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I. INTRODUCTION

The binary erasure channel (BEC) model was proposed
by Elias [7] in 1955. The BEC has been recently used for
modelling the transmission of information over the Internet.
Luby et al. [13] proposed an iterative algorithm for decoding
low-density parity-check (LDPC) codes over the BEC and
showed that the proposed scheme can approach channel capac-
ity arbitrarily close. The iterative decoding algorithm proposed
in [13] is equivalent to Gallager’s soft decoding algorithm [8§]
when applied to the BEC.

Although iterative decoding can achieve channel capacity
for an arbitrary BEC, there is still a gap between the threshold
erasure probability of iterative decoding and optimal (maxi-
mum likelihood, ML) decoding for any fixed code structure.
This gap can sometimes be significant [2]. In fact, in order
to achieve reliable communication over a given BEC, the
averaged left and right degrees of the LDPC ensemble are
typically much larger when iterative decoding is applied rather
than ML. In this paper we extend the iterative decoding
algorithm and propose efficient ML decoding. To this end we
apply techniques presented in [18] in the context of efficient
encoding of LDPC codes, and propose practical algorithms
for solving sparse linear equations over GF'(2) for efficient
decoding of LDPC codes over the BEC.

Efficient algorithms for solving sparse linear equations over
finite fields have been proposed in the context of calcu-
lating discrete logarithms and factoring integers in crypto-
graphic applications, e.g. [3]-[5], [10], [15]-[17], [21]-[22]
and references therein. Three families of algorithms were
proposed. The first is structured Gaussian elimination [16]
whose purpose is to convert the given sparse linear equations
to a new system with smaller dimensions, which is hopefully
still sparse, and then solve this new system using another
method. The second family includes the conjugate gradient
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and Lanczos algorithms [16], [5]. These algorithms are the
finite field variants of the standard conjugate gradient [9] and
Lanczos [11] algorithms for solving linear equations over the
reals. A disadvantage associated with the finite field variants
of these algorithms is that they are not guaranteed to produce
a solution when the linear system is solvable [16], [21].
Improvements to these algorithms that avoid this problem were
also proposed [16], [21]. Both algorithms require about O(N?)
operations to solve a linear system of L sparse equations in /N
variables when both L and the number of non-zero elements in
the system matrix are proportional to N. The third family is the
Wiedemann [22] algorithm and its derivatives. This algorithm
uses the Berlekamp-Massey algorithm and is guaranteed to
provide a solution in about O(N?) operations. In [10] the
performances of the various algorithms were compared on
actual problems of integer factorization and discrete logarithm
computations. It was noted that the Wiedemann algorithm
was about as efficient as the conjugate gradient and the
Lanczos algorithms, but the Wiedemann algorithm was more
complicated to program. The paper [10] recommends on using
structured Gaussian elimination in the initial processing stage.
Parallel versions of both the Lanczos and the Wiedemann
algorithms were proposed in [3] and [4]. A parallel version of
the Lanczos algorithm that incorporates structured Gaussian
elimination was proposed in [15].

In this paper we propose simple practical probabilistic
algorithms for decoding LDPC codes over the BEC which
are similar to the structured Gaussian elimination approach for
solving sparse linear equations [16]. However the probabilistic
nature of our algorithms enable us to evaluate their com-
putational complexity, when decoding LDPC codes over the
BEC, analytically using the differential equation techniques
that were presented in [18]. Our algorithms can be viewed as
a natural extension of the standard iterative decoding algorithm
of LDPC codes over the BEC, for the case were we are
willing to pay some additional computational cost (that can
be adjusted by the user) in order to improve the performance.

The paper is organized as follows. In Section II we provide
brief background information on LDPC codes and their iter-
ative decoding over the BEC. In Section III we describe the
straightforward Gaussian elimination way of performing ML
decoding over the BEC, and in Section IV we present methods
which are more computationally efficient to obtain the same
result. We also analyze the computational complexity of the
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proposed algorithms. In Section V we present some examples.
Section VI concludes the paper.

II. ITERATIVE DECODING OF LDPC CODES OVER THE
BEC

A. LDPC codes and graph representations

We assume the following ensemble of irregular LDPC
codes [13]. The ensemble is described in terms of the Tanner
graph representation [20] of the code. The Tanner graph is a
bipartite graph with left and right nodes. The left nodes are
associated with the variables. The right nodes are associated
with the parity-check equations. The ensemble is characterized
by two probability vectors,

)\Z()\Q,...,)\C) p:(pg,...

where \; is the fraction of edges with left degree [, and p;
is the fraction of edges with right degree [. Let £ denote
the total number of edges in the graph. We now assign left
and right sockets, such that each variable node with degree
I contributes [ left sockets, and each parity-check node with
degree [ contributes [ right sockets. The set of left and right
sockets are then matched by a random permutation of size &£
that is chosen with uniform probability among the set of all
permutations of this size. The resulting Tanner graph defines
a (p, A)-irregular code in the ensemble, such that the k,I’th
element in the parity check matrix of the code is set to one
if and only if the number of edges between the [’th variable
node and the k’th check node is odd. Otherwise the k,I’th
element in the parity check matrix is set to zero.
For convenience we define the polynomials

c d
AMz) = Z Na!tt plx) = Zpla:l_l
1=2 1=2

The blocklength (number of variable nodes), N, is then given

by .
Né'z)\lé’/l/\(x)dz
- 1=2 Lo

Similarly, the number of parity check equations, L, is given

by
d 1
L:SZ% :5/0 p(z)dx
1=2
The planned rate of the code is
1
R21_ £ —1_ f01 p(x)dx
N Jo AMz)dz
The actual rate of the code is lower bounded by R due to a
possible degeneracy in the parity check equations.

Let A = (Mg, ..., Ac), where ); is the fraction of left nodes
with degree [. Similarly, let p = (ps, ..., pa), Where g is
the fraction of right nodes with degree [. It is sometimes
convenient to use the node perspective distribution (5\, p)
rather than the edge perspective (A, p). The left edge and node
perspective distributions, A and A are related by

A= = (1)
> jJ Aj

. Pd)

Similarly, the right edge and node perspective distributions, p
and p are related by
ip;i
pi = — (2)
Zj JPj
A special case of the (A, p)-irregular ensemble is the (¢, d)-
regular ensemble. In this case A(z) = ¢! and p(x) = 2471
The planned rate is therefore R =1 — ¢/d.

B. Iterative decoding over the BEC

Luby et al. [13], [12] showed that LDPC codes can be used
for reliable communication over the BEC, under iterative de-
coding, at transmission rates arbitrarily close to channel capac-
ity. The iterative decoding algorithm can be either Gallager’s
soft decoding algorithm, which utilizes message passing along
edges, or the iterative matrix triangulation algorithm described
in [18]. Both algorithms are equivalent in the sense that they
produce the same result. More precisely, both succeed if and
only if the set of erasures does not contain a stopping set [18].
Otherwise, both algorithms will fail decoding the bits in the
largest stopping set which is a subset of the erasures.

Let the proportion of erasure messages (going from left to
right) in the [-th iteration of Gallager’s soft decoding algorithm
be p;. It can be shown [13], [12] that for N sufficiently large,

pr=0A(1—p(l—p1)) (3)

where ¢ is the probability of channel erasure. The algorithm
can correct a ¢ fraction of losses (erasures) in the channel if

AN1—-p(l—2)) <=z 4)

for z € (0,0]. In this case we say that the decoding succeeds.
The largest value of § satisfying (4) for given ensemble pa-
rameters (\, p) is called the threshold erasure probability and
is denoted §*(\, p). The quantity §*(\, p) can be calculated
exactly using the techniques in [1].

III. ML DECODING OVER THE BEC: STRAIGHTFORWARD
APPROACH

Denote the transmitted bit vector by x = (z1,...,2x) and
the received (corrupted) vector by y = (y1, ..., yn ) where z; €
{0,1} and y; € {0,1, E} fori = 1,..., N (E denotes erasure).
The L x N parity-check matrix H satisfies Hx” = 07 where
0 is of length L. Denote by K the set of the indices of known
bits in y, i.e. K = {i : y; # E}. Similarly, denote by K the
set of erasures, i.e. K= {i:y, = E}.

Denote by Hx (H+, respectively) the matrix obtained by
taking from H only the columns corresponding to K (K).
Similarly, xx and x% are the vectors obtained by taking from
x only the components corresponding to /C and K. Since 0 =
Hx" = Hixj + Hx- we see that

HEX% = H]sz = H;cyg =77 5

where z is a (length L) known vector. Thus, ML decoding over
the BEC sums up to solving the linear system (5). Denoting
the probability of erasure by J, the weak law of large numbers
dictates that |[K| = N(d+o0(1)) with probability 1. As long as
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ML decoding is possible, the system (5) has a unique solution,
which is the case if and only if the columns of Hy are linearly
independent [18].

Equation (5) is a linear system of L equations and M; =
(6+0(1))N variables. We assume that the solution uses Gaus-
sian elimination. Hence the solution involves 3M? L + yM;
operations, where 3 and - are constants that depend on the
specifics of the algorithm chosen to perform the elimination.
This is so because, in general, the solution of the linear system
can be divided to two parts: finding M; independent equations,
and solving the set of M; linearly independent equations
with M, variables. Since we may independently choose any
method to do each of these two parts, we represent the overall
complexity involved as the sum of the two parts. The overall
complexity of the straightforward approach is hence

(1= R)B+~0)s°N°? (6)

It should be noted, though that there are faster methods to
solve a linear system of equations. The first fast method was
proposed by Strassen [19] and it requires O(N2-3) operations.
As noted in [10] this method is practical for N on the order of
several hundred. The later methods, of which [6] that requires
O(N?2376) is currently the fastest, are impractical.

IV. ML DECODING OVER THE BEC: IMPROVED APPROACH

In this section we describe ways in which the ML decoding
complexity remains O(N?), but in which the constants are
significantly reduced, providing a substantial practical im-
provement over the straightforward approach.

Suppose that in addition to the N(1—4)+o(N) known bits
received from the channel, we declare a/N of the remaining
bits as reference variables. Later we specify three methods for
choosing these reference variables and determine the typical
value of o in each case.

We now describe a variation on the belief propagation
algorithm, expressing the (0 — a)N unknown bits as (non-
homogeneous) linear combinations of the reference variables.
As explained shortly, if § — « is sufficiently small (depending
on the code parameters), the iterative decoding procedure will
almost surely terminate with all (6 — )N unknown variables
expressed as combinations of the reference bits. Moreover, the
complexity of this stage is O(N?).

More specifically, the procedure is simplest to explain
in terms of the approximate triangulation process described
in [18]. This process is depicted in Figures 1 and 2. Denoting
the original low density matrix by Hpxpy, the algorithm
proceeds as follows. The columns of the parity check matrix
are first permuted so that the (1 — 0) fraction of known
variables, as well as the « fraction of reference variables, form
the first columns. We assume a data structure in which the
rows and the columns of the parity check matrix are addressed
using some permutation, so that the complexity of the above
described column permutation is O(N).

We now perform a diagonal extension step [18]. This means
that we check for degree-one rows in the residual matrix.
At the beginning of the algorithm, this is the submatrix that
consists of the (0 — a)N rightmost columns in the parity

known + reference bits

(1= 6N aN

N

Fig. 1. The approximate triangulation procedure after a single diagonal
extension step.

known + reference bits unknown bits
(1-8§)N aN
RN (6 —a)N
L .
sparse matrix

N

Fig. 2. The result of the approximate triangulation.

check matrix. Since the matrix H is sparse, assuming a data
structure in which the location of the ‘1’ bits of each row is
stored, the complexity of performing this step is O(N). We
then perform row and column permutations to bring the found
bits to a diagonal form (Figure 1). Again, this involves O(N)
operations.

Next we apply diagonal extension steps on H repeatedly
until no weight one row remains. We assume that « is
sufficiently large so that in the end of the process the matrix
has been brought to the form shown in Figure 2. Each diagonal
extension step involves O(N) operations. Since each step
extends the lower triangular part of the matrix by at least one
more row, there can not be more than N such steps. Hence
the approximate triangulation complexity is indeed O(N?).

In this paper we propose three probabilistic algorithms for
selecting the N reference variables. The first makes this
selection once, before the iterative decoding (diagonal exten-
sion steps). The other two algorithms combine the (random)
selection of the reference variables with the iterative decoding.
All three algorithms require O(N) operations for selecting the
reference variables.

Once the triangulation is done, expressing all (§ — o) N
unknown bits as affine combinations of reference bits proceeds
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recursively from the leftmost unknown bit to the rightmost bit
in Figure 2. When we start the {’th step of this procedure, the
first (from the left) [ — 1 unknown bits are already expressed
as affine combinations of a/N reference bits. Now, since the
matrix is sparse, the [’th unknown bit is determined by the
sum of a fixed number of affine combinations that are already
known at the [’th step of the recursion. The [’th step consumes
O(N) operations. Since there are O(N) unknown bits, there
are O(N) recursion steps and their overall complexity is also
O(N?).

So far we have expressed the N code bits as linear com-
binations of a/N reference variables. Now, the L original
homogeneous sparse parity check equations (5) translate into
L — (6 — @) N non-homogeneous non-sparse equations in the
reference variables, simply by substituting each original vari-
able by the corresponding combination of reference variables
(with a free element). Hence we have obtained a consistent
system of L — (0 — a)N equations and a/N variables. Since
the original equations are sparse, the complexity of expressing
the equations in terms of the reference variables is also O(N?).

Expressing the complexity of solving this system again as
BMZ[L — (6 — a)N] + M3, where My = aN is the number
of variables, and L is the number of equations, we see that
the complexity has now been reduced to

(1-=R—6+a)B+ya)a®N? (7)

The final stage comprises substituting the reference variables
in the original variables, which takes O(N?) operations.

Comparing (6) and (7) we see that the complexity has
reduced by a factor of at least (§/«)?. Hence, from complexity
considerations, « should be as small as possible. The problem
is how to choose as few reference variables as possible, while
still successfully completing the triangulation process.

We now present three methods for choosing the reference
variables and calculate the typical « in each case.

A. Method A

According to this method the reference variables are chosen
at random from the N (1 + o(1))¢ unknown (erased) bits.

The maximum proportion of unknown bits which still
guarantees that the triangulation process does not terminate
prematurely with probability 1—o(1) is just the threshold prob-
ability 0*(, p) since in this case the corresponding iterative
decoding algorithm is successful with probability 1 —o(1). We
thus need « to satisfy

d—a<d*(Ap)

Let a4 be the smallest possible value of o which guarantees
a successful decoding using decoding method A (with proba-
bility 1 — o(1)). In other words, a4 is the difference between
the actual erasure probability (which we assume is decodable
using ML decoding) and the (smaller) erasure probability that
would enable a successful iterative decoding, i.e.

Qg = 5_6*(>‘7p)

B. Method B

Instead of choosing the reference variables in advance, we
can randomly choose an e-fraction from the remaining un-
known variables each time the triangulation process terminates
with the diagonal not reaching the right edge of the matrix
(as in Figure 2). This procedure is repeated until finally the
approximate triangular form is obtained. We are concerned
with the limit as € — 07

We now claim that «g, the fraction of reference variables
at the end of this process satisfies ap < a4 (with probability
1 — o(1)). This is because in Method B the new reference
variables are chosen at random each time the triangulation ter-
minates (prematurely). Had we permitted also using variables
which were already “diagonalized”, that is, variables already
expressed as linear combinations of reference variables, we
would be at exactly the same setting as in method A. Since
choosing diagonalized variables as reference variables does not
assist the triangulation process, we see that indeed ap < a4.

The calculation of ap proceeds in two stages. In the first
stage we investigate the properties of the residual graph which
remains after performing an iterative decoding using the (1 —
d)N bits revealed by the channel. We then use this degree
distribution as a starting point to the second stage, in which
we calculate the number of reference variables required to
finish off the work. For reasons of convenience we now use
the bipartite graph terminology and not the matrix one.

We begin by calculating the residual graph degree dis-
tribution at the end of the first stage above. This can be
done by first solving for the fixed point, p,, of (3) (i.e. the
value p; = p;—1 = p.), which is the erasure probability of
rightbound messages when the first stage terminates. Now p,
can be used to determine the residual distribution of the check
nodes. The residual distribution of the variable nodes can be
determined by first translating p, to the erasure probability of
leftbound messages when the first stage terminates. However,
we prefer to calculate the residual distribution by a different
approach, since the same equations will be used to analyze
the second stage.

Note that the residual graph distribution is independent of
the transmitted codeword. Thus without loss of generality
we can assume that the all-zero codeword was transmitted.
Furthermore, it is easy to see that the residual distribution of
the following procedure (B1) yields the sought-for residual
distribution. In this procedure each left node in the graph has
one of three possible states: unknown, revealed and decoded
where unknown corresponds to erasure, and by the all-zero
transmitted codeword assumption, the value of all revealed
and decoded bits is actually zero.

Procedure B1

1) [Initialization] Declare all (variable) nodes unknown.

2) [Reveal] Declare each node which is not revealed to be
revealed with probability e.

3) [Decode] Perform iterative decoding on the graph. Any
decoded node (which was unknown) is declared de-
coded. At the end of this step, any edge emanating from
a variable node that is not unknown is deleted.

4) [Finish] If no unknown nodes remain or if the proportion
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of the revealed nodes is greater than 1—4 then terminate.
Otherwise go to 2.

When ¢ is sufficiently small, Procedure B1 is identical to an
iterative decoding of the output of a BEC with parameter §,
in the sense that the remaining unknown subgraph will have
exactly the same statistical properties. In the new formulation
we perform numerous infinitesimal contributions which are
susceptible to analysis via the differential equation approach
presented in [13], [18].

Denoting the proportion of nodes that are not revealed by
A, we see that A is initially 1, and it evolves as:

A—(1-e)A+o0(1) (3)

where o(1) — 0 as N — oo by the law of large numbers.
The proportion of erasures among messages going right on
the residual graph converges to

1 — Ke+O(?) +0(1) )

To find K we substitute (9) in (3) (with p; and p;_1 substituted
by (9) and with § = 1 — ¢), to obtain

1— Ke+O(€) +o(1)

(1—eA(1- (K6+0( ) +o(1)))
= (1-A(1—pKe+0(?) + (1))
= (1-9 [M1) = N(D)p2Ke + O(e) +0(1)]

In the sequel we neglect to write the o(1) term. Using A\(1) = 1
and equating the coefficients of ¢ we get

_ 1
C1-p2N(1)
Denoting the proportion of degree ¢ right nodes by p;, then on

the one hand (2) holds, and on the other hand for any ¢ > 2,
the new value of p; at the end of the step is given by

(10)

v

Pi— = (11)
ijz vj

where

v, =

Zp( )1 - Koy e

= a})a- e () xottre

+ O(é%)

= (1—iKe)p; + (i + 1)Kepir1 + O(e) (12)

To calculate the evolution of the left degrees we must first find
the erasure probability among messages going left. Using (9)
we have, for this probability

erasure probability going left = 1— p(Ke+ O(e?))
= 1—pyKe+ O(%)(13)

Denoting the proportion of degree 7 left nodes by \;, recall
that (1) holds. Now, a degree ¢ left node survives a single
step of the procedure if at the end of the step it receives only
erasure messages, both from the channel and from its neighbor

right nodes (this means, in particular, that a left-regular graph
will always stay this way). Thus using (13) for ¢ > 2 we have
VP - (14)

2z 1

where

o= R(— (1 - Ko +0()
= A(1—e(14ipK))+ O(e?)

We also calculate the evolution of I', the proportion of
unknown variables, which is initially 1. A variable that was
unknown at the beginning of the step stays so only if it was not
declared as revealed (with probability (1—¢)) and if it receives
only erasure messages. Using the probability of erasures going
left (13), we thus have

D —T(1-€> X(l-pKe)' +O()

i>2

15)

A little algebra gives us

DT |1-e—pKe» i+ O0(e) (16)
i>2
If we express the relevant quantities as a function of a time
variable ¢, we have, using (11), (12), (14) and (15),

dﬁd#it) = K(t)[(i + 1)pig1(t) — ips(t) + pi(t)2p2(t)] (17)

and

APIRYIC

j>2

= (DK (DA (18)

where K is given by (10), and where X and A (or p and p)
are related through (1) (or (2)). Similarly, from (16) and (8)
we have

T _ vt) (14 pa)K) S ) a9
and
IO
T —A(t) (20)

Using the boundary condition A(0) = 1, the solution to (20)
is:

Alt)y=e" 1)

Recall that the stopping condition for Procedure B1 is A(t) =
0. Hence, the proportion of unknown nodes in the graph and
the degree distributions of the residual graph remaining after
an application of Gallager’s belief propagation to the messages
arriving from the channel are given by the solution to the
system (17), (18) and (19) at t = — In §. Of course, in practice,
one may utilize (8), (11), (14) and (16) directly to numerically
solve the coupled differential equations.

Note that we have implicitly assumed that po A'(1) < 1 (e.g.,
see (10)). Suppose that this condition holds initially. In this
case it will hold as long as I > 0, since po\'(1) — 1 implies
K — oo. The claim now follows by (19). If initially po (1) >
1 then (9) does not hold since in this case there is a linear
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size connected component of degree-two right nodes. When
one of this nodes is revealed the entire connected component
collapses with it and thus an € fraction of revealed nodes leads
to a linear number of nodes revealed by the iterative algorithm.
In order to obtain the resulting degree distribution, one should
first obtain the erasure probability at equilibrium, by solving
for the fixed point of (3).

Before we go on to calculate o, suppose for a moment that
we continued applying Procedure A not until A(¢) = 4, but
until I'(¢) = 0. Let us denote the corresponding termination
time by 7. Then by the definition of I'(-), A(:) and the
threshold probability §* (see Section II-B) we have

I'(r)=0 (22)
and
A(T) =67 (in the above-described context) (23)
From (21), (22) and (23) we have
I'(—Indé*)=0 (24)

We are now ready for the second stage of the calculation of
ap. Consider applying the following procedure to the result of
Procedure B1 (with the states of the variable nodes preserved
from the end of the previous stage, hence there need not be
an initialization part here).

Procedure B2

1) [Reveal] Declare each (variable) node which is unknown
to be revealed with probability e.
2) [Decode] Perform iterative decoding on the graph. Any
decoded node (which was unknown) is declared decoded
and at the end of this step, any edge emanating from a
node that is not unknown is deleted.
3) [Finish] If no unknown nodes remain then terminate.
Otherwise go to 1.
The main difference between Procedures B1 and B2 is that
when declaring nodes to be revealed, in Procedure B2 we
only consider unknown nodes, whereas in Procedure B1 we
consider all nodes that are not revealed. The proportion of
revealed nodes (=1 — A) at the end of this procedure is equal
to 1 —d+ap (there are (1 — )N revealed nodes from the end
of the previous stage, and new apN revealed nodes, which
are the reference variables), i.e.

A=6-ap (25)

Since declaring a decoded node as revealed has no contribution
to the iterative decoding (it does not affect the decoded nodes),
the evolution of p , A and I', as expressed by (11) , (14) and
(16) does not alter upon switching from Procedure B1 to B2.
On the other hand, (8) becomes:

A — A~ +0(2)
which yields the following differential equation:

AW _

Thus, for 0 < t < —Ind we use (17) — (20), and fort > —Ind

t>—1
7 > —1Iné
we use (17) — (19) and (26). Since the time evolution of I'(¢)

(26)

remains in Procedure B2 as in Procedure B1, (24) remains
valid. By (24) and (25),

ap =0 —A(—1Ind") 27

(recall that A(t) is the value of A at time ¢).

Now, ap is a function of § (note that A(-) is implicitly de-
pendent on ¢ through the stopping criterion of Procedure B1).
The following claim lists some of its interesting properties.

Claim 1: The function ap(0) possesses the following prop-
erties:

1) ap(0*) =az(6*) = a%(6*) =0.

2) It is convex U.

Proof: From (21) we have

A(—=Ind) =4 (28)
Equations (26), (27) and (28) yield
ap(0) = 6—A(=1Ind")
_ /_W T(¢)dt
—Iné

Thus, ap(0*) = 0. Differentiating with respect to 6 we have
dag(d) T(—1nd)
= 2

do ] @9)
From (29) and (24) we have a/z(6*) = 0. A second differen-
tiation gives

Pap(0) ~I'(=Ind) +I"(—Ind)
do? B 52
1
= ﬁK(—lné)F(—ln(S)pg(flné) X

> idi(—1nd)

i>2

(30)

where to derive (30) we have used (19). Since all terms in
(30) are non-negative, we see that ap(d) is indeed convex U.
Furthermore, (30) and (24) imply o/4(6*) =0. O

C. Method C

Instead of choosing the e-fraction of new reference variables
at random as in Method B, we may try choosing them in
some more educated manner. In particular, we may choose
the strategy proposed in [18] (“Greedy Algorithm C” there,
p. 648) for efficient encoding of LDPC codes. In this method
we first specify a vector (wo,ws, ...) such that for any ¢ > 2,
0 < w; < 1. Each time the triangulation process gets stuck we
choose (from the residual “undiagonalized” submatrix) each
row with probability ew;, where ¢ is the residual degree of
that row and € > 0, as before, is arbitrarily small. For each
chosen row (of degree ¢) we randomly select + — 1 out of the
1 columns corresponding to the ‘1’ components of the chosen
row. Note that this is not a generalization of Method B, in the
sense that no choice of vector w in Method C coincides with
Method B.

Denote by a¢ the fraction of reference variables needed
to complete the approximate triangulation procedure for some
values of § and w. As in the case of Method B, we divide the
calculation of a¢ to two stages. The first stage is identical
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to the first stage in the analysis of Method B (procedure
B1), and results in the degree distribution of the nodes in
the bipartite graph remaining after applying iterative decoding
to the channel output, as well as the fraction of remaining
unknown left-vertices. To analyze the second part of the
procedure, we first present it formally:

Procedure C2

1) [Reveal] Choose each right node of degree ¢ > 2
with probability ew;. If a right node has been chosen,
randomly declare 7 — 1 of its ¢ left neighbors to be
revealed.

2) [Decode] Perform iterative decoding on the graph. Any
decoded variable node (which was unknown) is declared
decoded and at the end of this step, any edge emanating
from a variable node that is not unknown is deleted.

3) [Finish] If no wumnknown variable nodes remain then
terminate. Otherwise go to 1.

This algorithm was analyzed in [18]. The right degrees, p;,

are updated by using

pi—pi |[L+e| D pjwj—wi
J
N1, pje;
1= N(D)p2
for i > 2. The left degrees, \;, are updated by using
(Zj Pj%‘) (ij/\j - l)

1-— pg)\/(l)

+ [ipivr — (1 =1 = p2) pi e+0(e?)

Ao 1+ e+0(?)

for ¢ > 2. The update formula for the proportion of nodes that
are unknown is

2 Piw; 5
FHF<L%D—mNmQL&U>+O&>

The update formula for the proportion of nodes that are not
revealed is

> piwi(i—1)/j
Zj )‘j/j

Just as for Procedure B, we have here aoe = 0 — A(7), where

7 is defined by I'(7) = 0.

A—A—€l + O(€)

V. EXAMPLES

In this section we compare the performance of the three
methods for two ensembles, the (3,6) regular ensemble and
the (3,5) regular ensemble.

Figures 3 and 4 show a4, ap and a¢ as a function of §
for the (3,6) and the (3,5) regular ensembles respectively.
For method C, the vector w which was chosen is ws, = 1 and
the other components some very small positive numbers.

For the (3,6) regular code 6*(x2,2°) = 0.429. Hence,
working over a channel with erasure probability § = 0.47
we see that we need to choose avq4 = 0.041. The same value
of § gives ap = 0.0278 and o = 0.0236. Hence, method A
is at least (§/c4)? = 131 times more efficient than the naive
approach, method B is at least 286 times more efficient and

Method A — |
Method B ----
Method C -----

Fig. 3.« as a function of § for the (3,6) regular ensemble using methods
A, B and C.

iy 2 L L L L L L L
0.52 0.53 0.54 0.55 0.56 057 0.58 0.59 0.6

Fig. 4. o as a function of § for the (3,5) regular ensemble using methods
A, B and C.

method C beats the naive approach by a factor of more than
397 in this case.

Note that Figures 3 and 4 can also be used to determine the
threshold erasure probability of the channel as a function of
the computational complexity of the decoding algorithm. This
is useful when the computational complexity of the decoding
algorithm is fixed beforehand. Consider for example the (3, 6)
regular code and suppose that method C is used. Then the
threshold erasure probability of an algorithm that permits a
fraction of up to o = 0.01 reference variables is 0.45, while the
threshold erasure probability of the standard iterative decoding
algorithm (which corresponds to o = 0) is 0.429.

VI. CONCLUSION

We presented simple practical probabilistic algorithms for
efficient ML decoding of LDPC codes over the BEC and
analyzed their computational complexity. These algorithms
can be viewed as a generalization of the standard iterative
decoding algorithm, since standard iterative decoding corre-
sponds to o = 0 (i.e. no reference variables are used). In
fact the user can adjust the value of « so as to determine the
desirable tradeoff between the performance improvement and
the increase in computational complexity compared to plain
iterative decoding.

As a topic for further research we would like to note the
comparison of our algorithms to plain iterative decoding and to
the advanced methods for solving sparse linear equations over
finite fields in practical scenarios of decoding LDPC codes
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over the BEC (similar to the comparison in [10] between
methods for solving sparse linear equations in the context of
integer factoring and discrete logarithm computations).
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