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Abstract

We derive upper bounds on the rate of low density parity check (LDPC) codes for which

reliable communication is achievable. We first generalize Gallager’s bound to a general binary-

input symmetric-output channel. We then proceed to derive tighter bounds. We also derive

upper bounds on the rate as a function of the minimum distance of the code. We consider

both individual codes and ensembles of codes.

Index Terms - Low density parity check (LDPC) codes, iterative decoding, maximum-likelihood

decoding, error probability, minimum distance.

I Introduction

Low density parity check (LDPC) codes were proposed by Gallager [9] in 1963. Gallager demon-

strated that these codes possess some very desirable properties, and can be used to transmit

information at rates close to channel capacity. In addition to that, Gallager proposed a practical

iterative algorithm that can be used for decoding these codes. Gallager’s pioneering work was

relatively ignored for about three decades, until the recent introduction of turbo codes [3] in 1993.

Both turbo codes and LDPC codes have recently attracted significant commercial and academic

interest.

There are two types of results regarding the performance of LDPC codes. The first concerns the

properties of these codes under the assumption of optimal (Maximum Likelihood, ML) decoding [9,

11, 13, 17]. The second relates to the properties of practical iterative decoding algorithms for these

codes [4, 5, 9, 12, 18, 19, 20].
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In this paper we consider the first problem and present upper bounds on the rate of both

individual LDPC codes and ensembles of codes when operated over an arbitrary binary-input

symmetric-output channel. Most of the research on the properties of ML decoding is concerned

with lower bounds on the performance. To the best of our knowledge, only Gallager [9] derived

upper bounds on the performance of ML decoding of LDPC codes. Unlike the lower bounds, the

upper bounds on the performance of ML decoding also apply to any other decoding algorithm,

such as iterative decoding. In Section II we provide some background on LDPC codes and their

graph representation. In Section III we present a lower bound on the rate required for reliable

communication. This bound is a generalization of a result first obtained by Gallager for the

BSC [9]. In Section IV we provide some graph theoretic results on row matching in sparse

matrices. In Section V we use these results to tighten the bound on the rate. In Section VI we

present upper bounds on the rate of LDPC codes as a function of the minimum distance. In

Section VII we conclude the paper and discuss further possibilities for improving the obtained

bounds.

II Background

A code can be represented by its parity check matrix. Alternatively, we can use a bipartite graph

representation, in which there is one set of N variable (left) nodes and another set of L parity

check (right) nodes. The mapping from the bipartite graph space to the parity-check matrix

space is such that an element Ai,j in the matrix, corresponding to the i-th node on the right and

j-th node on the left, is set to ‘1’ if there is an odd number of edges between the two nodes,

and to ‘0’ otherwise. In this paper we consider both regular and irregular bipartite graphs. The

(c, d)-regular ensemble that we consider in this paper is constructed as follows. For each variable

node we assign c variable sockets. Similarly, for each check node we assign d check sockets. The

total number of variable sockets, Nc, is equal to the number of check sockets, Ld. The ensemble

of bipartite graphs is obtained by choosing a permutation π with uniform probability from the

space of all permutations of size Nc. For each 1 ≤ i ≤ Nc the i-th variable socket is matched

with the π(i)-th check socket by an edge. Note that in this way multiple edges may link a pair

of nodes. Figure 1 demonstrates this construction. The irregular ensemble is constructed in a

similar way [12], where the degrees of the nodes are chosen according to some given profile.

Let R denote the rate of the code. We define R′ by L = (1−R′)N . Note that R ≥ R′ due to

a possible degeneracy in the parity check equations.
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III A Generalization of Gallager’s bound

In [9], Gallager proposed an upper bound on the rate required for reliable communication when us-

ing an LDPC code over the BSC. In this section we show how Gallager’s bound can be generalized

to an arbitrary memoryless binary-input symmetric-output channel.

Consider a binary-input symmetric-output channel with input symbol X ∈ {0, 1} and output

symbol Y ∈ R i.e. P (Y = y|X = 1) = P (Y = −y|X = 0) = f(y). We define the crossover

probability of the channel, ε, as

ε =
1
2

∫ ∞

−∞
min (f(y), f(−y)) dy (1)

Note that our notation assumes a continuous channel. However, our results also apply to the case

of discrete or mixed continuous-discrete channels.

We say that a sequence of codes can be used for reliable communication over some given

channel if the maximum likelihood (ML) decoding error probability approaches 0 as the block

length approaches infinity.

Theorem 1 Consider a binary code with parity check matrix AL×N and rate R over a memoryless

binary-input symmetric-output channel with crossover probability ε defined in (1). Suppose that

A has the property that all its rows have a constant weight d. Then a necessary condition for

reliable communication is:

R ≤ 1− 1− C

h(εd)
(2)

where

εd =
1
2

(
1− (1− 2ε)d

)
(3)

h(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function and C is the channel capacity.

Note: For the BSC case, Theorem 1 reduces to

R ≤ 1− h(ε)
h(εd)

which is [9][Equation (3.71)].

Proof. To prove the theorem we show that if (2) is not satisfied, the ML decoding error probability

is bounded away from 0 by a quantity independent of N .

Denote the transmitted codeword by X = (X1, . . . , XN ) and the received word by Y =

(Y1, . . . , YN ). In order to keep our notation simple, we use the same notation H(Z) to denote
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both the entropy of the discrete random variable (r.v.) Z and the differential entropy of the

continuous r.v. Z. I(U;V) denotes the mutual information between the r.v.-s U and V. Using

I(X;Y) = H(X)−H(X |Y) = H(Y)−H(Y |X)

we have:

H(X |Y) = H(X)−H(Y) + H(Y |X) (4)

Now,

H(X) = RN (5)

and

H(Y |X) =
N∑

l=1

H(Yl | Y1, . . . , Yl−1,X)

= NH(Y |X) (6)

where X = X1 and Y = Y1. The last equality is due to the fact that given Xl, Yl is independent

of Y1, . . . , Yl−1, X1, . . . , Xl−1, Xl+1, . . . , XN . Thus, to lower bound H(X |Y) using (4) we need to

upper bound H(Y).

To this end, we define a binary {0, 1} r.v. Zl, l = 1, . . . , N , as follows:

P (Zl = 1 | f(Yl) > f(−Yl)) = 1

P (Zl = 1 | f(Yl) < f(−Yl)) = 0

P (Zl = 1 | f(Yl) = f(−Yl)) =
1
2

Thus,

P (Z = 0) = P (f(Y ) < f(−Y )) +
1
2
P (f(Y ) = f(−Y )) = 1/2

where Y = Yl and Z = Zl. Thus,

H(Y | Z) = H(Y )− I(Y ; Z)

= H(Y )−H(Z) + H(Z | Y )

= H(Y )− 1 + H(Z | Y ) (7)

Let Z = (Z1, . . . , ZN ). We also have

H(Y)−H(Y | Z) = I(Y;Z)

= H(Z)−H(Z |Y)

= H(Z)−NH(Z | Y ) (8)
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The last equality follows from the same considerations used in (6). From (8) we get

H(Y) = H(Z)−NH(Z | Y ) + H(Y | Z) (9)

Now,

H(Y | Z) =
N∑

l=1

H(Yl | Y1, . . . , Yl−1,Z)

≤ NH(Y | Z) (10)

since conditioning reduces entropy [7][p. 27]. Equations (9), (10) and (7) yield

H(Y) ≤ H(Z) + NH(Y )−N (11)

Recalling (1) we have P (Xl 6= Zl) = ε. Hence, X → Z is a BSC with crossover parameter ε. It is

shown in Appendix A that

H(Z) = RN + H(S) (12)

where S = AZ is the syndrome. Equations (4), (5), (6), (11) and (12) yield

H(X |Y) ≥ N(1− C)−H(S) (13)

where we used the fact that I(X; Y ) ≤ C (C is the channel capacity).

We now turn to derive Gallager’s bound on H(S). Let Sl denote the l-th component of the

syndrome, S. By the chain rule for entropy,

H(S) =
L∑

l=1

H(Sl | Sl−1, . . . , S1)

Now, rank (A) = (1 − R)N . Hence, without loss of generality we may assume that the first

(1 − R)N rows of A are linearly independent and that all other rows are linear combinations of

the first (1−R)N rows. Let Al denote the l-th row of A. If Al =
∑l−1

i=1 αiAi for some αi ∈ {0, 1},
i = 1, . . . , l−1, then Sl =

∑l−1
i=1 αiSi. Hence, H(Sl |Sl−1, . . . , S1) = 0 for l > (1−R)N . Therefore,

H(S) =
(1−R)N∑

l=1

H(Sl | Sl−1, . . . , S1)

≤
(1−R)N∑

l=1

H(Sl)

= N(1−R)H(S1)

= N(1−R)h (εd) (14)
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where εd is given by (3). Substituting (14) in (13) we obtain

H(X |Y) ≥ N [1− C − (1−R)h(εd)] (15)

If H(X |Y)/N is bounded away from zero, then by Fano’s inequality [7][p. 39], so is the decoding

error probability. The claim of the theorem follows from this argument and (15). 2

The following generalization of Theorem 1 to the irregular case is immediate:

Theorem 2 Consider a binary code with parity check matrix AL×N and rate R over a memory-

less binary-input symmetric-output channel with crossover probability ε. Assume, without loss of

generality, that the first (1−R)N rows of A are linearly independent, and suppose that A has the

property that a pd fraction of its first (1 − R)N rows has weight d. Then a necessary condition

for reliable communication is:

R ≤ 1− 1− C∑
d pdh(εd)

(16)

where εd is defined in (3), h(·) is the binary entropy function and C is the channel capacity.

Note: If in Theorem 2, pd is the fraction of all rows of A with weight d, then R in (16) should be

replaced by R′.

The implication of the theorem is that a necessary condition for capacity approaching codes

is
∑

d pdh(εd) → 1. Hence it is necessary to have
∑k

d=1 pd → 0 for any fixed k.

IV Row matching

Before proceeding to tighten the bounds on the rate, we first derive some graph theoretic results

that concern row matching in sparse matrices.

IV.1 Matching pairs of rows

Consider some matrix A over GF (2) and suppose that A′ is obtained by permuting the rows of A

using a permutation π ∈ SL, where SL is the set of all length L permutations. Let the rows of A

be denoted by v1, ...,vL. Then the i-th row of A′ is vπ(i). Suppose that A′ satisfies the following

property for some even integer M ≤ L. For all 1 ≤ i ≤ M/2, vπ(2i) × vπ(2i−1) 6= 0, where ‘×’

denotes bit-wise logical AND. That is, there is at least one position in which both vπ(2i) and

vπ(2i−1) are 1. We say that vπ(2i) and vπ(2i−1) overlap. Denote by µ(A) the maximal number of

matched pairs that can be obtained. Formally,

µ(A) = max
π∈SL

min
{

1 ≤ i ≤ L

2

∣∣∣vπ(2i) × vπ(2i−1) = 0
}
− 1
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In addition, if vπ(2i) × vπ(2i−1) 6= 0 for all 1 ≤ i ≤ L
2 then µ(A) = L/2. Further let ∆(A) denote

the fraction of rows that cannot be matched, i.e.

∆(A) =
1
N

(L− 2µ(A)) (17)

Lemma 1 Suppose that the weight of each row in A is at least d. Then ∆(A) ≤ 1/d.

Proof. Consider the following greedy matching algorithm. Suppose we have already matched

2n rows. We then look for some match in the remaining L − 2n rows, and continue in this way

until we can no longer find a match. Denote the number of pairs obtained in this way by M/2.

When the algorithm terminates, we are left with a set S of l = L−M rows which do not match.

Denote the (length N) rows of this set by u1, ...,ul. The fact that a match cannot be found in S
implies that for any component 1 ≤ j ≤ N , this component is 1 in at most one row in S, i.e.,

l∑

i=1

uj
i ≤ 1

where uj
i is the j-th component of ui. Thus,

N∑

j=1

l∑

i=1

uj
i ≤ N (18)

On the other hand, for any 1 ≤ i ≤ l we have:

N∑

j=1

uj
i ≥ d

so that
l∑

i=1

N∑

j=1

uj
i ≥ ld (19)

(18) and (19) imply l ≤ N/d, from which the claim of the lemma follows. 2

In order to improve the bound in Lemma 1 we now introduce the concept of a secondary

graph. Let G be a (c, d)-regular bipartite graph that corresponds to the parity check matrix A.

We call this representation the primary graph. Denote the check nodes of G by v1, ..., vL. The

secondary graph of G (denoted by G′) is a graph comprising L vertices u1, ..., uL such that an

edge connects ui and uj iff there exists a variable node w such that the two pairs (w, vi) and

(w, vj) are connected by edges in G. Put differently, ui and uj are connected in G′ iff the distance

between vi and vj in the primary graph is exactly two. An example of the relation between the

primary and secondary graphs is shown in Figure 2. Since there is a correspondence between ui

and vi, we may refer to both by the same name (e.g. vi) and no confusion results, as long as we

keep in mind the graph to which these vertices belong.
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It follows from the definition of the secondary graph, that vertices vi and vj in G′ are connected

by an edge iff the i-th and j-th rows of A overlap. Thus, µ(A) is equal to the size of the maximal

matching in G′ (a matching is a set of n edges that connects exactly 2n nodes).

Lemma 1 may now be improved as follows.

Lemma 2 Suppose that the weight of each row in A is d and the weight of each column is c.

Further suppose that each pair of rows overlap in at most one position. Then

∆(A) ≤ L

N

1
d(c− 1) + 1

Proof. Since G is (c, d)-regular and has no length four cycles (recall that two rows of A overlap

in at most one position), G′ is d(c− 1)-regular with L nodes. We now use the following auxiliary

lemma.

Lemma 3 Let G′ be a graph with e edges, and with all vertex degrees at most k. Then G′ contains

a matching of size at least e/(k + 1).

Proof. According to Vizing’s theorem [23], the edge set of a graph G′ of maximal degree k can

be decomposed into k + 1 matchings. Then clearly one of the matchings in such a decomposition

contains at least e/(k + 1) edges. 2

In our case k = d(c− 1) and e = Lk/2. The claim of Lemma 2 follows immediately. 2

In Appendix B we prove the following.

Lemma 4 Let A be drawn from the (c, d)-regular ensemble. Then for any δ > 0,

lim
N→∞

P (∆(A) < δ) = 1

IV.2 Matching multiple rows

We now consider the problem of matching i-tuples of rows instead of pairs. More precisely, given

a 0, 1-matrix A with L rows and N columns, a partition [L] = S1 ∪ . . . ∪ Sk of its rows is called

feasible if for every 1 ≤ i ≤ k there exists a column 1 ≤ j ≤ N , where all rows of Si have value

1 (they overlap at the same position). If A has at most c ones in each column, then clearly each

block of a feasible partition has at most c elements. For such matrix A and a feasible partition

(S1, . . . ,Sk), we characterize the partition by a vector t̄ = (t1, . . . , tc), where ti is the number of

blocks of size i in the partition (
∑

i iti = L).

In Appendix C we prove the following.
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Lemma 5 Let AL×N be a binary matrix. Assume that each row of A has a constant weight d,

and each column of A has a constant weight c. Then there exists a feasible row partition, whose

vector (t1, . . . , tc) satisfies:

ti ≥
d(L−∑c

j=i+1 jtj)− (i− 1)(N −∑c
j=i+1 tj)

(d− 1)i + 1
; 2 ≤ i ≤ c . (20)

In Appendix D we prove the following.

Lemma 6 Let AL×N be a random binary matrix drawn from the (c, d)-regular ensemble. Assume

that c < 1+ log d

(d−1) log d
d−1

. Then almost surely there exists a feasible partition of the rows of A with

tc = (1− o(1))L/c.

V A tighter bound on the rate

In this section we show that the bound in Theorem 1 is not tight, by improving the bound on

H(S). Recall that (14) follows by using the inequality

H(S) ≤
N(1−R)∑

i=1

H(Si) (21)

V.1 Matching pairs of rows

To improve the bound (21) we proceed as follows. Given a parity check matrix AL×N and recalling

the definition of ∆(A) in (17), there exists a row permuted matrix A′ such that M , the number

of rows that are matched, can be chosen as

M = L−N∆(A) (22)

Using A′, we now bound H(S) as follows

H(S) ≤
M/2∑

i=1

H(S2i−1, S2i) +
L∑

i=M+1

H(Si) (23)

Now, assuming that the weight of each row of A is d, P (Si = 1) = εd for each i. Thus, H(Si) =

h(εd). Suppose that the overlap between the first and second rows of A′ is exactly 1. We now

calculate the joint distribution of (S1, S2). Denote the joint (overlap) noise bit by v. Then

P (v = 1) = ε.

P (S1 = 1, S2 = 1) = P (S1 = 1, S2 = 1|v = 1)P (v = 1) + P (S1 = 1, S2 = 1|v = 0)P (v = 0)

= ε(1− εd−1)2 + (1− ε)ε2d−1 (24)
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Similarly,

P (S1 = 0, S2 = 0) = (1− ε)(1− εd−1)2 + εε2d−1

and

P (S1 = 0, S2 = 1) = P (S1 = 1, S2 = 0) = (1− εd−1)εd−1

Thus, H(S1, S2) = 2ψ2(ε, d) where

ψ2(ε, d) =
1
2
ĥ

(
ε(1− εd−1)2 + (1− ε)ε2d−1, (1− ε)(1− εd−1)2 + εε2d−1,

εd−1(1− εd−1), εd−1(1− εd−1)) (25)

where ĥ(·, ·, ·, ·) is the entropy function of a four-valued random variable. H(S1, S2) = 2ψ2(ε, d)

was derived under the assumption that the overlap between the first and second rows is exactly

one. In our case, we know that the overlap is at least one. We thus make use of the following

lemma (sums of binary variables are taken modulo 2):

Lemma 7 Let {X1, ..., Xd, Y1, ..., Yd} be 2d i.i.d. binary r.v.-s such that P (X1 = 1) = p < 1/2.

Denote U =
∑d

i=1 Xi and V =
∑k

i=1 Xi +
∑d−k

i=1 Yi for 0 ≤ k ≤ d. Then H(U, V ) is monotonically

decreasing in k.

The proof is provided in Appendix E. At this point we distinguish between two cases.

V.1.1 Bounds for individual codes

It follows from Lemma 7 that for 1 ≤ i ≤ M/2, H(S2i−1, S2i) ≤ 2ψ2(ε, d). Thus, from (23),

H(S) ≤ Mψ2(ε, d) + (L−M)h(εd). Using (13) and (22) this gives:

H(X |Y) ≥ N
[
1− C − (1−R′)ψ2(ε, d)−∆(A) (h(εd)− ψ2(ε, d))

]

Again, if H(X |Y)/N is bounded away from 0 then by Fano’s inequality, so is the decoding error

probability. This yields the following:

Theorem 3 Consider a binary code with parity check matrix AL×N over a memoryless binary-

input symmetric-output channel with crossover probability ε. Suppose that A has the property that

all its rows have a constant weight d. Then a necessary condition for reliable communication is:

R′ ≤ 1− 1− C

ψ2(ε, d)
+ ∆(A)

(
h(εd)

ψ2(ε, d)
− 1

)
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Let Ã be a matrix obtained by choosing some (1 − R)N linearly independent rows from A.

Applying Theorem 3 to Ã yields,

R ≤ 1− 1− C

ψ2(ε, d)
+ ∆(Ã)

(
h(εd)

ψ2(ε, d)
− 1

)

Now, h(εd) ≥ ψ2(ε, d) (since H(S1, S2) ≤ H(S1)+H(S2)). Hence this bound is monotonically

increasing in ∆(A).

V.1.2 Bounds for ensembles of codes

Theorem 3 can readily be generalized to ensembles as follows:

Theorem 4 Consider an ensemble of parity check matrices AL×N over a memoryless binary-

input symmetric-output channel with crossover probability ε. Denote R′ = 1 − L/N . Let A =

(v1, ...,vL) be a matrix randomly drawn from the ensemble, where vi denotes the i-th row of A.

Suppose that the following two conditions are satisfied for some D > 0 and any δ > 0:

lim
N→∞

P

( |{vi|w(vi) 6= d}|
L

< δ

)
= 1 (26)

where w(vi) denotes the weight of vi, and

lim
N→∞

P (∆(A) < D + δ) = 1

Then a necessary condition for reliable communication is:

R′ ≤ 1− 1− C

ψ2(ε, d)
+ D

(
h(εd)

ψ2(ε, d)
− 1

)

Note that by reliable communication for an ensemble, we mean that a typical code in the ensemble

achieves reliable communication.

By applying Lemma 4 to the (c, d)-regular ensemble, we see that D in Theorem 4 may be

taken as 0 to obtain the tightest bound. In addition, it is easy to verify that condition (26) is

satisfied for the (c, d)-regular ensemble.

V.2 Matching multiple rows

To further improve the bound (21) we now match i-tuples of rows instead of pairs. We first

generalize Theorem 3. We assume that the number of pairs of rows with an overlap larger than

one is a negligible fraction of L. That is, we assume that the number of cycles of size four in the

bipartite graph is negligible compared to L. In fact, by Lemma 9 in Appendix B, this property
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holds for a typical code in the (c, d)-regular ensemble. Following the derivation of Theorem 3 we

have

H(S) ≤
c∑

i=1

itiψi(ε, d) (27)

where ψi(ε, d) = H(S1, . . . , Si)/i under the assumption that the first i rows constitute a block. In

particular, ψ1(ε, d) = h(εd) and ψ2(ε, d) is consistent with (25). The generalization to an arbitrary

i is

ψi(ε, d) = −1
i

i∑

j=0

(
i

j

)
ε̃ log ε̃

where

ε̃ = (εd−1)j(1− εd−1)i−j(1− ε) + (1− εd−1)j(εd−1)i−jε

Note that ψi(ε, d) is monotonically decreasing in i, since

H(S1, . . . , Si) =
i∑

j=1

H (Sj | S1, . . . , Sj−1)

and since H(Sj | S1, . . . , Sj−1) is monotonically decreasing in j. Hence i-tuples may offer an

improvement over pair matching.

Thus, using (13) we obtain the following.

Theorem 5 Consider a binary code with parity check matrix AL×N over a memoryless binary-

input symmetric-output channel with crossover probability ε, and assume that the number of pairs

of rows with an overlap larger than one is a negligible fraction of L. Further suppose that A has

the property that all its rows have a constant weight d. Then a necessary condition for reliable

communication is:

R′ ≤ 1− 1− C∑
i τiψi(ε, d)

where τi = iti/L and (t1, t2, . . .) corresponds to a feasible partition of A.

Theorem 5 may now be used in conjunction with Lemma 5 or Lemma 6 to derive tighter bounds

on the rate.

In Table 1 we present lower and upper bounds on the threshold crossover probability of a BSC

for reliable communication. The given upper bound on the ML decoding error probability is the

tighter among the bound in [9] and the bound in [17]. We also provide the actual threshold of

the belief propagation algorithm as evaluated using density evolution. Note that the threshold of

belief propagation is a lower bound on the ML threshold. In Table 2 we consider the binary input

additive white Gaussian noise (BIAWGN) channel. In this case the input to the channel is taken

from {±1}, and the variance of the additive white Gaussian noise is σ2. Note that the bound in
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Theorem 1 applies to an arbitrary right regular code which is not necessarily left regular. Thus

the upper bound on a (c, d)-regular code applies also to any right regular code with right degree

d and rate R = 1− c/d.

VI Upper bounds on the minimum distance

Gallager [9] derived a lower bound on the typical minimum distance for an ensemble of LDPC

codes. This result was recently generalized to other ensembles in [11]. Tanner [21] described a

method for finding lower bounds on the minimum distance of individual LDPC codes. In this

section we derive upper bounds on the minimum distance using a modified Hamming bound.

Theorem 6 Consider a binary code with parity check matrix AL×N and rate R. Suppose that A

has the property that all its rows have a constant weight d. Let the minimum distance of the code

be Nδ. Then for any integer k, such that k < Nδ/2, we have

1
N

log

(
N

k

)
≤ (1−R)h


 ∑

l=1,3,...;l≤d

(
d

l

)(
N − d

k − l

)
/

(
N

k

)
 (28)

Furthermore, for N sufficiently large,

h

(
δ

2

)
≤ (1−R)h

(
1
2

[
1− (1− δ)d

])
(29)

Note that the standard Hamming bound which applies to an arbitrary code asserts that

h

(
δ

2

)
≤ 1−R

Our improvement to the Hamming bound is realized by introducing an additional factor that

multiplies the right hand side.

Proof. Let k be some integer such that k < Nδ/2. Consider the experiment where we choose

at random k different columns of A with uniform probability. Let the resulting syndrome, which

is the sum (bitwise xor) of the k columns be denoted by S. We claim that each set of k columns

produces a different syndrome. Otherwise two sets of k columns would have produced the same

syndrome, hence a set of at most 2k columns produces an all zero syndrome, so that there exists a

codeword of weight smaller then Nδ. The last conclusion contradicts the fact that the minimum

distance is Nδ. Let the number of syndromes be denoted by Ns and let the entropy of S be

denoted by H(S). Then

Ns =

(
N

k

)

13



In addition, since each syndrome occurs with uniform probability (1/Ns), then

H(S) = log Ns (30)

Let Sl denote the l-th component of the syndrome, S. Then,

H(S) ≤ N(1−R)H(S1) = N(1−R)h (P (S1 = 1)) (31)

Now,

P (S1 = 1) =
∑

l=1,3,...;l≤d

(
d

l

)(
N − d

k − l

)
/

(
N

k

)
(32)

Equation (28) follows from (30), (31) and (32).

Now setting k to the largest integer such that k < Nδ/2, and letting N →∞, we have
(

N − d

k − l

)
/

(
N

k

)
=

(N − k) . . . (N − k − (d− l − 1))
N . . . (N − (d− 1))

k(k − 1) . . . (k − l + 1)

→
(

δ

2

)l (
1− δ

2

)d−l

(33)

Thus,

P (S1 = 1) →
∑

l=1,3,...;l≤d

(
d

l

) (
δ

2

)l (
1− δ

2

)d−l

=
1
2

[
1− (1− δ)d

]
(34)

Equation (29) follows from (30), (31) and (34). 2

In Table 3 we compare Theorem 6 to the best currently known asymptotic upper bound on

the rate of an arbitrary binary code [16],

R(δ) ≤ min
0≤u≤1−2δ

{
1 + g(u2)− g(u2 + 2δu + 2δ)

}
+ o(1), (35)

where

g(x) = H((1−√1− x)/2)

To obtain tighter upper bounds on the minimum distance, we may use the same matching

techniques as in Section V. We assume that N is sufficiently large. Let the weight of each row

of the parity check matrix, A, be d. Suppose that the rows of A are permuted to obtain A′ such

that there is exactly one index for which both the first row, v1, and the second, v2, are 1. In this

case, H(S1, S2) is given by 2ψ2(ε, d) which is defined by (25) and (3) by setting ε = δ/2. To see

that let us denote the joint (overlap) bit by v. Then,

P (S1 = 1, S2 = 1, v = 1) =
∑

l1=0,2,...;l1≤d

∑

l2=0,2,...;l2≤d

(
d− 1

l1

)(
d− 1

l2

)(
N − 2d + 1

k − l1 − l2 − 1

)
/

(
N

k

)

14



Now it is easy to verify, as in (33), that if we set k to the largest integer such that k < Nδ/2 and

then set N →∞, then
(

N − 2d + 1
k − l1 − l2 − 1

)
/

(
N

k

)
→

(
δ

2

)l1+l2+1 (
1− δ

2

)2d−l1−l2−2

Hence,

P (S1 = 1, S2 = 1, v = 1) → δ

2
· 1
2

[
1 + (1− δ)d−1

]
· 1
2

[
1 + (1− δ)d−1

]

which coincides with the corresponding expression in Section V (see (24)) by setting ε = δ/2.

Similar analogy holds for P (S1 = 0, S2 = 1), P (S1 = 1, S2 = 0) and P (S1 = 0, S2 = 0). Thus,

asymptotically H(S1, S2) is indeed given by 2ψ2(ε, d) with ε = δ/2. By the same technique it

follows that H(S1, . . . , Si) = iψi(δ/2, d) where S1, . . . , Si constitute a block in a feasible partition.

Concluding the above discussion, we have the following generalization to Theorem 6.

Theorem 7 Consider a binary code with parity check matrix AL×N . Suppose that A has the

property that all its rows have a constant weight d. Let the minimum distance of the code be Nδ.

Then for any integer k, such that k < Nδ/2, and N sufficiently large,

h

(
δ

2

)
≤ (1−R′)

c∑

i=1

τiψi

(
δ

2
, d

)

for any feasible row partition, (t1, . . . , tc) and τi = iti/L.

VII Conclusion

We derived improved upper bounds on the rate of LDPC codes for which reliable communication

is achievable.

Good LDPC codes under iterative decoding are often obtained by imposing a right regular

structure. For a given right degree, one then optimizes the left degree profile using some opti-

mization technique [19]. Theorem 1 can be used to lower bound the required right degree that is

required for reliable communication at some given rate. Theorem 2 generalizes this bound to the

right-irregular case.

The applicability of our results is not limited to LDPC ensembles per se, but also to other

cases such as turbo codes which are in fact characterized by a low density parity check matrix [13].

In particular Theorem 2 implies that in order to achieve capacity, the constraint length of the

turbo code must approach infinity.

Retracing the proof of Theorem 1, we see that the inequality in (13) follows from the inequal-

ity (10). All other transitions hold with equality. In particular, for the BSC (13) holds with

equality. Hence for the BSC, a tight bound on H(S) would provide a tight bound on H(X |Y).
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In Section V we derived various bounds on H(S). However, these bounds are not tight. To

see this, consider a (c, d)-regular code and suppose that the conditions of Lemma 6 hold. We now

show how Theorem 5 can be improved by tightening (27). Lemma 6 asserts that almost all rows

can be partitioned into blocks of size c, such that all the rows within a block overlap in the same

position. We now show that a certain fraction of the blocks can be paired up in the following

manner. Two paired blocks, B1 and B2, have the property that there exists two rows v1 ∈ B1 and

v2 ∈ B2, such that v1 and v2 overlap. To pair up the blocks, we first remove from the matrix the

L/c columns that are all one within a block (i.e., columns that correspond to an overlap position).

We then sum up all the rows within a block to obtain an L/c × (N − L/c) matrix. The weight

of each row in this matrix is c(d− 1). Hence by Lemma 1, most of its rows can be paired up.

Let Si be the vector obtained by taking the c components of S corresponding to Bi, for i = 1, 2.

Clearly, H(S1,S2) < H(S1) + H(S2). Hence, this pairing up tightens (27). Instead of pairs of

blocks, we may also use groups of size c. Moreover, this process can be repeated to an arbitrary

nesting of blocks. However, the marginal improvement is expected to converge rapidly. This is

due to the fact that the known lower bounds on the threshold approach capacity even for small

values of c and d [9, 17].
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Appendix

A Proof of Equation 12

Without loss of generality we assume that

A = [A1 A2]

where A1 comprises (1−R)N linearly independent columns and where A2 comprises the comple-

mentary RN columns. Denote X = (X1,X2), where X1 and X2 are of lengths (1−R)N and RN

respectively. The BSC noise vector, N = (N1,N2), satisfies Zi = Xi + Ni for i = 1, 2. Now,

H(Z) = H(Z1,Z2) = H(Z2) + H(Z1|Z2) (36)

Z1 and Z2 determine S (by S = AZ). Moreover, Z2 and S determine Z1. To see this, we write

A1Z1 = S + A2Z2. Since the columns of A1 are linearly independent, this equation uniquely
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determines Z1. Thus

H(Z1|Z2) = H(S|Z2) = H(S)− I(S;Z2) (37)

We now show that I(S;Z2) = 0. To this end we note that S = A1N1+A2N2, and show a stronger

result, namely that (A1N1, A2N2) and Z2 are statistically independent.

I(A1N1, A2N2;Z2) = I(A1N1, A2N2;X2 + N2)

= I(A1N1;X2 + N2) + I(A2N2;X2 + N2|A1N1) (38)

I(A1N1;X2+N2) = 0 since N1 and (X2,N2) are independent. For the same reason, I(A2N2;X2+

N2|A1N1) = I(A2N2;X2 + N2). Now, since X2 is uniformly distributed over all (2RN ) length

RN binary vectors, and since X2 and N2 are independent, X2 +N2 and N2 are also independent.

Thus I(A2N2;X2 + N2) = 0. We see that both terms in (38) are 0, proving that indeed

I(S;Z2) = 0 (39)

Now, Z2 = X2 + N2. Thus, from the discussion above, Z2 is also uniformly distributed over all

length RN binary vectors. Thus

H(Z2) = RN (40)

Equations (36), (37), (39) and (40) yield (12). 2

B Proof of Lemma 4

To prove the lemma we use the concept of a secondary graph, introduced in Section IV with the

same notations. A statement equivalent to that of Lemma 4 is

lim
N→∞

P

(
µ(G′)

L
<

1
2
− ε

)
= 0 (41)

for any ε > 0, where G′ is a random secondary graph from the ensemble, and µ(G′) is the size of

maximal matching in G′. Thus is remains to prove (41).

We now use three lemmas that are proved in the sequel. First note that the degree of any

node in any secondary graph in the ensemble cannot exceed d(c − 1). Moreover, the following

lemma tells us that almost all vertices have exactly this degree.

Lemma 8 Consider the (c, d)-regular ensemble with N variable nodes and L = Nc/d check nodes.

Let G be some bipartite graph from this ensemble. For each check node v in G, denote by N (v)

the set of all vertices in G that are at distance 2 from v. Finally denote by B(G) the set

B = {v is a check node : |N (v)| 6= d(c− 1)}
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Then for any ε > 0,

lim
N→∞

P

( |B|
N

> ε

)
= 0

Next we state the following lemma, which bounds the probability of having many short cycles in

a randomly chosen secondary graph.

Lemma 9 Consider the (c, d)-regular ensemble with N variable nodes and L = Nc/d check nodes.

Let Si be a r.v. representing the number of simple cycles (i.e. cycles that are not union of cycles)

of length i in a randomly chosen secondary graph from the ensemble. Then for any ε > 0 and n,

there exists a K = Kn,ε such that P (
∑n

i=1 Si > K) < ε for N large enough.

We now state a third lemma, which will be used to prove (41), together with Lemmas 8 and 9.

Lemma 10 Let n ≥ 1 be an integer. Let G′ = (V, E) be a graph on L vertices, without parallel

edges, such that L − C vertices have degree k, and C vertices have a degree less than k. Let

Si denote the number of simple cycles of length i in G′. Then G′ contains a matching M with

|M | ≥ L
2 − L

4n+6 − C − 1
2

∑n
i=1 S2i+1 edges.

We are now ready to prove (41). Given δ > 0 and ε > 0 choose n = 1/ε. From Lemma 9

we know that there exists a K such that P (
∑2n+1

i=1 Si > K) < δ/2. From Lemma 8 we have

P (C > Lε/2) < δ/2 for N sufficiently large, where C is the number of vertices with degree less

than d(c− 1) in a random secondary graph. Thus, using a union bound,

P

(
2n+1∑

i=1

Si > K or C >
Lε

2

)
< δ (42)

for N sufficiently large. Hence, choosing n = 1/ε, Lemma 10 and (42) imply

P

(
µ(G′)

L
<

1
2
− ε

)
< δ

for N sufficiently large, from which (41) follows. 2

B.1 Proof of Lemma 8

Denote by Xi an indicator r.v. equal to 0 if |N (vi)| = d(c − 1), where vi is the i-th check node,

and to 1 otherwise. Then |B| = ∑L
i=1 Xi. Since the Xi-s are identically distributed we have

E|B| = LEXi = P (X1 = 1)
Nc

d
(43)

P (X1 = 1) is the probability that the first check node has less then d(c−1) neighbors at distance 2.

We shall now upper bound this probability. To this end, consider performing the socket-matching
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by which the ensemble is defined in the following order (this does not change the ensemble since

each of the (Nc)! matchings is equiprobable). We first match the d sockets of v1 to some d sockets

of the Nc variable sockets. Let us denote the variable nodes to which these sockets belong by

u1, ..., ud. Note that they are not necessarily all distinct. We then match the remaining sockets

of u1 with the respective number of check sockets, then match the sockets of u2 and so on until

we match the sockets of ud. We denote the check nodes corresponding to the sockets matched to

ui by wi,1, wi,2, ... Finally, we randomly match the remaining check sockets with the remaining

variable sockets. This process is depicted in Figure 3.

Denote by F the event that v1 has exactly d neighbors at distance 1.

P (F ) =
cN c(N − 1)...c(N − d + 1)
cN (cN − 1)...(cN − d + 1)

≥
(

c(N − d)
cN

)d

≥ 1− d2

N
(44)

Now suppose that F holds. Denote by ei = (ui, v1), 1 ≤ i ≤ d, the i-th edge emanating from

v1. Similarly, denote by ei,j = (ui, wi,j), 1 ≤ j ≤ c− 1, the j-th edge emanating from ui without

re-counting the edge ei. Denote by y the following vector of length d(c− 1):

y = (w1,1, w1,2, ...w1,c−1, w2,1, ...w2,c−1, ...wd,c−1)

Finally denote by Ek the event that the first k components of y are distinct and different from

v1.

Suppose that Ek−1 and F hold and let us bound the probability that the k-th component of y

is different than the first k − 1 components and than v1. This corresponds to the respective edge

reaching a check node different than the check nodes reached by the preceding k− 1 edges and v1

itself. This edge is chosen by matching a given variable socket with some free check socket. The

total number of check sockets is Ld. If Ek−1 and F hold then exactly k check nodes are present

in the vector (v1, y1, y2, ..., yk−1). Since these check nodes have a total of kd check sockets, each

of the remaining (L− k)d right sockets will be chosen with an equal probability not smaller than

1/Ld. since k < cd we get:

P (Ek|Ek−1, F ) ≥ (L− cd)d
Ld

(45)

We also have

P (X1 = 1) = P (Ed(c−1)) ≤ P (F ) + P (Ed(c−1) | F ) ≤ P (F ) +
d(c−1)∑

k=1

P (Ek | Ek−1, F ) (46)

From (44), (45) and (46) we have

P (X1 = 1) ≤ d2

N
+ d(c− 1)

cd

L
≤ cd3

N
(47)

Using (47) and (43) we have E|B| ≤ c2d2 , from which the claim of the lemma follows, using

Markov’s inequality. 2
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B.2 Proof of Lemma 9

Label the nodes in the secondary graph (or, equivalently, the check nodes in the primary graph)

from 1 to L. Denote by νi the total number of possible (simple) cycles of length i in any graph

in the ensemble. Then,

νi ≤ Li

2i
≤ Li (48)

For 1 ≤ j ≤ νi, denote by Xi
j a r.v. equal to 1 if the j-th cycle of length i is present in the graph

(for some ordering of the cycles), and 0 otherwise. We wish to upper bound P (Xi
j = 1). To this

end, denote the vertices of the j-th cycle by vj
1,v

j
2,...,v

j
i . To upper bound P (Xi

j = 1) we again

describe a specific order in which the random matching of sockets is performed, as was done in

the previous proof. We first match the d sockets corresponding to vj
1, then we proceed to match

the d sockets of vj
2, and so on, until we match the sockets of vj

i . After this, we randomly match

the remaining check sockets with variable sockets.

We now define several events. Denote by Ej
k, 1 ≤ k ≤ i, the event that nodes vj

k and vj
k+1

are connected in the secondary graph by an edge. Here vj
i+1 is defined as vj

1. Further denote

F j
k =

⋂k−1
l=1 Ej

l . Now, if nodes vj
k and vj

k+1 are connected in the secondary graph, then in the

primary graph the check nodes corresponding to these nodes are both connected to at least one

common variable node.

Let us bound P (Ej
k|F j

k ) for 1 ≤ k ≤ i − 2. This corresponds to the case where at least one

of the d sockets of vj
k+1 is matched to a marked socket, where a marked socket is a free socket of

a variable node that has another socket which was matched to some socket of vj
k. Since vj

k has

d sockets, no more then dc variable sockets are marked. On the other hand, when we match the

sockets of vj
k+1, there are Ld− kc free sockets. Thus, for each socket of vj

k+1, the probability that

it will be matched to a marked socket is upper bounded by dc/(Ld − kc). Thus by the union

bound,

P (Ej
k|F j

k ) ≤ d
dc

Ld− ic
≤ 2dc

L
1 ≤ k ≤ i− 2 (49)

for L sufficiently large. Similarly, when matching the sockets of vj
i we wish to bound the probability

that this matching will connect vj
i both to vj

i−1 and to vj
1 (in the secondary graph). Using

arguments analogous to the ones that led to (49) we now have

P (Ej
i−1, E

j
i |F j

i−1) ≤ d(d− 1)
(

dc

Ld− ic

)2

≤
(

2dc

L

)2

(50)

for L sufficiently large. We are now ready to bound P (Xi
j = 1).

P (Xi
j = 1) = P (Ej

1, ..., E
j
i ) =

i−2∏

k=1

P (Ej
k|F j

k ) · P (Ej
i−1, E

j
i |F j

i−1) ≤
(

2dc

L

)i

(51)
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for L sufficiently large, where in the last transition we have used (49) and (50). Thus,

E
n∑

i=1

Si = E
n∑

i=1

νi∑

j=1

Xi
j =

n∑

i=1

νi∑

j=1

EXi
j =

n∑

i=1

νi∑

j=1

P (Xi
j = 1)

Using (51) and (48) we thus have

E
n∑

i=1

Si ≤
n∑

i=1

νi∑

j=1

(
2dc

L

)i

=
n∑

i=1

νi

(
2dc

L

)i

≤
n∑

i=1

Li
(

2dc

L

)i

≤ (2dc)n+1 (52)

for L large enough. Finally, given ε, choose Kn,ε = (2dc)n+1/ε. Then (52) and Markov’s inequality

yield P (
∑n

i=1 Si > Kn,ε) < ε for N sufficiently large. 2

B.3 Proof of Lemma 10

G′ is a graph on L vertices, with all degrees not exceeding k, and with at least Lk/2−Ck edges.

We will estimate from below the size of a maximum matching in G′. For this purpose, we invoke

the powerful machinery of Linear Programming, applied to fractional matchings in graphs (see,

e.g. [8]).

Recall that a non-negative real-valued function f : E(G′) → R+ is called a fractional matching

of G′ if for every v ∈ V (G′),
∑

e3v f(e) ≤ 1. The value of f is |f | = ∑
e∈E(G′) f(e). The maximal

value of a fractional matching of G′ is called the fractional matching number of G′ and is denoted

by ν∗(G′). A fractional matching f with a maximal possible value |f | = ν∗(G) is an optimal

fractional matching. Recall that the maximal degree of G′ is bounded by k. Assigning the value

f(e) = 1/k to each edge of G′ produces a fractional matching f of value |f | = |E(G′)|/k ≥ L
2 −C.

This implies that ν∗(G′) ≥ |f | ≥ L
2 −C. According to the results of Balinski and Spielberg [1, 2],

there exists an optimal fractional matching f∗ of G′ with the following properties:

1. f(e) ∈ {0, 0.5, 1} (the so-called half-integrality of an optimal solution);

2. Let E1 = {e ∈ E(G′) : f(e) = 1/2)}; E2 = {e ∈ E(G′) : f(e) = 1}. Then the edges of E1

form a collection of vertex disjoint odd cycles, and the edges of E2 form a matching disjoint

from E1.

Let f∗, E1, E2 be as above. For each i ≥ 1 denote by ti the number of cycles of length i,

formed by E1. Then

ν∗(G′) = |E2|+
∑

i≥1

t2i+1
2i + 1

2
= |E2|+

∑

i≥1

it2i+1 +
1
2

∑

i≥1

t2i+1 .
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Recalling the above obtained bound on ν∗(G′), we get:

|E2|+
∑

i≥1

it2i+1 = ν∗(G′)− 1
2

∑

i≥1

t2i+1

≥ L

2
− C − 1

2

∑

i≥1

t2i+1 .

For each odd cycle in E1, delete its first, third and so on (i.e. every odd ) edge. Clearly, the

remaining edges united with E2 form a matching M in G′. The cardinality of M can be estimated

as follows:

|M | = |E2|+
∑

i≥1

it2i+1 ≥ L

2
− C − 1

2

∑

i≥1

t2i+1 .

It remains only to estimate from above the last sum. Clearly, t2i+1 ≤ S2i+1 for all 1 ≤ i ≤ n.

Also, the number of cycles of length at least 2n + 3 in E1 does not exceed L/(2n + 3). We thus

get:
∑

i≥1

t2i+1 =
n∑

i=1

t2i+1 +
∑

i>n

t2i+1 ≤
n∑

i=1

S2i+1 +
L

2n + 3
.

Then it follows that

|M | ≥ L

2
− C − L

4n + 6
− 1

2

n∑

i=1

S2i+1 ,

as promised. 2

C Proof of Lemma 5

We will show that a desired partition can be produced by the following greedy algorithm: start

with A, find a column with a maximal number of 1’s, take the rows corresponding to 1’s in this

column to be the next class of the partition, delete them from the matrix, and delete also the

corresponding column. The algorithm stops when all rows of A are packed.

Let (t1, . . . , tc) be the vector of the obtained partition. Clearly, the algorithm produces first

blocks of size c, then blocks of size c − 1, etc., ending with blocks of size one. Accordingly, we

partition the execution of the algorithm into rounds c, c−1, . . . , 1, where at round i the algorithm

puts blocks of size i into the formed partition. Fix i, 1 ≤ i ≤ c, and look at the current matrix Ai

before the beginning of the i-th round. This matrix has L−∑c
j=i+1 jtj rows and N −∑c

j=i+1 tj

columns. Each row of Ai has d ones, while each column of Ai has at most i ones (otherwise we

would have formed another block of size larger than i). The total number of ones in Ai is thus

d(L−∑c
j=i+1 jtj). On the other hand, counting by the columns, the total number of ones in Ai
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is at most i(N −∑c
j=i+1 tj). Thus

d


L−

c∑

j=i+1

jtj


 ≤ i


N −

c∑

j=i+1

tj




Rearranging terms and changing i to i− 1 yields (20). 2

D Proof of Lemma 6

Let AL,c,d denote the set of all 0, 1-matrices with L rows, all columns of constant weight c ≥ 3,

and all rows of constant weight d. Let furthermore A0 ⊂ AL,c,d denote the subset of matrices

without two identical columns. Using known results on the number of rectangular matrices with

given row and column sums [10, 22] and the assumption c ≥ 3, one can show that almost all

matrices in AL,c,d have no identical columns. This implies: |A0|/|AL,c,d| = 1− o(1).

Given a matrix A ∈ A0, define a hypergraph H = H(A) as follows. The vertex set of H is L,

and for every 1 ≤ j ≤ Ld/c, the set of positions, where the j-th column of A has ones, forms an

edge of H. Then H is a c-uniform, d-regular hypergraph on L vertices. Moreover, as A ∈ A0 has

no identical columns, the corresponding hypergraph H has no parallel edges. Denote by HL,c,d the

set of all c-uniform d-regular hypergraphs on L vertices. It is easy to see that the above described

mapping φ : A0 → HL,c,d is (Ld/c)!-to-one, i.e. for every H ∈ HL,c,d, the set φ−1(H) contains

exactly (Ld/c)! matrices. Then φ is measure-preserving. Now, according to a result of Cooper,

Frieze, Molloy and Reed [6], if c < 1 + log d/((d− 1) log(d/(d− 1))), then almost all hypergraphs

H in HL,c,d have a perfect matching. Clearly, a perfect matching in H translates immediately to

a partition [L] = S1 ∪ . . . ∪ SL/c, described in the formulation of the theorem. Therefore, almost

all matrices A ∈ A0 possess a desired partition. As the measure of A0 in AL,c,d is 1 − o(1), we

have proven that almost all matrices in AL,c,d admit a feasible partition with tc = L/c.

Let us return now to the (c, d)-regular ensemble from the formulation of the lemma. Invoking

the above mentioned estimates on the cardinality of A0 and thus of AL,c,d, we can easily obtain

that the probability that a random matrix A from the (c, d)-regular ensemble belongs to AL,c,d

can be asymptotically bounded from below by a function α(c, d) > 0, depending on c, d only and

thus independent of L. Applying results on the concentration of measure in the symmetric group

[14, 15] we derive that almost every matrix A from our ensemble can be obtained from a matrix

A′ ∈ AL,c,d by at most
√

nω(n) transpositions of the permutation creating A′, where n = Nc and

ω(n) is any function tending to infinity arbitrarily slowly with n. As every transposition changes

the value of tc in a feasible partition by at most 2, it follows that almost all matrices A from our
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ensemble admit a feasible partition with tc ≥ L/c− 2
√

nω(n) = L/c(1− o(1)). 2

E Proof of Lemma 7

H(U) = H(V ) are independent of k, and H(U, V ) = H(U) + H(V ) − I(U ; V ). Thus we have to

show that I(U ; V ) is monotonically increasing in k.

P (U = 0, V = 0) = P

(
k∑

i=1

Xi = 0

)
P

(
U = V = 0

∣∣∣∣∣
k∑

i=1

Xi = 0

)

+ P

(
k∑

i=1

Xi = 1

)
P

(
U = V = 0

∣∣∣∣∣
k∑

i=1

Xi = 1

)

= 2−3
(
1 + (1− 2p)k

) (
1 + (1− 2p)d−k

)2

+ 2−3
(
1− (1− 2p)k

) (
1− (1− 2p)d−k

)2

= 2−3
(
2 + 4(1− 2p)d + 2(1− 2p)2(d−k)

)

Thus, if 0 < p < 1/2, αk = P (U = 0, V = 0) is monotonically increasing in k for 0 ≤ k ≤ d. In

particular, αd = (1 + (1 − 2p)d)/2 and α0 = α2
d. Note also that P (U = 0) = P (V = 0) = αd.

Thus, P (U = 0, V = 1) = P (U = 1, V = 0) = αd − αk and P (U = 1, V = 1) = 1− 2αd + αk.

Denote by a vector sk = (P (U = 0, V = 0), P (U = 0, V = 1), P (U = 1, V = 0), P (U = 1, V =

1)). Then

sk = (αk, αd − αk, αd − αk, 1− 2αd + αk) = (0, αd, αd, 1− 2αd) + αk(1,−1,−1, 1)

Since αk is increasing in k, for 0 ≤ k1 < k2 ≤ d there exists 0 ≤ λ ≤ 1 such that αk1 =

λα0 + (1− λ)αk2 . Thus, this λ also satisfies: sk1 = λs0 + (1− λ)sk2 . Denote I(U ; V ) by Ik. Then

Ik = D(P (U, V )||P (U)P (V )) = D(sk||s0). We thus have

Ik1 = D(sk1 ||s0) = D(λs0 + (1− λ)sk2 ||s0)

≤ λD(s0||s0) + (1− λ)D(sk2 ||s0) = (1− λ)D(sk2 ||s0) ≤ Ik2

where the first inequality follows from the convexity property of D(·||·). 2
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(c, d) (3,6) (3,7) (4,6) (3,10) (3,20)

BP 0.0840 0.0654 0.116 0.0374 0.0132

ML lower 0.0827 0.055 0.170 0.0275 0.0083

Gallager 0.10245 0.07964 0.17263 0.04553 0.01621

Pairs 0.10234 0.07954 0.17262 0.04548 0.01621

Clusters – 0.07943 – 0.04542 0.01618

Shannon 0.11 0.08765 0.17395 0.05324 0.02154

Table 1: Lower and upper bounds on the threshold crossover probability of a BSC channel. The

various bounds are abbreviated as follows. BP is the belief propagation threshold. ML lower

is a lower bound on the threshold of ML decoding. Gallager is Gallager’s upper bound on the

threshold of ML decoding. Pairs is the pair matching bound given by Theorem 4 and Lemma 4.

Clusters is the bound given by Theorem 5 and Lemma 6. Shannon is Shannon’s bound on the

threshold for the given code rate.
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(c, d) (3,6) (3,7) (4,6) (3,10) (3,20)

BP 0.881 0.801 1.011 0.677 0.540

ML lower 0.841 0.759 1.285 0.636 0.50

ML upper 0.97170 0.87328 1.29549 0.72403 0.56779

Shannon 0.9787 0.8801 1.2966 0.7300 0.5723

Table 2: Lower and upper bounds on the threshold standard deviation of a BIAWGN channel.

The various bounds are abbreviated as follows. BP is the belief propagation threshold. ML

lower is a lower bound on the threshold of ML decoding. ML upper is the upper bound given by

Theorem 1 on the threshold of ML decoding. Shannon is Shannon’s bound on the threshold for

the given code rate.
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(c, d) (3,6) (3,7) (4,6) (3,10) (3,20)

LP 0.182 0.151 0.26 0.097 0.041

New 0.205 0.159 0.345 0.091 0.032

Table 3: Upper bounds on the minimum distance. The various bounds are abbreviated as follows.

LP is the linear programming bound (35). New is the bound given by Theorem 6.
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