of regression models.

The calculations were carried out using the student edition of MATLAB [8] and POLYMATH 4.0 [9]
packages.

2. Problem definition

Let us assume that there is a set of N data points of a dependent variable yi versus an independent
variable xi. A nth order polynomial fitted to the data is of the form:

yi � �0 � �1xi � �2x2
i � � � � � �nxn

i � �i (2)

where �0, �1,. . .,�n are the parameters of the model and �i is the error in yi. The vector of estimated
parameters b̂T � ��̂0; �̂1; . . . ; �̂n� is often calculated via the least squares error approach, by solving the
normal equation:

XTXb̂ � XTy (3)

The rows of X are xi � 1; xi; . . . ; xn
i and XTX�A is the normal matrix. Another method to obtain the
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parameter values in Eq. (2) is by solving the following over determined system of equations:

Xb̂ � y (4)

using QR decomposition [10]. The QR decomposition method requires more arithmetic operations than
the solution of the normal equations but it is less sensitive to numerical error propagation.

A numerical indicator for the quality of the fit which is used most frequently is the square of standard
error of the estimate, which represents the sample variance, and is given by

s2 �
PN

i�1�yi ÿ ŷi�2
N ÿ nÿ 1

(5)

Thus, the sample variance is the sum of squares of errors divided by the degrees of freedom (where
the number of parameters, n�1, is subtracted from the number of data points, N) and is a measure for
the variability of the actual ŷ values. Smaller variance indicates a better fit of the model to the data.

One of the assumptions of the least squares error approach is that there is no error in the independent
variables. However, this is rarely true. The precision of independent variables is limited due to
limitations of the measuring and control devices. Thus, the value of an independent variable can be
represented by

xi � ~xi � �i (6)

where ~xi is the expected value of the measured xi and �i is the error (uncertainty, noise) in its value. The
least squares error approach can be applied in a way that considers the error in both the dependent and
independent variables (see, for example, p. 87 in [11]), but this will usually have a very little effect on
the calculated values of b̂. Nevertheless, the error in the independent variable plays an important role in
determining the highest degree of the polynomial and the number of parameters that can be fitted to the
data. The highest degree of a polynomial that can be used for a particular set of data is often related to
collinearity among the terms of Eq. (2).

3. Collinearity and its diagnostics

Collinearity plays an important role in limiting the precision of a correlation. In polynomial
regression, collinearity is said to exist among the columns of X � �1; x; x2; . . . ; xn�, if for a suitable
small predetermined �>0, there exist constants c0, c1, c2, . . ., cn not all of which are zero, such that

c0 � c1x� c2x2 � � � � � cnxn � D; with kDk < �kck (7)

This definition cannot be used directly for diagnosing collinearity because it is not known how small
� should be so that the harmful effects of collinearity will show. Belsley [12] lists several criteria and
procedures that can be used to detect collinearity. From among those in this list, the following
indicators will be briefly reviewed: the condition number of the normal matrix (�(A)), variance
inflation factor (VIF) and confidence intervals. The collinearity indicator, truncation error-to-noise ratio
(TNR), recently introduced by Shacham and Brauner [5], will also be described.
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3.1. Condition number of the normal matrix, �(A)

The condition number, �(A) is often used to estimate the errors introduced into the parameter values
due to numerical error propagation. It can be shown that the errors in the calculated parameter values,
�b̂ are bounded by (p. 176 in [13]):

��A� k�AkkAk �
kdb̂k
kb̂� db̂k (8)

where �A is the matrix of errors in A, and k�k indicates the norm of a matrix or a vector. A similar
equation relates the error in b, �b, to the error �b̂:

k�b̂k
kb̂k � ��A�

k�bk
kbk (9)

The condition number is the ratio of the largest to the smallest eigenvalue of A. A strong collinearity
results in a higher condition number, thereby amplifying both �b and �A. The former represents
measurement errors in both the dependent and independent variables while �A represents the errors in
the independent variables.

3.2. Variance inflation factor (VIF)

The variance inflation factor can be defined as (p. 27 in [12]):

VIFj � 1

1ÿ R2
j

(10)

where R2
j is the multiple correlation coefficient of xj regressed on the remaining columns of the X

matrix. For non-centered data (the �0 parameter does not vanish) the following equation is used for
calculating the multiple correlation coefficient:

R2
j � 1ÿ

P
i x̂

j
i ÿ x

j
i

ÿ �2P
i x

j
i

ÿ �2
(11)

where x̂
j
i is the calculated value of x

j
i when it is regressed on the remaining powers of xi. A high level of

collinearity leads the Rj value close to one, which causes VIFj to attain a large positive value. The value
of VIFj is calculated for j�0, 1, . . ., n (all the columns of matrix X). The maximal VIFj is usually used
for collinearity diagnostic. The term VIF will be used for the maximal VIFj henceforth.

Both �(A) and VIF rely only on independent variable data for diagnosing collinearity. The
disadvantage of these indicators is that there are no well established threshold values for them to
indicate harmful level of collinearity. Therefore, they cannot be considered as quantitative measures for
collinearity.

3.3. Confidence intervals

A frequently used statistical indicator to determine whether a particular term should be included in
the model is the confidence interval. This interval is defined by
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�̂j ÿ t��; ��s �����
ajj
p � �j < �̂j � t��; ��s �����

ajj
p

; (12)

where t(�,�) is the statistical t distribution corresponding to � degrees of freedom and a desired
confidence level, � and s is the standard error of the estimate.

The confidence interval test relies on more information than is required for the previous tests. In
particular, it depends on s, which reflects the measurement errors in the dependent variable (and also,
indirectly, the error in the independent variable) and the magnitude of the diagonal elements of Aÿ1,
which strongly relate to �(A).

Clearly, if �̂j is smaller in its absolute value than the term t��; ��s �����
ajj
p

, then the zero value is included
inside the confidence interval, �t��; ��s �����

ajj
p

. Thus, there is no statistical justification to include the
associated term in the regression model. If the independent variables are strongly correlated, most
confidence intervals will be larger (in absolute values) than the respective parameter values. Thus, the
confidence interval test may be insufficient to pinpoint which of the terms should be removed from the
model due to collinearity.

Confidence intervals are useful for evaluating the statistical significance of a regression model.
However, the calculation of the confidence intervals requires carrying out first the experiments (for
obtaining the values of the independent variables) and then the regression calculations. Also, since the
values of the confidence intervals depend on several factors, they are not useful in identifying the
dominant cause that limits the precision of the regression model.

3.4. Truncation error-to-noise ratio (TNR)

Let us consider Eq. (7) which was used to define collinearity. This equation can be divided by, say, cj

to yield:

c0;j � c1;jx� c2;jx
2 � � � � � xj � � � � � cn;jx

n � Dj; (13)

where ck;j � ck=cj; k � 1; 2; . . . ; n. When the coefficients c are obtained by regressing xj as a function
of the other independent variables, Dj is the residual of this representation and is denoted as the
`̀ truncation error''. Since the independent variables are subject to an error, the value of Dj is also
subject to an error.

In calculating the error in Dj (denoted dj), two cases are considered. When the errors in the various
powers of x are uncorrelated, as is for a noise caused by a limited numerical precision of the computer,
then the general error propagation formula (applied to Eq. (13)) yields �i;j �

Pn
k�1 kjck;jjjxkÿ1

i �ij. On the
other hand, when the errors are correlated (the measurement noise in xi is carried out to its various
powers), the expression obtained for dj is �i;j �

Pn
k�1 ck;jkxkÿ1

i jdij � jjxjÿ1
i jjdij. Thus, the r.h.s. of this

inequality is considered as an error estimate for this case. Consequently, the TNR in polynomial
regression can be defined as [5]:

TNRj � k�jk
kdjk (14)

The value of TNRj expresses how much of the variation of the truncation error about the zero (mean)
value (as represented by the residual plot) can be attributed to experimental `noise'. When TNRj�1, the
truncation error is not significantly different from zero, thus there is a harmful collinearity among the
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regressors used in the model. Whereas a value of TNRj�1, indicates that the truncation error is much
larger than the noise level, thus harmful effects of collinearity are not expected. In between those two
extremes, numerical experimentation can determine the critical values of TNRj.

A noise in the dependent variable data increases the variance. In order to determine the contribution
of the noise in x to the error in the calculated values of y (thus to the variance), truncation error-to-noise
ratio for y, TNRy can similarly be derived. To calculate TNRy, the model parameters are calculated after
a randomly distributed error of a magnitude k�k is introduced into the independent variable. The
resulting parameter values are denoted by b(x��) and the corresponding predicted y values, ŷ�x� ��.
The TNRy is defined as

TNRy �
k�ŷ�x� ÿ y�2k
k�ŷ�x��� ÿ ŷ�x��2k

�
ks2
�x�k

ks2
�x��� ÿ s2

�x�k
(15)

As indicated by Eq. (15), TNRy represents the ratio between the total variance to that part
of the variance which is due to the noise in x. A value of TNRy�1 indicates that the contribution of the
noise, the error in y is not very significant and the correlation variance is dominated by the noise in
y or by the lack of fit of the model. On the other hand, a TNRy value close to one, or smaller than
one, indicates that the noise in x dominates and has the major contribution to the imprecision
of the model.

4. Transformations to reduce collinearity

These transformations have been analyzed in detail by Shacham and Brauner [5]. Only the main
results of this analysis are described here. There are several transformations that can be used to reduce
collinearity. A transformation which is routinely used is division of the values of xi by xmax, where xmax

is the point with the largest absolute value. Thus, vi � xi=xmax, where vi is the normalized xi value. If all
the xi are of the same sign (say xi>0), then the normalized value will vary in the range 0<vmin�vi�1.
The v-transformation can reduce considerably the value of the condition number. It has no effect,
however, on the level of the collinearity and it will not change the value of the indicators VIF, TNR and
TNRy.

The following w- and z-transformations can significantly reduce the level of collinearity in
polynomial regression:

The w-transformation wi � �xi ÿ xmin�=�xmax ÿ xmin� yields variable distribution in the range
0�wi�1. This type of transformation was used by Wagner [14], for example, to develop most
accurate correlations for vapor pressure.

The z-transformation zi � �2xi ÿ xmax ÿ xmin�=�xmax ÿ xmin� yields variable distribution in the range
of ÿ1�zi�1. Similar transformations are widely used and highly recommended by statisticians (see, for
example, [4]).

In the following sections, three examples will be presented where the various collinearity indicators
and TNRy are used to identify the sources of the imprecision in correlations. Data transformations and
solution of the least squares equation by QR decomposition are used to remove the dominant sources of
the imprecision.
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5. Example 1: Effects of numerical error propagation

One of the widely known effects of collinearity is that it can intensify numerical error propagation up
to a harmful level. In this example, the consequences of a harmful level of numerical error propagation
in polynomial regression are demonstrated.

In order to enable discrimination between the various possible sources of inaccuracy, `̀ exact''
dependent variable data will be generated using a model equation. In this way, a random experimental
noise in y is avoided. Vapor pressure data of toluene is generated by the Wagner equation [14]:

ln PR � 1

TR

��0�1ÿ TR� � �1�1ÿ TR�1:5 � �2�1ÿ TR�3 � �3�1ÿ TR�6� (16)

where TR�T/Tc is the reduced temperature, PR�P/Pc the reduced pressure, T the temperature (K), P the
pressure (kPa), Tc the critical temperature (K) and Pc is the critical pressure (kPa).

Table 1 shows the critical constants and the Wagner equation coefficients for toluene. Using Eq. (16)
with the parameters from Table 1, 41 equally spaced data points were generated in a 100 K temperature
range. Minimal and maximal values of Y �� ln P=ln �Pmax�� and v �� T=�Tmax�� are shown in Table 2.
Polynomials of the form of Eq. (2) were fitted to the data using the v-, w- and z-transformations.

The solution for the coefficients of polynomials were obtained using both matrix inversion (Eq. (3))
and QR decomposition (Eq. (4)). It should be noted that, because of the �1ÿ TR�1:5 term, the Wagner
equation cannot be represented exactly even by a very high order of polynomial with integer exponents.
However, increasing the order of such a polynomial should make the representation more accurate,
resulting in smaller variance. Fig. 1 shows the variance as a function of the polynomial order for the v-,
w- and z-transformations when matrix inversion is used and the variance when the z-transformation is
used with QR decomposition. With the v-transformation, a steady decrease of the variance up to the
fourth order polynomial is obtained, whereby each additional term in the polynomial reduces the
variance by about two orders of magnitude.

Starting at the fifth order polynomial, the normal matrix becomes ill-conditioned, resulting in a sharp
increase of the variance. With the w- and z-transformations, however, the same rate of decrease of the
variance extends to the sixth and the ninth order polynomials, respectively. For the w-transformation,
the variance increase starts at the seventh order polynomial, while for the z-transformation, the variance
starts to increase at the ninth order polynomial. Using the QR decomposition (with the z-trans-

Table 1

Critical properties and the Wagner equation constants for toluene [15]

Melting point temperaturea (K) 178.15

Normal boiling point temperaturea (K) 383.75

Critical temperature (K) 591.72

Critical pressure (kPa) 4106.45

Wagner constants

�0 ÿ7.28607

�1 1.38091

�2 ÿ2.83433

�3 ÿ2.79168

aRef. [16].

N. Brauner, M. Shacham / Mathematics and Computers in Simulation 48 (1998) 75±91 81



formation) the minimum of the variance is reached at the 13th order polynomial. Thus minimizing the
collinearity by using the z-transformation and minimizing the numerical error propagation using QR
decomposition enables reducing the variance of the best fit to 2.81�10ÿ32 using 13th order polynomial
from the value of 4.41�10ÿ11 obtained with the fourth order polynomial, using v-transformation and
matrix inversion.

The ill effects of collinearity related to numerical error propagation can be further demonstrated with
reference to Table 3. In this table, the results obtained for the fifth and sixth order polynomials, using v-
transformation are summarized. The parameter values, standard errors and variances obtained with QR
decomposition and inversion of the normal matrix are compared.

The results obtained with the QR decomposition are much more accurate than those obtained by
matrix inversion. For the fifth order polynomial the QR decomposition yields a variance of 1.3�10ÿ13,
while with matrix inversion the variance is 1.69�10ÿ5. Increase of the variance by eight orders of
magnitude causes an increase of four orders of magnitude in the standard errors (s.e.) of �, which
become much larger than the parameter values themselves.

Fig. 2 shows the effect of numerical error propagation due to collinearity on the residuals, obtained
with the fifth order polynomial. When QR decomposition is used, the residuals are of the order of 10ÿ7

and exhibit an oscillatory pattern around zero, indicating that the use of a higher order polynomial will
improve the fit and reduce the variance. With matrix inversion the residuals are of the order of 10ÿ3, all
values are negative and their pattern indicates a systematic error in the model.

Table 2

Minimal and maximal values for the first vapor pressure data set

Variable Value

Tmax (K) 433.75

Tmin (K) 333.75

vmax 1.0

vmin 0.769452

Pmax (kPa) 347.812

Pmin (kPa) 18.9721

Ymax 1.0

Ymin 0.50293

Fig. 1. Variances of various order polynomials using v-, w- and z-transformations and QR decomposition.
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In spite of the dramatic differences in the variances, in the standard errors on the parameters and in
the residual plots, the difference in the calculated parameter values is relatively small. The values
calculated by the two methods differ only in the fourth decimal digit.

Table 3

Parameter values, standard errors and variances for the fifth and sixth order polynomials using v-transformation

Index Fifth order polynomial Sixth order polynomial

QR decomposition Matrix inversion QR decomposition Matrix inversion

�a s.e. � � s.e. � � �

0 ÿ11.77 0.034568 ÿ11.769 395.16 ÿ14.824 ÿ10.081

1 46.138 0.19676 46.135 2249.2 67.02 34.694

2 ÿ74.026 0.44717 ÿ74.018 5111.8 ÿ133.42 ÿ41.339

3 64.812 0.50722 64.807 5798.2 154.75 15.449

4 ÿ29.841 0.28714 ÿ29.835 3282.4 ÿ106.33 12.111

5 5.6865 0.064905 5.6859 741.95 40.326 ÿ13.224

6 ÿ6.5255 3.5887

Variance 1.30Eÿ13 1.69Eÿ05 5.95Eÿ16 0.025313

a Numbers rounded to five significant digits.

Fig. 2. Residual plots for fifth order polynomial representation of the vapor pressure data using v-transformation.
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For the sixth order polynomial, the variance is reduced to 5.95�10ÿ16 when QR decomposition is
used and increased to 0.0253 with matrix inversion. Standard error of � cannot be calculated because
negative values are obtained in the inverted normal matrix and there is not even a single accurate digit
in the parameter values which are calculated using the inverse of the normal matrix. Thus the results
obtained for the sixth order polynomial provide a very dramatic demonstration of the ill effects of
collinearity.

Are the various collinearity indicators capable of predicting when collinearity related to numerical
error propagation has reached a harmful level? To answer this question, the various collinearity
indicators were plotted versus polynomial order. Fig. 2 shows log (�(A)) as a function of the
polynomial order for various transformations. The logarithm of the condition number increases linearly
as the polynomial order increases (linearity is distorted when numerical error propagation prevents
obtaining accurate values for �(A), as is the case for the sixth order polynomial with v-transformation).
The rate of increase of log (�(A)) with the polynomial order is, as predicted by Shacham and Brauner
[5] on the theoretical basis, approximately 3 for the v-transformation, 1.5 for the w-transformation and
0.72 for the z-transformation.

Comparing Fig. 3 with Fig. 1 reveals that harmful effects of collinearity show up for different values
of �(A) using different data transformations. For the v-transformation, the increase of the variance starts
at the fourth order polynomial, where �(A)�6.71�1011. For the w-transformation, it starts increasing at
the sixth order polynomial, where �(A)�3.77�108 and for the z-transformation the variance increases
at the 10th order polynomial, where �(A)�8.33�106. Thus, the condition number alone cannot be used
to predict the polynomial order for which numerical error propagation due to collinearity reaches a
harmful level that causes the precision of the model to deteriorate.

Table 4 shows the maximal VIF values for the same order of polynomials. It can be seen that the
maximal VIF shows exactly the same trend as �(A), thus, it also cannot precisely diagnose harmful
effects of collinearity.

Fig. 4 shows the TNR values for various order of polynomials using the three transformations. The
TNR values were calculated using an uncorrelated noise level of dT�5�10ÿ5 K in the temperature
data. This level of noise was found by numerical experimentation to represent the effective error level
in the matrix inversion algorithm (for the QR decomposition algorithm the effective error is much
smaller).

It can be seen that the various curves cross the line of TNR�1 (log (TNR)�0) at the following points:
fourth order polynomial for the v-transformation, sixth order polynomial for the w-transformation, and

Fig. 3. Condition number as a function of polynomial order for v-, w- and z-transformations.
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between 10th and 11th order polynomial for the z-transformation. Thus, the TNR predicts correctly the
order of the polynomial at which increase of the variance (due to numerical error propagation) starts.
This conclusion is further reinforced by comparing the TNR, maximum VIF and �(A) values in
Table 4.

6. Example 2: Effects of range reduction

To investigate the effects of random noise in the independent variable data, `̀ exact'' vapor pressure
data was generated, using the following fourth order polynomial (obtained by regressing the data in
Table 2):

ln P � �0 � �1T � �2T2 � �3T3 � �4T4 (17)

with the parameters �0�ÿ51.190672, �1�0.3302147, �2�ÿ0.0010848467; �3�1.4620472�10ÿ6 and
�4�ÿ7.74648805�10ÿ10. With this polynomial, `̀ exact'' vapor pressure data was generated in five
different temperature ranges, t-range�100, 80, 60, 40 and 20 K, each range includes 41 equally spaced
data points. After generating the `̀ exact'' vapor pressure data, normally distributed random noise of a
magnitude of dT�0.005 K was introduced to the temperature data. Polynomials of second, third and
fourth order were fitted to the vapor pressure data, using the v-transformation for the temperature data
and normalized vapor pressure data �Y � ln �P�=ln �Pmax��. The change of the variance of the fit as a
function of the temperature range is shown in Fig. 5.

Table 4

Condition number, maximal VIF and TNR values for polynomial orders where the variance starts to increase

Transformation Order of the polynomial �(A) Maximum VIF TNR

v 4 6.71�1011 6.44�1010 0.883

w 6 3.77�108 1.26�108 0.621

z 10 8.33�106 2.7�105 3.11

Fig. 4. TNR values for various order polynomials for noise level of �T�5�10ÿ5 K.
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The variance for the second order polynomial demonstrates a typical behavior, where a lack of fit
caused by an inappropriate model (low polynomial order) dominates over the lack of fit affected by the
error introduced in the temperature data. In this case, reducing the range affects a sharp decrease of the
variance value. This is expected since data that were generated by a fourth order polynomial can be
represented by a second order polynomial much better in a narrower range of 20 K than in a wider
range of 100 K.

The variance for the fourth order polynomial demonstrates a behavior where the dominant cause for
imprecision is the noise in the temperature values. A reduction of the range does not reduce the value of
the variance, but on the contrary, it slightly increases. For the 20 K range, the variance is the same for
the second, third and fourth order polynomials, and up to a range of 60 K the variance is almost
unchanged for the third and fourth order polynomials.

Additional aspects of the difference between lack of fit of the model (caused by insufficient number
of terms in the polynomial) and that caused by noise in the independent variable data are demonstrated
in Table 5. In this table, parameter values and variances of the second and fourth order polynomials are
shown for noise levels of dT�0 (no noise), dT�0.001 K and dT�0.01 K. It can be seen that when a
second order polynomial is used, the introduction of a noise, has a modest effect. With dT�0.001 K,
there are still four accurate digits remaining in the parameter values, and three accurate digits for
dT�0.01 K. The variance with dT�0.01 K increases by a factor of about 40 compared to variance
obtained with dT�0. In contrast to these modest changes, the fourth order polynomial exhibits severe

Fig. 5. Change of variance as a function of temperature range for �T�0.005 K.

Table 5

Parameter values and variances of second and fourth order polynomials with various temperature noise levels

Second order polynomial Fourth order polynomial

�T�0a �T�0.001 �T�0.01 �T�0 �T�0.001 �T�0.01

�0 ÿ3.8774 ÿ3.877 ÿ3.8728 ÿ10.457 ÿ12.653 ÿ35.153

�1 7.6074 7.6065 7.5985 31.385 40.482 132.81

�2 ÿ2.7299 ÿ2.7295 ÿ2.7257 ÿ34.357 ÿ48.358 ÿ190.55

�3 18.232 27.808 125.11

�4 ÿ38.035 ÿ62.594 ÿ31.228

Vaiance 8.8194Eÿ11 1.2015Eÿ10 3.2664Eÿ09 7.8486Eÿ29 3.3551Eÿ11 3.3548Eÿ09

a Numbers rounded to five significant digits.
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effects of ill-conditioning when a noise is introduced to the temperature data. It can be seen that for a
noise level of dT�0.001 K, there is not even a single correct digit in the parameter values and for
dT�0.01 K, many of them change by almost an order of magnitude. With dT�0.01 K, the variance
increases by a factor of 0.42�1020 compared to its value for dT�0. For such a noise level, the variance
of the second order polynomial is lower than the variance of the fourth order polynomial.

The TNRy indicator (Eq. (15)) can be used to discriminate between the case when the noise in the
independent variable limits the precision and the cases where the model is not appropriate (due to
insufficient number of terms in the polynomial). In Fig. 6, the TNRy values for noise level of dT�0.005
is plotted. It can be seen that for the fourth order polynomial, TNRy'3.0 for the widest range and the
lower noise level, but TNRy<1 for most of the other cases with narrower range and/or higher noise
level. Thus, TNRy clearly indicates that the noise in the independent variable is the dominant factor in
limiting the precision of the correlation obtained with a fourth order polynomial.

The TNRy value for the second order polynomial ranges from �510 for the widest range to about 20
for the narrowest range. Thus, for most of the region the noise level is not the main source of
imprecision. In this case, the correlation precision is dominated by a lack of fit of the model
(insufficient number of terms in the polynomial). Comparing Figs. 5 and 6 shows that TNRy is a good
measure for the extent to which noise in the independent variable affects the imprecision of the
correlation.

The above results indicate that a narrower range requires higher precision of the independent
variable, to avoid deterioration of the correlation precision. To keep TNRy at a constant value when the
range is reduced, the noise level must be reduced in proportion to the nth order of the range reduction.
In Fig. 7, change of the variance of the various polynomial fits as function of the temperature range are
shown. The noise introduced is: dT�0.005 (t-range/100)n. Comparing Fig. 7 with Fig. 5 shows that
when such a noise reduction is associated with range reduction, the noise in the independent variable
does not become a limiting factor.

7. Example 3: Correlation of heat capacity data of solid propylene

Heat capacity versus temperature data are usually correlated by polynomials. Daubert and Danner
[1], for example, used a fourth order polynomial to correlate heat capacity (CP) data versus temperature
for solid Propylene, as published by Timmermans [17]. This data is shown in Table 6. Suggested

Fig. 6. Change of TNR as a function temperature range for �T�0.005 K.

N. Brauner, M. Shacham / Mathematics and Computers in Simulation 48 (1998) 75±91 87



validity range of the correlation is 13.0 K�T�87.0 K. The reported precision of the temperature
measurements is dT��0.058C. Only the first 19 data points out of 20 provided by Timmermans were
used, since the last data point (nearly at the melting point) turned out to be very inaccurate due to
premelting.

To verify the precision and the statistical validity of the fourth order polynomial correlation for the
heat capacity data, polynomials of up to fourth order were fit to the normalized values of
CP��CP � CPi

=0:339� versus normalized T (vi�Ti/84.86, the temperature was first converted to K).
Fig. 8 shows the residual plots for third and fourth order polynomials. It can be seen that third order
polynomial is insufficient for representing this data. There is a clear trend in the residual plot and the

Fig. 7. Change of the variance as a function of temperature range with varying �T�0.005 (t-range/100)n (n is the polynomial

order).

Table 6

Heat capacity data for solid propylene [17]

No. T (8C) CP (cal/(g K))

1 ÿ258.98 0.0271

2 ÿ256.5 0.0378

3 ÿ253.53 0.0526

4 ÿ250.35 0.0725

5 ÿ246.93 0.0926

6 ÿ243.29 0.112

7 ÿ239.54 0.133

8 ÿ235.7 0.153

9 ÿ231.87 0.171

10 ÿ227.63 0.187

11 ÿ222.5 0.207

12 ÿ217.2 0.224

13 ÿ211.91 0.244

14 ÿ206.55 0.261

15 ÿ201.71 0.276

16 ÿ196.67 0.292

17 ÿ196.57 0.295

18 ÿ191.47 0.319

19 ÿ188.29 0.339
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maximal error is 25% (for the first data point). The representation by the fourth order polynomial
is much better. The residual plot shows randomly distributed errors, with a maximal relative error
of 5%.

Table 7 shows the parameter values, the confidence intervals, variances and TNRs for third and
fourth order polynomials. The variance decreases considerably from the third to the fourth order
polynomial. However, the confidence intervals on the parameter values increase. For the fourth order
polynomial, the value of �1 is no longer significantly different from zero. Consequently, only the use of
third order polynomial can be justified on a statistical ground, since for the fourth order polynomial a
small change in the data can introduce large changes in the parameter values. Indeed, removing the first
data point from the set, yields the following fourth order polynomial parameters: �0�ÿ0.117042,
�1�0.697793, �2�3.37451, �3�ÿ5.9857 and �4�3.02791. Most of these values differ already in the
first significant digit from the values shown in Table 7.

Fig. 8. Residual plots of polynomial representation of the propylene heat capacity data.

Table 7

Parameters, confidence intervals, variances and TNR values for third and fourth order polynomials representing �CP �v�
Parameter Third order polynomial Fourth order polynomial

�0 ÿ0.28718�0.06204 ÿ0.075352�0.05447

�1 2.40499�0.405 0.371259�0.4946

�2 ÿ2.12093�0.770231 4.25054�1.499

�3 0.984937�0.4411 ÿ6.95602�1.839

�4 3.40788�0.7857

Variance 0.0001285 1.92Eÿ05

TNR 14.01 2.608

TNRy 26.94 16.99
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The TNR value for the fourth order polynomial (shown in Table 7) is 2.6, while TNRy�16.99. A
value of TNR close to 1 (2.6), indicates that collinearity among the various powers of the independent
variables is a possible cause for the wide confidence intervals. If this is the case, the level of collinearity
can be reduced using the z-transformation. Table 8 shows the parameter values, the confidence
intervals, variances and TNRs for third and fourth order polynomials, representing �CP as a function of
the transformed variable z. It can be seen that for both the third and fourth order polynomials, all the
parameters are significantly different from zero, making both correlations statistically valid. Thus, the
z[-1,1] transformation eliminates in this particular case, the undesired effects of collinearity and TNR
enables identification of this source of imprecision.

8. Summary and conclusions

Theoretical analysis and numerical experimentation have been used to investigate the various effects
of random error (noise) in the independent variable data in polynomial regression.

It has been demonstrated that this noise may often lead to an `̀ ill-conditioned'' problem, where a
small change in the data affects large changes in the parameter values and increasing the order of the
polynomial yields a higher variance. Such `̀ ill-conditioned'' systems result from collinearity and
numerical error propagation. A noise in the independent variable data may also cause inflated
confidence intervals rendering a particular model statistically invalid.

Two new indicators were used to diagnose the source of the imprecision in the correlation. The TNR,
which has been introduced by Brauner and Shacham [5], is used to measure collinearity among the
various powers of the independent variable. This indicator can identify collinearity as a source of
excessive numerical error propagation and inflated confidence intervals. The TNRy indicator introduced
in this paper, can help in identifying cases where no harmful level of collinearity exists, but the noise in
the independent variable causes inflated variance and limits the order of the polynomial that can be
used for correlating the dependent variable data.

It has been shown that when the imprecision is caused by numerical error propagation, the use of data
transformations (such as w- or z-transformations) and the use of QR decomposition, instead of matrix
inversion, can alleviate and even eliminate the problems. Inflated confidence intervals, caused by
collinearity (due to limited precision in the reported values of the independent variable) can be reduced
considerably by using the w- or z-transformations. However, inflated variances caused by the noise in
the independent variable as indicated by TNRy<1 cannot be reduced by numerical manipulations. Their

Table 8

Parameters, confidence intervals, variances and TNR values for third and fourth order polynomials representing �CP �z�
Parameter Third order polynomial Fourth order polynomial

�0 0.589678�0.009 0.601582�0.004447

�1 0.389812�0.02347 0.38934�0.009126

�2 ÿ0.068842�0.01669 ÿ0.167284�0.0236

�3 0.0711677�0.03188 0.0720998�0.01239

�4 0.102561�0.02365

Variance 0.0001285 1.92Eÿ05

TNR 76.07 33.62

TNRy 26.94 16.99
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reduction requires additional measurements of higher precision and/or increasing the range of the
measurements.
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