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Abstract—We study stability of slow oscillatory motions in
first order one- and two-dimensional systems with delayed
relay control element and periodic disturbances, which serve
as models of stabilization of the fingers of an underwater
manipulator and of control of fuel injectors in automobile
engines. Various types of stability observed are used to de-
sign a direct adaptive control of relay type with time delay
that extinguishes parasite auto-oscillations in these models.
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Introduction

Time delay in relay control systems is usually present
and must be taken into account. In practice, time delay is
due to:
• Measuring devices having time delay. A controller of

an exhausted gas in fuel injector automotive control
systems is an example of such a system (see [7, 12]).

• Actuators having time delay. This can be observed,
for instance, in a controller for stabilizing the fingers
of an underwater manipulator (see [2]).

Here we will consider a system with time delay in a con-
trol element of relay type

ẋ(t) = −sign [x(t− 1)] + F (x(t), t), t ≥ 0 (1)

|F (x, t)| ≤ p < 1, F ∈ C1(R2) . (2)

This system was studied in [10, 21] with emphasis on the
autonomous case

F (x, t) ≡ F (x) . (3)

The main observation made in [5], [16] is that only slowly
oscillating solutions, SOS (having a relatively large mag-
nitude), may be stable, and in the autonomous or quasi-
autonomous case, all SOS are non-asymptotically stable.

In this paper we focus on the periodic case

F (x, t + T0) ≡ F (x, t), T0 = const > 0 . (4)

Such a situation naturally appears in the study of multi-
dimensional systems. For example, in the two-dimensional
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triangular system

ẋ(t) = −sign [x(t− 1)] + f(x(t)), (5)
ẏ(t) = −sign [y(t− γ)] + g(x(t), y(t)), (6)

γ > 0, |f(x)| ≤ p1 < 1, f ∈ C1(R) ,

|g(x, y)| ≤ p2 < 1, g ∈ C1(R2) ,

which describes the behavior of a fuel injector with two
relay λ-sensors (see [7, 12]), the first equation produces a
periodic disturbance for the second one, which then turns
into a system of type (1), (2), (4).

Our main result is that the periodic system (1), (2), (4)
reveals a dichotomy in the stability of SOS: either all SOS
are non-asymptotically stable, or all but finitely many are
asymptotically stable. The latter situation reflects the res-
onant behavior of the system, when the rotation angle (in-
troduced below) becomes commensurable with T0, the pe-
riod of the perturbation F (x, t), and there appear periodic
(stable and unstable) oscillations, whose period is a multi-
ple of T0.

The theoretical conclusions apply to the design of a relay
control algorithm exponentially extinguishing oscillations.
It is adapted to the autonomous and periodic scalar sys-
tems, as well as to system (5), (6). It does not require
complete information on the perturbation, is stable with
respect to measurement errors, and is based on the varia-
tion in magnitude of the relay control element. For a con-
crete application of such an algorithm we refer the reader
to [2], where it was implemented into the stabilizers of the
fingers of an underwater manipulator.

I. Frequency of oscillations and steady modes

Under condition (2) any Cauchy problem

x(t) = ϕ(t), t ∈ [−1, 0], ϕ ∈ C[−1, 0], (7)

has a unique continuous solution (see, for example, [6])
xϕ : [−1,∞) → R. Its zero set Zϕ = (xϕ)−1(0) is
nonempty and unbounded [10, 21], which allows us to de-
fine the frequency of oscillations

νϕ(t) = card(Zϕ∩(t∗−1, t∗)), t∗ = max(Zϕ∩[0, t]), t ≥ 0.

The crucial property of this frequency (observed in sim-
ilar situations in [13-15, 17, 19, 20]) is

Proposition 1: ([10, 21]) For any ϕ ∈ C[−1, 0], the func-
tion νϕ(t) is non-increasing. Consequently, there exists a
limit frequency

Nϕ = lim
t→∞

νϕ(t) ,



which is either infinite, or an even nonnegative number.

This suggests a natural classification of the solutions to (1),
(2) with respect to the limit oscillation frequency: the set
of initial functions C[−1, 0] splits into the disjoint union of
the sets

Un = {ϕ ∈ C[−1, 0] : Nϕ = 2n}, n ≥ 0,

U∞ = {ϕ ∈ C[−1, 0] : Nϕ = ∞}.
A solution with a constant frequency νϕ ≡ Nϕ is called
steady mode. Correspondingly, we introduce the sets of
steady modes

Usm
n = {ϕ ∈ C[−1, 0] : νϕ ≡ 2n}, 0 ≤ n ≤ ∞ .

Solution and steady modes with any finite even limit fre-
quency do exist (for the existence of infinite frequency
steady modes we refer the reader to [1, 8, 18, 22]):

Proposition 2: ([10, 21]) For any nonnegative integer n
the set Usm

n is nonempty. Moreover, for each T ≥ 0 there
exists a steady mode gn(t) ∈ Usm

n such that gn(T ) = 0,
ġn(T ) > 0, which is unique if n = 0. For any xϕ ∈ Un, there
exist a steady mode x(t) and T ≥ 0 such that xϕ(t) = x(t)
as t ≥ T .

The limit oscillation frequency basically determines the sta-
bility properties of solutions to system (1), (2), which we
discuss next.

II. Stability

A. Stability and the limit oscillation frequency

We consider the stable behavior of solutions xϕ to (1),
(2) with respect to variation of the initial function ϕ in the
space C[−1, 0] equipped with the standard sup-norm.

Proposition 1 indicates that the non-zero limit frequency
should be unstable, and the property of zero limit frequency
should be stable (cf. [24, 25]). We present here precise
statements, which strengthen similar results in [16].

Theorem 1: ([16]) The set U0 has a nonempty interior.
Moreover, Int(U0) contains a non-empty set

U0 ∩ {ϕ ∈ C[−1; 0] : mes(ϕ−1(0)) = 0}.
This implies the stability of the zero limit frequency

which holds under some condition (the necessity of that
condition is demonstrated in an example in [16]).

To formulate results on higher frequencies, we introduce
the functions

µ1(t) = max
x

∣∣∣∣
∂F

∂x
(x, t)

∣∣∣∣ , µ2(t) = max
x

∣∣∣∣
∂F

∂t
(x, t)

∣∣∣∣ ,

and the quantities

µ
(0)
1 =

1 + p

1− p
lim

T→∞
sup
t≥T

µ1(t) ,

µ
(0)
2 =

1 + p

(1− p)2
lim

T→∞
sup
t≥T

µ2(t) ,

Θ = max

{
1
2

(
min{µ(0)

1 , µ
(0)
2 }

(
log

2
1 + p

)−1

− 1

)
, 0

}
.

Theorem 2: (1) The set U∞ is nowhere dense in C[−1, 0].
(2) If

lim
t→∞

sup
∫ t+

(1+p)2

2(1−p)

t

µ2(τ)dτ < 1− p , (8)

or

lim
t→∞

sup
∫ t+

(1+p)2

2(1−p)

t

µ1(τ)dτ <
1− p

1 + p
, (9)

then the set
⋃

n>0 Un is nowhere dense in C[−1, 0], and all
the solutions xϕ with positive Nϕ are unstable.

(3) The set
⋃

Θ<n Un is nowhere dense in C[−1, 0], and
all the solutions xϕ with Nϕ > Θ are unstable.

In particular, all solutions with nonzero limit frequency
are unstable in the autonomous system (3) and in the quasi-
autonomous system discussed later. Conjecturally, this is
always the case.

Proposition 2 and Theorems 1 and 2, in fact, reduce the
study of realistic motions in system (1) to an analysis of
the stability of the zero frequency steady modes, on which
we concentrate in the next section.

B. Stability of zero frequency steady modes

In the autonomous system (3) all the zero frequency
steady modes are periodic and non-asymptotically stable;
in fact, they all come from one steady mode by shifts in
t. Moreover, the zero frequency steady modes are non-
asymptotically stable if the system is quasi-autonomous,
i.e., satisfies ∫ ∞

0

µ2(t)dt < ∞

(for details see [16]).
Suppose now that the function F (x, t) does depend on

t and is periodic in t with period T0. Let S be a circle of
length T0, and let

prT0
: R → S, prT0

(t) = t− T0 ·
[

t

T0

]
,

be a natural projection. By Proposition 2, for an arbitrary
T ∈ R there exists a unique zero frequency steady mode
gT (t) such that gT (T ) = 0 and ġT (T ) > 0. Denote by
T ′ the second zero of gT in the interval (T,∞). Thus, we
obtain a smooth map

f̃ : R → R, f̃(T ) = T ′ .

Clearly, it factors through prT0
and gives us a diffeomor-

phism
f : S → S ,

which is determined by the function F (x, t).
We note that the stability of gT (t) is equivalent to the

stability of the trajectory T, f(T ), f(f(T )), ..., fn(T ), ... of
point T .



We introduce the parameter

ω(f) = lim
n→∞

fn(t)
n

,

which is called the rotation angle of f . This parameter does
not depend on t (see [11]).

Finite (or, periodic) orbits of f are called cycles. As
stated above, cycles can occur only when ω(f)

T0
is rational.

A cycle T = {T1, T2, ..., Tn} such that T2 = f(T1), ...,
Tn = f(Tn−1), T1 = f(Tn), is called non-degenerate if

µ(T ) =
n∏

i=1

f ′(Ti) 6= 1 .

A non-degenerate cycle T is asymptotically stable if
µ(T ) < 1, and is unstable if µ(T ) > 1. The well-
known properties of iterates of a circle diffeomorphism (see
[11]) translate into the corresponding properties of steady
modes:

Theorem 3: (1) If ω(f)
T0

is irrational then the diffeomor-
phism f is topologically conjugate to a rotation by angle
ω(f)
T0

, and all the zero frequency steady modes are non-
asymptotically stable.

(2) If ω(f)
T0

is rational, then f has periodic orbits (cycles).
If, in addition, all the cycles of f are non-degenerate, then
there is an even number 2k of cycles of the same length,
k of them asymptotically stable and k unstable, with the
remaining orbits of f being infinite. In the latter situation,
system (1) has 2k periodic zero frequency steady modes of
the same period multiple of T0, k of them asymptotically
stable and k unstable. The other zero frequency steady
modes are aperiodic, asymptotically stable and approach
the stable periodic steady modes.

Remark 1: According to [11], in a generic one-
parametric family of T0-periodic functions F (x, t), the set
of functions with rational ω(f)

T0
and non-degenerate cycles

of f is open dense and the set of functions with irrational
ω(f)
T0

is nowhere dense, but of positive measure. Lastly, the

set of functions with rational ω(f)
T0

and degenerate cycles is
nowhere dense and has zero measure.

III. Design of relay type controllers with time
delay

A. Statement of the adaptive control problem

Consider the system

ẋ(t) = F (x, t) + u(t), u(t) = −α(t) · sign [x(t− 1)]. (10)

A real controller operates with unavoidable time delay.
Here we develop a direct adaptive delay control of relay
type u(t) = −α · sign [x(t − 1)] with a step function α
depending on the only information on the time interval
(−1; t−1), giving an exponential decay of oscillations even
in the presence of disturbances.

Note that for small α we lose restriction (2), and the
solutions to system (10) can be unbounded and inextensi-
ble to the infinite interval. On the other hand, there are

steady modes with sufficiently large frequency and small
magnitude. It turns out that the existence of stable zero
frequency steady modes implies the existence of a wide class
of bounded solutions. Namely,

Proposition 3: Let α = const > 0 and

F (0, t) ≡ 0 (11)

F (x, t)
x

≤ k < log 2, x 6= 0, t ∈ R . (12)

Then all the solutions of the equation

ẋ(t) = F (x, t)− α · sign [x(t− 1)] (13)

with initial condition (7), where

|x(0)| = |ϕ(0)| < α
2e−k − 1

k
, (14)

are extensible to the interval (−1;∞) and satisfy the in-
equalities

|xϕ(t)| ≤ α

k
(ek − 1), |ẋϕ(t)| ≤ αek. (15)

B. Scalar system with known perturbation

Let F (x, t) satisfy (12). Assume that we know the func-
tion F (x, t) and have an observer, which indicates zeros of
x(t) and signs of x(t) with delay 1. We design the desired
control by means of the following algorithm.

Let (14) hold for some constant α = α0. Put α(t) = α0,
t ≥ 0, and consider the equation

ẋ(t) = −α0 · sign [x(t− 1)] + F (x(t), t), t ≥ 0.

We fix a time moment t1 + 1, when the observer indicates
the first zero t1 of x(t) greater than 1. Using the distri-
bution of zeros and signs of x(t) on the segment [0; t1], we
extrapolate x(t) on the interval t > t1 and compute the
first zero t2 of x(t) greater than t1 + 1. Now in the ideal
situation we can put

α(t) = α1, t ≥ t2 ,

where α1 is an arbitrary small positive constant, and, ac-
cording to (15), we obtain a solution x(t) which lies in a
prescribed neighborhood of zero.

Assume now that we compute the zero t2 with error δ.
Let δ satisfy the condition

ρ
def=

ekδ − 1
2e−k − 1

< 1 ⇐⇒ δ <
ln 2
k
− 1. (16)

Notice that if T is a zero of some solution x(t) of (13), and
|T ∗ − T | < δ, then

|x(T ∗)| < α(ekδ − 1)/k .

From this it follows immediately that the considered solu-
tion satisfies (14) at point t2 with constant α = α0ρ. Now
we put α(t) = α0ρ, t ≥ t2 and repeat our algorithm from
the beginning. After m steps we get from (15)

|x(t)| ≤ ek − 1
k

α0ρ
m . (17)

The left hand side of (17) tends to zero as m →∞.



C. Scalar system with unknown perturbation

Having error δ0 of the observer and property (12) as the
only information on F (x, t), we still can apply the previous
algorithm, provided, we know how to construct the zero
sequence on an interval (t;∞) having a zero sequence on
(−1; t− 1).

1) In the autonomous case Theorems 1 and 2 state that
almost all bounded solutions of the equation

ẋ(t) = −α · sign [x(t− 1)] + F (x(t))

turn into zero frequency steady modes. Assume that by the
time moment t2n+1 our observer indicated successive zeros
t0, t1, . . . , t2n such that ti + 1 < ti+1, i = 0 · · · 2n− 1. Ac-
cording to the periodicity of steady modes (see Proposition
2), the following zero equals t2n+1 = t2n−1 +(t2n− t0)/n >
t2n + 1 with error δ = δ0(1 + 2/n). If δ satisfies (16),
by repeating such steps, we stabilize the zero solution as
above.

2) In the periodic case (4), by Theorem 2 almost any
bounded solution of (13) turns into some zero frequency
steady mode for every α > 0, as far as

sup
∣∣∣∂F

∂t
(x, t) · x−1

∣∣∣ < 2(2e−k − 1)2 .

For further estimates we use the following simple conse-
quence of inequality (12)

Lemma 1: Let F (x, t) satisfy (2), (11), (12). If g1, g2 are
zero frequency steady modes such that

g1(t1) = g1(t2) = 0, g1(t) > 0, t ∈ (t1; t2),

g2(t′1) = g2(t′2) = 0, g2(t) > 0, t ∈ (t′1; t
′
2)

then
|t′2 − t2| ≤ |t′1 − t1| · ξ(p, k), ξ(p, k) =

= 1 + α

(
2

α + p
+

2α− 2p

(α + p)2
ek

)
· exp

(
k

α + p

α− p

)
.

In our situation by (11), (12), (15)

|F (x, t)| ≤ sup
∣∣∣∣
∂F

∂x

∣∣∣∣ · sup |x| ≤ α(ek − 1).

Hence we have p = α(ek − 1) and, by Lemma 1,

ξ = ξ(p, k) = 1 + 2e−k(3− ek) · exp
(

kek

2− ek

)
.

Let us fix some integer n > 0. Suppose that the ob-
server gave us two successive zeros t0, t1 of x(t) such that
t0 + 1 < t1. That means x(t) coincides with some zero
frequency steady mode for t ≥ t0. We consider the projec-
tions t̃0, t̃1, . . . of t0, t1 and the following zeros of x(t) on
circle S of length T0 (see section II). It is easy to see that
there are r < s < n such that

|t̃2s − t̃2r| ≤ T0

n
.

According to the periodicity of F (x, t) and Lemma 1 we
obtain the following zero t2r+1 = t2r + t2s+1− t2s > t2r +1
with error

δ = δ0 +
T0

n
· ξ .

If δ satisfies (16) we can realize our algorithm by iterating
the step described above.

D. Two-dimensional triangular system

The above control algorithm applies to quench oscilla-
tions in system (5), (6), provided

f(0) = g(0, 0) = 0,
f(x)

x
< log 2,

g(0, y)
y

<
log 2

γ
.

By means of control elements −α(t)sign[x(t − 1)] and
−β(t)sign[y(t− γ)] in the right-hand side of (5), (6), first,
we quench oscillations in equation (5) using the process
described in sections III-B, III-C, second, we quench os-
cillations in equation (6) which then becomes close to an
autonomous with respect to y.

Conclusions

1. The steady modes studied in this paper have similar
properties to those of sliding modes [18]:
• the set of switches for any steady mode is unbounded

and thus, a steady mode is not equivalent to any solu-
tion of one of the continuous parts of the given equa-
tion;

• for any solution there exists a finite time input into a
steady mode;

• the shift operator is not invertible;
• the previous three properties are invariant with respect

to bounded perturbations which satisfy conditions (2).
2. The instability of steady modes with non-zero fre-

quency is established for a wide class of systems (1).
3. Two types of stability in periodic systems (1) are

observed.
4. A direct adaptive control of relay type with time delay

that extinguishes parasite auto-oscillations is designed.

IV. Appendix. Proofs

Proof of Theorem 2. We shall show that the set U0

is dense, and, thus, by Theorem 1 we obtain the nowhere
density of

⋃
0<n≤∞ Un in C[−1, 0].

Fix even N > 0. Put

Σ =
{
(a0, . . . , aN ) ∈ RN+1 : a0 ≥ 0, . . . , aN ≥ 0

a0 + . . . + aN = 1
}

.

Let Zϕ ∩ [T ; +∞) be locally finite, and

T = t1 < t2 < t3 < . . .

be all zeros of xϕ(t) in [T ; +∞). We define the opera-
tors of “step forward” and “step backward”. Assume that
νϕ(tk) = νϕ(tk+1) = N . Define the following vectors of sign
changes: a = (a0, . . . , aN ), b = (b0, . . . , bN ) ∈ Σ, where

a0 = tk − tk−1, a1 = tk−1 − tk−2, . . . ,



aN−1 = tk−N+1 − tk−N , aN = tk−N − (tk − 1)

b0 = tk+1−tk, b1 = tk−tk−1, . . . , bN−1 = tk−N+2−tk−N+1,

bN = tk−N+1 − (tk+1 − 1).

Thus we obtain a correspondence

Γ : (a, α, ε) → (b, β,−ε) ,

where α = tk, β = tk+1, ε = sign ẋϕ(tk).
Lemma 2: For a fixed ε, the correspondence inverse to

Γ, is a smooth map

Mε : Σ×R → Σ×R.

Proof. Denote by xε(t0, x0, a), ε = ±1, the solution of
the Cauchy problem

dx

da
= ε + F (x, t0 + a), x(0) = x0.

Define functions T = λε(t, a), ε = ±1, by the equations

x−ε(t + a, xε(t, 0, a), b) = 0, T = t + a + b. (18)

It is easy to see that for a fixed t0, the function λ±(t0, a)
strongly increases, and λ±(t0, a) > a if a > 0. Therefore,
for a fixed t0, we can define positive functions of b > 0:
• ρε(t0, b) inverse to b = λε(t0, ρε);
• σε(t0, b) = b− ρε(t0, b).

Hence (a, α) = Mε(b, β) can be defined as

a0 = b1, a1 = b2, . . . , aN−2 = bN−1 ,

aN−1 = bN + σε(β − b0, b0), aN = ρε(β − b0, b0),

α = β − b0 . (19)

Lemma 2 defines the operator of step backward with a
constant frequency (in fact, independently of the initial
assumption νϕ(tk) = νϕ(tk+1) = N).

We shall also use the following two auxiliary claims.
Lemma 3: If

a ≤ (1 + p)/2 (20)

and either (8), or (9) is fulfilled, then

∂λ±1

∂a
(t, a) ≥ q, q = const > 1 (21)

for sufficiently large t.
Proof. We start with the formula

∂λε

∂a
(t, a) = 1 + (1− εF (0, T ))−1 exp

(∫ T

t+a

∂F

∂x
(x−ε, t)dt

)

×
(

1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

∂F

∂t
(x−ε, t)dt

)
,

where T = λε(t, a). Since 1 − p ≤ |ẋ−ε| ≤ 1 + p, we have
|x−ε(t, 0, t + a)| ≤ a(1 + p) ≤ (1 + p)2/2. Hence

T − (t + a) ≤ (1 + p)2

2(1− p)
, (22)

and by (8)
∣∣∣∣∣
∫ T

t+a

∂F

∂t
(x−ε, t)dt

∣∣∣∣∣ ≤ 1− p− c1

where c1 = const > 0, as t >> 0. Therefore

1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

∂F

∂t
(x−ε, t)dt

≥ c1 > 0 .

In view of

dF (xε, t)
dt

=
∂F (xε, t)

∂t
+

∂F (xε, t)
∂x

ẋε

and (8), (22) we have for t >> 0,
∫ T

t+a

∂F

∂x
(x−ε, t)dt =

∫ T

t+a

(
dF

dt
− ∂F

∂t

)
· (ẋ−ε)−1dt

=
∫ T

t+a

dF/dt

−ε + F (x−ε, t)
dt−

∫ T

t+a

∂F/∂t

−ε + F (x−ε, t)
dt

≥ − log
1 + p

1− p
− 1

1− p

∫ T

t+a

∂F

∂t
dt ≥ − log

1 + p

1− p
− 1 .

This altogether implies (21).
Similarly, assuming (9), one derives for t >> 0 that

∣∣∣∣∣
∫ T

t+a

∂F

∂x
· ẋ−εdt

∣∣∣∣∣ ≤ 1− p− c2,

where c2 = const > 0. Hence

1 + εF (xε(t, 0, t + a), t + a) + ε

∫ T

t+a

∂F

∂t
(x−ε, t)dt

= 1+εF (xε(t, 0, t+a), t+a)+ε

∫ T

t+a

dF

dt
dt−ε

∫ T

t+a

∂F

∂x
·ẋ−εdt

≥ 1 + ε · F (0, T )− (1− p− c2) ≥ c2 > 0 ,

in view of (8) and (22), which as before gives (21).
Lemma 4: Under the conditions of Theorem 2 the mea-

sure of the set Π = Π0 ∩Π1 ∩Π2 ∩ . . ., where

Π0 = Σ×R, Πn+1 = (M− ◦M+)(Πn), n ≥ 0,

is zero.
Proof. First we show that any a = (a0, . . . , aN ) =

Mε(b), b ∈ Σ, satisfies aN ≤ (1 + p)/2. Indeed, we have
aN ≤ aN−1(1 + p)/(1 − p), which implies the above in-
equality.

By (19) the Jacobian |M ′
ε| of the map Mε is equal to

∂ρε

∂b
(t, b)

∣∣∣∣
t=α,b=b0

=

(
∂λε

∂a
(t, a)

∣∣∣∣
t=α,a=aN

)−1

≤ 1
q

< 1

according to Lemma 3. Then

|(M− ◦M+)′| ≤ q−2 < 1. (23)



Fix A ∈ R and T > A. Then

Π ∩ (Σ× (−∞; A]) ⊂
⋃

k≥n

(M− ◦M+)k(Σ× [T ; T + 1]) ,

where n might be chosen large enough, because T > A is
arbitrary. Thus, we obtain from (23)

mes(Π ∩ (Σ× (−∞; A])) ≤ q−2(n−1) mes(Σ)
q2 − 1

n→∞−→ 0,

which completes the proof.
Now we can finish the proof of Theorem 2. Fix ϕ ∈ Un

and a neighborhood V of ϕ in C[−1; 0]. Introduce the
following dense subset in C[−1; 0]:

F = {ϕ ∈ C[0, 1] : card(ϕ−1(0)) < ∞} .

Put
m = min{k : F ∩ Uk ∩ V 6= ∅}.

Assume m ≥ 1, and ψ ∈ F ∩ Um ∩ V . Then there exists
ξ ∈ Usm

m such that xψ(t) = ξ(t), t ≥ T, ξ(T ) = 0. Let 2k be
the number of sign changes of ψ in [−1; 0], and let a ∈ Σk ⊂
R2k+1 be a vector of the sign changes of ψ, constructed as
above, and b ∈ Σm ⊂ R2m+1 be a vector of the sign changes
of ξ in (T − 1;T ). Suppose c ∈ Σt, d ∈ Σs are vectors of
the sign changes of xψ(t) in the intervals (tn − 1; tn) and
(tn+1 − 1; tn+1), respectively. If r = s then, according
to Lemma 2, equation (1) generates a diffeomorphism of
neighborhoods of (c, tn), (d, tn+1) in Σr ×R. If r < s, it is
possible to deduce, following arguments from the proof of
Lemma 2, that

c0 = d1, . . . , c2s−1 = d2s, c2r = Λ(d0, c2s, . . . , c2r−2, tn+1) ,

c2r−1 = 1− c0 − . . .− c2r−2 − c2r, tn = tn+1 − d0,

where Λ is some smooth function. Hence an inverse im-
age of

(
d, tn+1

)
in a neighborhood of (c, tn) in Σr ×R has

codimension 2s + 1. This implies that the measure of the
inverse image of Π ∩ (Σm × R) in Σk × R is zero. There-
fore, after a suitable small variation of (a, 0) in Σk×R, the
image of (a, 0) in Σm×R leaves Π, i.e., the limit frequency
of the changed solution is less than 2m, which contradicts
the definition of m, and hence our assumption m > 0.

Thus, we get that U0 ∩ F is dense in F , and also in
C[−1; 0], because F is dense in C[−1; 0]. According to
Theorem 1, this means that U∞ ∪ ⋃

k≥1

Uk is nowhere dense

in C[−1; 0].
The first two statements of Theorem 2 are done.
For the third statement of Theorem 2 we modify the

previous argument as follows.
Lemma 5: The function λε(t, a), defined above, satisfies

∂λε

∂a
≥ 2

1 + p
exp

(
−a ·min{µ(0)

1 ; µ(0)
2 }

)
.

The Proof is based on the following well-known for-
mula: If w(z, w0, z0) is the solution of the Cauchy problem

dw

dz
= Φ(w, z), w(z0) = w0 ,

where ∣∣∣∂Φ
∂w

∣∣∣ ≤ β ,

then
∂w(z, w0, z0)

∂w0
≥ exp(−β · |z − z0|) . (24)

Now from (24) and (2) it is not difficult to derive that

∂λε(t0, a)
∂a

≥ 2
1 + p

· ∂w (0, a + t0, xε(a, 0, t0))
∂w0

, (25)

where w = w(x,w0, x0) is the solution of the Cauchy prob-
lem

dw

dx
=

1
−ε + F (x, w)

, w(x0) = w0 ,

and then, using (24) and the inequality

|xε(a, 0, t0)| ≤ a(1 + p) ,

we obtain from (25) that

∂λε

∂a
≥ 2

1 + p
exp(−aµ

(0)
2 ) .

On the other hand, (24) and (2) imply that

∂λε

∂a
≥ 2

1 + p

∂x−ε(t0 + λε, xε(a, 0, t0), t0 + a)
∂x0

≥ 2
1 + p

exp
(
− sup

∣∣∣∂F

∂x

∣∣∣ · |λε − a|
)
≥ 2

1 + p
·exp

(
−aµ

(0)
1

)
.

Lemma 6: Under the conditions of Theorem 2(3), if n >
θ, then the Jacobian M ′ of the map M = (M+ ◦M−)N+1,
N = 2n, defined above, satisfies the inequality

|M ′| ≤ q < 1, q = const . (26)
Proof. Let a = (a0, ...,aN ) = Mε(b), b ∈ Σ. Then

|M ′
ε| =

∂ρε

∂b
(t, b)

∣∣∣
t=τ0,b=b0

=
(

∂λε

∂a
(t, a)

∣∣∣
t=τ0,a=aN

)−1

≤ 1 + p

2
exp

(
aN ·min{µ(0)

1 ; µ(0)
2 }

)
. (27)

Hence

| ((M+ ◦M−)n ◦M+)′ | =
(

∂λ±
∂a

(t, a)
∣∣∣
t=τ0,a=aN

)−1

×
N−1∏

i=0

(
∂λ±
∂a

(t, a)
∣∣∣
t=ti,a=a′

i

)−1

,

where 0 ≤ a′i < ai, i = 0, ...,N − 1. Finally, this implies,
according to (27), that

| ((M+ ◦M−)n ◦M+)′ | ≤
(

1 + p

2

)2n+1

× exp
(
(aN + aN−1 + . . . + a0) ·min{µ(0)

1 ; µ(0)
2 }

)



=
(

1 + p

2

)N+1

exp(min{µ(0)
1 ;µ(0)

2 }) ,

|M ′| ≤
(

1 + p

2

)2N+2

exp(2min{µ(0)
1 ; µ(0)

2 }) = q < 1 ,

since the last inequality is equivalent to n > θ.
Lemma 7: Under the conditions of Theorem 2(3), if n >

θ, then the measure of the set Π, defined in Lemma 4, is
zero.

Proof. Fix A ∈ R and T > A. Then

Π ∩ (Σ× (−∞; A]) ⊂
⋃

k≥s

Mk(Σ× [T ;T + 1]) ,

where s can be chosen large enough, because T > A is
arbitrary. Thus, we obtain from (26) that

mes (Π ∩ (−∞; A])) ≤ qs

1− q
·mes(Σ) −→ 0

as s →∞, which completes the proof of the Lemma.
Now one can finish the proof of the third statement of

Theorem 2 as was done above for the second statement.
Proof of Proposition 3. Condition (12) means that if

x(t) is a solution of (1) then, for x(T ) ≥ 0, x(t) ≤ ω(t), t ≥
T , where ω(t) = (α + kx(T )) exp(k(t − T )) − α)/k is the
solution of the Cauchy problem,

ω̇(t) = α + kω(t), ω(T ) = x(T ),

and, for x(T ) ≤ 0, x(t) ≥ ω(t), t ≥ T , where ω(t) = (−α +
kx(T )) exp(k(t− T )) + α)/k is the solution of the Cauchy
problem,

ω̇(t) = −α + kω(t), t ≥ T .

These inequalities and (12) imply that |F (x, t), t)| < α as
t ∈ [0, 1], and x(0) = ϕ(0) satisfies (14), and that x(t)
satisfies (15) as t ∈ [T, T + 1], x(T ) = 0. Hence x(t) does
not leave the strip |x| ≤ α(ek − 1)/k for t ≤ T .
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