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Disturbance Compensation With Finite Spectrum Assignment
for Plants With Input Delay

Igor Furtat

Abstract—This paper presents a method for compensation of
unknown bounded smooth disturbances for linear time invariant
(LTI) plants with known parameters in the presence of constant
and known input delay. The proposed control law is a sum of the
classical predictor suggested by Manitius and Olbrot for finite spec-
trum assignment and a disturbance compensator. The disturbance
compensator is a novel control law based on the auxiliary loop for
disturbance extraction and on the disturbance prediction. A nu-
merical implementation of the integral terms in the predictor-based
control law is studied and sufficient conditions in terms of linear
matrix inequalities are provided for an estimate on the maximum
delay that preserves the stability. Numerical examples illustrate the
efficiency of the method.

Index Terms—Disturbance compensation, input delay, numerical
implementation, predictor, stabilization.

|. INTRODUCTION

One of the central problems in the control theory is control of systems
affected by unknown disturbances. This problem becomes especially
complicated in the presence of input delays that are typical for process
control, remote control, chemical technologies, etc. (see, e.g., [2]-[5]).
Delay may prevent a designer from using high-gain controllers for
disturbance attenuation. The first approach to control of systems with
input delay was proposed by Smith for stable plants [6]. For unstable
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plants, Manitius and Olbrot suggested prediction with finite spectrum
assignment in [7]. In the presence of disturbance, the predictor of [7]
achieves disturbance attenuation [3], [8]. The above-mentioned papers
did not take into account the structure of disturbances. The next step
was done in [9], where a method for compensation of a finite number
of sinusoidal disturbances was proposed.

In [3] and [7]-[9], integral representations of state predictors were
used without considering their numerical implementations. If the pre-
diction horizon & (h is the value of input delay) is too large, the numer-
ical implementation may destabilize the system [11]-[14]. A necessary
condition for a bound on h that preserves the stability was provided
in [13]. However, sufficient conditions for & preserving the stability
under numerical implementations are missing.

In this paper, a more general than in [9] class of (r + 1) contin-
uously differentiable disturbances with uniformly bounded (r + 1)th
derivatives is considered. We suggest a control law that is a sum of
the classical predictor of [7] and a disturbance compensator. The dis-
turbance compensator is a novel control law based on the auxiliary
loop for disturbance extraction and on the disturbance prediction. Note
that recently (when this paper was under review), for the same class of
disturbances, a similar idea of a control law that predicted disturbances
with horizon h and allowed us to compensate their influence on the
system was suggested in [10]. The disturbance prediction in [10] was
based on the current values of the disturbance and its derivatives till
rth order that led to an (7 + 1) th-order observer for the disturbance
and its r derivatives. The numerical implementation issues were not
considered in [10].

We propose a disturbance prediction that is based on the current and
the delayed values of the disturbance. The latter allows us to design
a predictor-based control law that employs a simple scalar observer
(the so-called dirty derivative filter as considered, e.g., in [15]). We
study the numerical implementation of the predictor-based control law
and provide, for the first time, sufficient conditions in terms of linear
matrix inequalities (LMIs) for an estimate on the maximum delay
that preserves the practical stability (meaning that the solutions of
the closed-loop system are ultimately bounded with a small enough
bound). The efficiency of the presented method is illustrated by two
examples.

Il. PROBLEM FORMULATION
Consider the following system:
%(t) = Az(t) + Bu(t — h) + Bf(t), t >0
u(s) =0,s<0 (1)

where z(t) € R" is the state vector, u(t) € R is the control, f(t) €
R is an unknown and matched disturbance, A € R"*" and B € R"
are the constant known matrices, and » > 0 is known and constant
time-delay. Note that our results can be easily extended to the case of
multiinputs provided B is full rank (see Remark 2).
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Fig. 1. Control system structure (bold lines denote the vector signals

and thin lines denote the scalar ones).

We assume the following.

Al. The function f: R, € R is (r + 1) times continuously dif-
ferentiable. Moreover, the unknown disturbance is uniformly bounded
together with its (r + 1)th derivative.

A2. The pair (A, B) is controllable.

The classical predictor suggested in [7] guarantees the input-to-state
stability of (1) leading to ultimate bound

li ) <o
tggostlzlglx( )= )

where § = O(sup,- | f(t)|). Here, |- | is the Euclidean norm of a
vector and O(x) for x € R means that lim, % = C, where C'is
a constant.

In this paper, our objective is to design a controller that decreases
§ achieving § = O(h"+! sup,q | f" 1 (¢)]) for the class of distur-
bances with small enough 2" ! sup, -, | f" 1) (¢)]| << sup,~, | f(2)].
Sufficient conditions for this objective are given below in Theorems 1
(under integral predictor-based laws) and 2 (under numerical imple-
mentations of the integral terms of the predictors). The proofs of
Theorems 1 and 2 are given in Appendixes A and B, respectively.
The novel control law that we propose is based on the disturbance
extraction and its prediction.

Ill. PREDICTIVE DISTURBANCE COMPENSATION CONTROL SCHEME

We choose a vector KT € R" such that the matrix A + BK is
Hurwitz and suggest the control law in the form of the sum:

u(t) = uy (t) + ua(t) 3)

where
¢
u(t) = K {e“’x(t) -I—/ %) Bu, (0)do 4)
t-h

is a classical predictor for finite spectrum assignment [7]. The novel
control law u9 that will be designed below is aimed for disturbances
compensation. We illustrate the design procedure in Fig. 1 (see “State
predictor” and “Disturbance compensator”).

In order to extract the disturbance f from the closed-loop system
(1), (3), we use the method described in [16]. We introduce an auxiliary
loop in the form

Z4(t) = Az, (t) + Buj (t — h) + Buy(t — h)
z,(0) =0

t
ul(t) = K |:€Ahx,,(t)+/ heA“‘H)Bu‘l"(G)d(‘) . 5)
t—h

Defining the error function ¢ = x — z,,, from (1), (3), and (5) we arrive
at the error equation

é(t) = Ae(t) + B (ui (t— h) —ul (t — h)) + Bf(t).  (6)

Denote B = col{by, b, ...,b, }. Choosing any k (k = 1,...,n) with
b # 0, we rewrite the kth equation of system (6) in the form

ér(t) = al e(t)
+ b (ur (t—h) —uf(t —h)) + by f(t) (7
where ay, is the kth row of the matrix A. From (7), we obtain
F() = b [en () — af (1)
— by (ur (t —h) —ui(t —h))]. (8)

Note that the signal £, is not available in (8). In order to find its
estimate £, we can use any existing observer (see, e.g., [15]-[18]). We
suggest the following simple dirty derivative filter [15] (see “Filter” in
Fig. 1):

Jiéy (t) + i (t) = x(t), &(0)=0 ©®

where 1 > 0 is a small enough number. Thus, the resulting estimate f
of f (see “Disturbance estimator” in Fig. 1) has a form

F(6) = b [ (8) — af e(t)

= by (ua(t = h) —ui(t—h))]. (10)

In order to construct the disturbance compensator us, we approx-
imate f(t) by its past values f(t —h),..., f(t — (r 4+ 1)h) via the
mean value theorem [19]:

N r+1 . . N . “
ft) = Zl(fl)'HCﬁHf(t —jh) + E(t). (11
=
Here, the remainder E(t) is given by
E(t)=h*1fotD (t—(r+1)0h), 0< 0 <1.  (12)

Approximation of unknown signals via the mean value theorem was
suggested in [20]. From (10) and (11), we find

OESIORSI0) (13)
where
n(t) = ér(t) — i (t). (14)
Substitution of u(t) = uy (¢) 4+ w2 (t) and (13) into (1) leads to
2(t) = Ax(t) + Buy (t — h) + Bua(t — h)
r+1 ) } ~
+BY (—1)7'ClL [ (t = jh) + BA(t) (15)
j=1
where
A(t) = B(t) + b n(t). (16)
Choosing in (15) the control law wuy as
r+1 ) ) N
up(t) == (=1)7"CL f(t— (G = 1)h) a7
j=1
(see “Disturbance compensator” in Fig. 1), we arrive at
#(t) = Ax(t) + Buy (t — h) + BA(t). (18)
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It will be shown in Appendix A that the solutions of (18), (4) are
ultimately bounded and their ultimate bound is of the same order as the
ultimate bound A (p) := tILIIolo sup, g |A()| of A and that

limy, o A(p) = " sup [0 (1)) (19)
t>0
Thus, the proposed control law allows us to decrease the influence
of the disturbance on the solutions of the closed-loop system if
BT sup,sg | fU Y (1) < supysg | f(¢)]. This is different from [3],
[71, [8], where the closed-loop systems and the corresponding bounds
directly depend on f.

We are in a position to formulate the main result of this section.

Theorem 1: Given KT € R" such that the matrix Ay := A + BK
is Hurwitz and given a scalar a > 0, let there exist a constant 5 > 0
and an n x n matrix P > 0 that satisfy the following LMI:

AP+ PAy +2aP Pe*"B
o
* -

Then, for all small enough z > 0 there exists A(u) > 0 such that
the solutions of (1) under the control law (3)—(5), (9), (10), (17) are
ultimately bounded and (2) holds with § = O(A(u)), where A(u)
satisfies (19).

LMI (20) is always feasible for & < max Re(o(A)) (here o(Ay)
denotes an eigenvalue of A) and for large enough /.

Remark 1: In[3], the influence of the disturbance f is attenuated by
the control law u = w4 only. In [9], the results are confined to sinusoidal
signals f whereas the control law u, is needed for the identification
of parameters of sinusoidal signals and for their compensation. The
proposed control law allows us to compensate a wider than in [9] class
of disturbances and employs a simple scalar observer (9) (in [10], an
(r 4 1) th-order observer is used for the disturbance preditctor).

Remark 2: Our results can be easily extended to (1) with several
inputs u(t) € R™ if B is full rank. In this case, there always exist
m linearly independent rows of B. Then, similarly to (8), f can be

found from (6) by employing the corresponding to these rows equations
of (6).

) <0. (20)

IV. NUMERICAL IMPLEMENTATION OF THE PREDICTIVE
CONTROL SCHEME

Note that the integral terms in control laws (4) and (5) are supposed
to be implemented numerically. For numerical implementation of these
terms, a cubature formula can be used:

up (t) = K[e‘“‘m(t)

q
+ Z m, et 'PhA By, (t— qlph):| 21
p=0
uj(t) = K |:(iAh T4 (1)
! -1
+ Z mye! A Bug (t — qlph)} (22)
p=0

where the values of m,, depend on the chosen numerical scheme, the
integer ¢ determines the approximation precision. In our consideration,
we assume that the values of m,, are small enough for large enough q.
This is the case, e.g., in the trapezoidal rule.

We will present below LMI-based sufficient conditions for finding
h that preserves ultimate boundedness of solutions to (1) under the

predictor-based control law with u; and uy given by (21) and (22).
The idea of the Lyapunov-based analysis of the resulting closed-loop
system is the following. From (18), we find

Buy(t —q'h) = @(t — (¢"'p—1)h)
—Az(t — (¢"'p—1)h) — BA(t — ¢ ' ph)

— BAr(t— (g 'p— 1)h). (23)
Substitution of the right-hand side of (23) into (21) leads to
#(t) = Az(t) + BK | e a(t — h)
q

+ Z mpeq’lphA

p=0
x (#(t —q 'ph) — Az(t — ¢ 'ph))

! -1

— BK Y mye? ""i(t — g ph) + BA(t). (24)

p=0

Solving (23) with respect to &, we arrive at the neutral-type system
with the input that is given by a linear combination of A(¢) and its
delayed values. By using a simple Lyapunov functional for the re-
sulting neutral-type system, we will derive in Appendix B sufficient
LMI-based conditions for its input-to-state stability. Then, the esti-
mate on the ultimate bound of the solutions to the closed-loop system
under (21) will follow from the ultimate bound A () of A and from
relation (19).

To formulate the main result of this section, we will use the following
notations:

M :=1— BKm,
F, :=M"'BEKm,e’ " (p=1,....q)

D; == —M'BKmje! A (Gj=1,...,q—1)

D, := M'BK (e*" —m,e?"A) A, = A+ Z D,. (25

q

Theorem 2: Let the matrix M = I — BKmg, be nonsingular.
Given h > 0 and a scalar o > 0, let there exist a constant 5 > 0
and n x n matrices P > 0, P, P35, S, >0, R, >0, @, > 0, and

p=1,2,...,q that satisfy the following LMI:
Uy Uy Uy Wy
L * ‘1/22 0 0
V= . . Wy 0 <0 (26)
* * * -0

with notations given by (25), where

q
U =PlA+ AP +) S,

p=1

vi2=p_P'+ATP,
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q q
U =-P P+ pg'hR, +YQ,
p=1 p=1

\I}H \1/12
R
* Uiy
v __h PI'D, 2P!'D, qP!' D,
12 — —— e P o
q | PfD, 2P'D, qP!' D,
v, _|[HF PI'F,
13
Pl F P'F,

PI'B }
Uy =13
14 {P;B

Uy, = —hdiag{qg 'e 2 "R, ...
6720((1—1)(1" )I,quh e—?ah Rq}

Uyy = —diag{e ™" " Qy, ...
el e, )

Then for all small enough p > 0 there exists A(x) > 0 that satisfies
(19) and such that solutions of (1) under the control law (3), (5),
9), (10), (17), (21), (22) are ultimately bounded and (2) holds with
5 = O(A(1).

LMI (26) is always feasible for a < max Re(o(Ag)) and small
enough m,, and h.

V. EXAMPLES

Example 1: Consider (1) with parameters from [9], where

0 1 0
P (O I

Choose 1 = 0.01 in filter (9), where k = 2. Use r = 3 in the
disturbance compensation control law (17) where f = &, — [10]”e.
Control laws (21) and (22) used for numerical implementation with
K = [-3 — 3] and ¢ = 5 are defined as follows

u (t) = —[3 3] |:eU'45Aac(t) +0.09 <0.5u1 (t)
! 1
+ Z V454 PA By (t —0.45¢7"p)
p=1
+0.5¢%4°4 Buy (t — 0.45))}
uf (t) = —[3 3] |:60'45A.7Ja (t) +0.09 <0.5u§ (t)

4
+ Z 60'45(171”ABu‘f (t —0.45¢ ' p)

p=1
+0.5¢% 44 Bus (t — O.45)):| )

Here, the trapezoidal rule is used for the approximation of the integral
term. For numerical simulations, we choose z(0) = [1 2]7. Note, that
the control laws u, and u{ are verified for ¢ = 10, 30, 50. However,

W 3

“o 10 20 3 o 10 20 30
(a) (b)

Fig. 2. Plots of the state under the control law of (a) [3], [7], [8] with

u = uy and (b) [9].

0 10 20 30
Fig. 3. Plots of the state of the proposed control law.
0.04
1| : : :
001}
0 : - 0 4 : i : 4
0 100 200 300 400 500 0 100 200 300 400 500
(@ (b)

Fig. 4. Plot of x under the control law of (a) [9] and (b) the
proposed one.

enlarging ¢ does not affect on the stability and quality of transients in
the closed-loop system [11], [12], [14].

Consider first the following disturbance: f = 1 4 sin 0.2¢. In Figs. 2
and 3, the plots of the state are presented for the control law [3],
[71, [8] (for u = wy), the control law from [9] and the proposed one,
respectively. In figures, the solid curve corresponds to 7 and the dashed
curve corresponds to x2. The simulations show that the control law of
[31, [7], [8] does not compensate this disturbance. The control law of
[9] ensures the exact compensation of the disturbance. Moreover, the
proposed control law compensates the disturbance with the accuracy
6 =0.02.

Now consider the case of a nonsinusoidal disturbance f =1+
sin 0.2¢ 4+ w, where w is defined as a solution of the following dif-
ferential equation:

15w + 38w + 32w + 100 + w = ysat(g(t))

w?(0)=0,i=0,...,3 @27

where x = 200, sat(-) is a saturation function, g is a piecewise-constant
signal (which is constant on intervals [0, 0.1),[0.1,0.2), . ..) with nor-
mally distributed random values and with the zero mean and the vari-
ance equal to 1/16. In Fig. 4, the plots of x are presented for the
control law of [9] and the proposed one, respectively. It follows from
the simulations that the control law of [9] ensures the accuracy § = 1.1.
The proposed control law ensures the accuracy § = 0.033. The sim-
ulations show that the controller v = Kz cannot stabilize the system
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(a) (b)
Fig. 5. Plots of the state under the proposed control law for (a) » = 0

and (b) r = 2in (17).

0 20 40 60 80

Fig. 6.
in (17).

Plots of the state under the proposed control law for r = 3

with A > 0.23 and f = 0. LMI (26) is feasible for ~ < 0.3. Moreover,
for h = 0.3 our results are favorably compared with [3], [7]-[9]. The
system under the proposed control law and the control laws of [3],
[71-[9] loses the stability for A > 0.48, meaning that the LMI-based
bound for A is rather efficient.

Example 2: Consider the model of the dc motor [21] in the form

I§(t) = k®i(t — h) — M(t) 28)

where ¢ is a rotation angle of the motor shaft, I is an inertia moment
of the motor rotating part, 7 is a current in the armature circuit, k is a
constructive constant, ¢ is a magnetic flux, M is a resistance moment
depending on unknown load, and h = 0.66 is a time-delay caused
by remote control [21]. Denote =1 = ¢, x9 = ¢, u = (k®/I)i, and
w = (1/I)M. Then, the model (28) can be represented in the form
of (1), where A = [ ?] and B = [01]. The goal is to design such a
control law that the motor shaft angle rotates to zero and stops with
some accuracy.

Let K = [—3 — 3]and ¢ = 5in(21) and (22), where the trapezoidal
rule is used. Choose 4 = 0.01 and k& = 2 in filter (9). The disturbance
w is simulated by the solution of (27), where y = 40. The simulations
show that the control law u = Kx cannot stabilize the system with
h > 0.41 and f = 0, whereas the proposed numerically implemented
control law cannot stabilize the system for h > 0.74. LMI (26) is
feasible for A < 0.66 (which is not far from 0.73 that follows from
simulations).

For numerical simulations, we choose z(0) = [10]7". In Figs. 5 and
6, the plots of x; and x, are presented for the proposed control law
withr = 0,7 = 2,andr = 3 in (17). The simulations show that distur-
bances are compensated by the proposed control law with the accuracy
¢ equal to 0.6, 0.3, and 0.1 for r equal to 0, 2 and 3, respectively.

VI. CONCLUSION

In this paper, the new control law has been suggested for the com-
pensation of unknown bounded smooth disturbances acting on the LTI
plant with input delay. The proposed control law is the sum of the

classical predictor and of a novel disturbance compensation loop.
For the first time, the stability under the numerically implemented
predictor-based controllers have been analyzed via Lyapunov—
Krasovskii method. Efficient sufficient LMI-based conditions are pro-
vided for the maximum value of the delay that preserves the stability.
Further improvements may be achieved by using other Lyapunov func-
tionals. An extension of the presented method to uncertain plants may
be a topic for future research.

APPENDIX
A. Proof of Theorem 1

The proof consists of five steps.
Step 1: Ultimate boundedness of <"*?). By using the reduction
approach [1], consider the following change of the state in (6):

t
z0(t) = e e(t) + / A0 B uy () — ul ()] d6.
t—h
Then, u; (0) — uf () = Kz,(0), and we arrive at
(29)

t
zg(t):eAhs(t)Jr/ AU BK 2 (0)d6.
t—h

Differentiating (29) and taking into account (4), (5), and (6), we find

Z0(t) = Agzo(t) + " Bf(t), Ap:= A+ BK. (30)
Differentiating ( + 1) times (30), we obtain
27TD() = Ag 2T () 4+ eAh BFUHD (1), 31)

Consider the Lyapunov function V = z{" ") ()T () Pz{" "V (¢) and
differentiate it along (36). We have

W =V+2aV —3(fr+9)?

— [(z(()rﬂ))rr f(r+1)] 0 |:(Z(()1'+1))T f“*l)(t)] T iy

where the latter inequality follows from (20). Then, (36) is input-to-
state stable, and the uniform boundedness of £("*1) implies the ultimate
boundedness of z\" ") Hence, 2" "* defined by the right-hand side of
(31) is also ultimately bounded. Further, from the equation that results
from the differentiation (r + 2) times of (29), we conclude that (" *+2)
is ultimately bounded.

Step 2: The feasibility of (20). Since A, is Hurwitz, the Lya-
punov inequality AT P+ PAy + 2aP < 0 is always feasible for
a < max Re(c(A)). Then, by the Schur complement, (20) is fea-
sible for large enough (.

Step 3: Ultimate bound on n"*1) . Differentiating (14) and substi-

tuting from (9) &, (t) = p~'7n(t), we obtain

() = —n(t) + pér (t). (32

Differentiating (32) (r + 1) times, we have

() = =0T () + pel (8).
Since £ *?) is ultimately bounded, then " *1) is ultimately bounded
and

lim sup |n'" V) (t)| = O(u). (33)

1=00 ¢>0
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Step 4: Ultimate bound on ). Differentiating (r + 1) times (13),
we find f D () = fOFD () — b, n(+ 1) (#). Then, (12) can be pre-
sented as

E(t)= — h+! [f<"'+1>(t ~ (r+1)6h)

R 1)9h)], 0<f<1. (34

Due to (33) and (34) and the fact that f"+!) is uniformly bounded,
it follows from (16) that A(¢) is ultimately bounded A(u):=
}im sup, g |A(t)| < oo and (19) is satisfied.

Step 5: Ultimate bound of x. Consider next the following change of
the state z(¢) in (18):

¢
21 (t) = eMa(t) + / e =0 Buy (0)d6.
t—h

It follows from (4) that u; (§) = Kz (6) and that

0
z(t) =e " {zl (t) —/ e BKz (s +t)ds| . (35)
—h
Differentiating (35) and taking into account (18), we obtain
21 (t) = Agzi (t) + e BA(t). (36)
Under (20), the system (36) is input-to-state stable and
Omin (P) lim sup ‘Zl (t)|2
t—00 t>0
< }im sup (2 (t)Pz (1)) < 0.5a7" BA* (). 37)
=00 >0
From (35), we find
()] < Jle= "] [ 121 (8)]
"0
+ max |e?*||BK]| |21 (s +t)]ds]|. (38)
s€[=h,0] —h

Inequalities (37), (38) and (33) imply that (2) holds with ¢ = O(u).

B. Proof of Theorem 2

The proof consists of three steps.
Step 1: Boundedness of ¢ +?) . From (1) with u = u; + u, and (5),
we have

Bui(t—q 'h) =i(t —(¢"'p— 1)h)

— Azt —(q"'p—1)h)

— Buy(t —q " 'ph) = Bf(t—(¢"'p— 1)h)
Bui(t—q 'h) =i,(t = (¢"'p—1)h)

— Az, (t — (¢ 'p — 1)h) — Bus(t — g *ph).

Substituting the right-hand sides of the latter equations into (21) and
(22), we obtain

ui(t) = K [eAhz(t) + zq:mpeqilphA
x [#(t = (¢ 'p—1h) = Az(t = (¢"'p — 1)h)

— Buy(t —q 'ph) = Bf(t— (¢ 'p— l)h)}}

uf (t) = K [6“”‘% (t) + i mpeqflphA
x [&q(t = (q"'p— 1)h)
~ AT (= (TP~ Db~ Bua(t - qlphﬂ} )

Plugging (39) into (6), we arrive at

é(t) = Ae(t) + BK | e e(t — h)

q
1
hA
+E mye? "
p=0

x (£(t —q 'ph) — Ae(t — q"'ph))

q
~BK Y myet MMt —q 7 ph) + Bf(1).  (40)

p=0

Solving (40) with respect to £(t), we obtain a neutral-type system

0= Ae)+ Y [Bete-pr'n)

p=1

t
- D; / é(s)ds} + Bw(f) (41)
Jt—pqgLlh
with notations (25), where
w(f) =
q
M [f(t) — K> myet Mgt - qlph)} : 42)
p=0
Differentiation of (41) (r + 1) times leads to
. q .
{(t) = A () + D | FC(t—pg"h)
p=1
t
sz-/ ((s)ds| + Bw(fr+1) (43)
t—pq~Lh
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where (t) = £("*1) (). For the input-to-state stability analysis of (41),
consider the following simple Lyapunov functional [22]-[24]:

\%

<
Il
vl

() PC(t)

L
UL

2T (5)Q,((s)ds

S
I
Il Ma

20T (5)8,¢(5)ds

i

t
—pq~Lth Jt+6

where P, @Q,, S, and R, are positive matrices. We use the descriptor
method with free matrices P, and P; (see [22]), where { is not sub-
stituted by the right-hand side of (43). Differentiating (44) along (43),
we have

e~ ¢T (5)R,((s)dsdb (44)

Vi + 2aV; = 2¢T () PC(t) 4 2a¢T (£) PC(t)
+2[C" (P + (T () PT[=C(1) + A1)

7ZD /qu*‘h
q
+2

C(s)ds

F,{(t—pg 'h) + Buw(f" )]

p=1
Vo +2a%; = (T (1)) Q,4(0)
p=1
q
=Y e T (- pg T R)Q,C(t — pg 7 h)
p=1
) q
Vi+2aVs =¢" (1)) S
p=1

_ E e20pqh

"t —pg " h)S,¢(t —pg ' h)

+qu1h< t)R, (1)

q t
1 ~/t7pq’l h

p=

2T ()R, ((s)ds 45)
By Jensen’s inequality [25]

ot
- / g2 ls=t) (T (S)Rpé(s)ds
t—pg—Lh

t t
< —672‘”"17%/ CT(S)dst/ C(s)ds.
t—pq~1h t—pqg—Lh

Denote

& = col{¢, ¢}

t
» = h"col (s)d
ovalaf o
t . t )
0.5q/t_2q71hC(s)ds,-~- ,/t_h C(s)ds}

& =col{{(t —q'h),C(t—2q'h),....C(t—h)}
€ =col{€1,&, &, w(f" )}

From (44)-(45) we arrive at V 4 2aV — B(w(f7+1))? <eTwe <
0, where the last inequality follows from (26). Then, by comparison
principle,

lim sup(¢” () P¢(1)) < 0.5a"" fmaxso (w(f1))?

t—o00 t>0

i.e., ((t) is ultimately bounded. LMI (26) guarantees also the stability of
the difference equation (t) = ZZ:I F,¢(t — pg'h) [22]. Consider
now (43) as a difference equation with respect to ¢ (t), where the
nonhomogeneous term is defined by ((¢) and w( f (r+1)). Then, by
using (iii) of [4, Lemma 3.1], we conclude that C = ("*2) isultimately
bounded due to ultimate boundedness of ¢ and uniform boundedness
of w(fr+1),

Step 2: Ultimate bound on x. Ultimate boundedness of A and relation
(19) follow from Steps 3 and 4 of the proof of Theorem 1.

Since the structure of (24) is similar to the one of (40), we conclude
that LMI (26) imply ,IHEO sup, o (27 (t)Px(t)) < 0.5 A?(u) 3. The

latter yields (2) with § = O(A(u)).

Step 3: The feasibility of LMI (26). Since m, is small enough,
the matrix (I — BKm,) is invertible. Additionally, since m, (p =
1,...,q) are small enough, the matrices F), defined by (25) are small
enough. The latter guarantees the stability of the difference equation
C(t) =>"1_, F,((t — pg~' ). The stability of the difference equation
and the fact that A, given by (25) is Hurwitz guarantee the feasibility
of LMI (26) for small enough m,, and h [4], [22].
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