Liquid-Interface: Automatically Generating and
Optimizing User-Interfaces for Dynamic
Compositions

Eran TocH, Iris Reinhartz-Bergér and Dov Dori
*Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology
erant@tx.technion.ac.il, dori@ie.technion.ac.il
fDepartment of Information Systems
University of Haifa
iris@mis.hevra.haifa.ac.il

I. INTRODUCTION Our framework, namedliquid-Interfaceautomatically gener-

ates form-based user-interface from dynamic compositions.

Dynamic composition is a new way for creating Softwargyq o0t of the generation process isnackup a visual

applicatipns_. Re}ther than manual CO‘?“”g the new .applicati_ esentation of a design that approximates what the final
the application is generated automatically by reusing existing,jication will look and behave. It does not, however, capable
software services according to the user's requirements [*executing the functionality of the application

[7]. The method has several advantages: it answers an m_Stanl'he usability of the user-interface is enhanced through two
taneous request of the user, and the application is ﬂex'b&?mensions:
the application can change instantly, reacting to changes In
the underlying services (e.g. failures, price change, quality of*®
service etc). While dynamic composition promises an exciting
vision for software development, it raises several questions
regarding the way users interact with the generated application.
Specifically, it raises a challenge for usability, which is defined *
as the effectiveness, efficiency and satisfaction in which users
perform tasks using a given system [1].

In traditional software development processes, the user-
interface is derived from the requirements and desired func- 1. METHOD
tionality of the application model. It can be carefully designed 11 input to the generation process is a model of
and tested in order to insure its usability. In contrast, iHynamicaIIy-composed application, written in OWL-S [2],
dynamically composed applications, the functionality is nQfhich is a widespread language used to define dynamic com-
set during the design of the system. Therefore, it the USefsitions using rich semantic models. The parts of the OWL-
interface cannot be designed, let alone tested for usabiligy.mogel which are relevant to this research are the process
The conclusion is that the user-interface should be generajggqe| which defines the execution order of the processes, and
dynamically as well, reflecting the temporary functionality ofhe process specification, which defines the input and output
the application. parameters of processes using ontological concepts. In order to

The field of automatic generation of user-interfaces attemigemplify our approach we use a simple composition, depicted
to formally define the elements of user-interface, including Figure (a), describing a book buying application. The
presentation and interaction, and use the formal model dppjication is composed of three sub-processes, represented
order to generate user-interfaces [S], [4], [6]. While modey the ellipses and ordered as a sequence. The square objects
based user-interfaces provide the foundations for automaiiyresent input and output parameters of the processes.
generation of user-interfaces, they do not deal with usability The yser-interface generation process creates a Web-form
optimization as they presume the models are already usalglg. each sub-process, generating the form's fields from the
However, this approach will not suffice for dynamic componpyt and output parameters. Figure (b) contains a screenshot
sitions, as these compositions are not optimized for usabiligf sych a form, generated for the process model in Figure (a).
The navigation between the forms is based on the execution
order of the sub-processes. For instance, if the processes are
ordered in a sequential form, then the user would be able

In this work, we provide a model of user-interface generde navigate between the forms through a wizard-like fashion,
tion and optimization for dynamically-composed applicationsising nextand back buttons. If the sup-processes are ordered

Optimizing semantics: The user-interface is brought
nearer to the user's concepts and vocabulary by provid-
ing additional information and explanations taken from
ontologies which are related to the application.
Optimizing navigation: modifying the navigation of the
application with the intention of making it more efficient,
secure and manageable.

Il. OBJECTIVES

3 BookPriceService - Mozilla Firefox EEX

File Edit Yew Hstory delico.us Bockmarks Tools Help
Optimize your GUI: optimize W A4
Book Name LA, i ;
Book Price Service
Book Finder i
Process Book Finder Process Book Finder Process
Input Fields
Book Info Sean
.'-~-.__ Book Name o
Barns-n- Service Description > b
Noble Price A Gesied comancy it iha S oot
Process \J num;er for :he‘:;v:n book is iy '
A N fouri anctthen this ISBN rumber
o I bk
Book Price .~ . R has Publisher
Price ~.-.._____-_ has vear
Converter > human Creator
Process —
has Title
Final Price
next>>
(a) The Input: an OWL-S Process Model (b) The Output: a Generated Web-Form
as parallel, the user would be able to interact with each of the IV. CONCLUSION

processes using independent windows. In this short paper we presented a model of user-interface

) o _ generation and optimization for dynamically-composed appli-
The semantic optimization process is based on analyzipgtions. Preliminary results include a proof-of-concept imple-

semantic concepts, which are part of the OWL-S proceggentation that contains full semantic optimization and partial
specification. In OWL-S, each input and output parameter jigyigation optimization. We had tested the implementation
mapped to a concept that formally defines its essence. In org@ih several different compositions from various sources and
to provide richer semantics to the users, these concepts gfgerved an improvement in the overall usability of the
expressed using interface widgets. For example, aBBtuk gppjication. The preliminary results also reveal interesting
Info concept contains several properties, suctities publisher yejations between design patterns used for optimizing nav-
and creator, these concepts are displayed as additional fieldggtion, including patterns that contradict (or enforce) each

presented in the context of the parent field. In Figure (gther. Investigating these relations, as well as experimentally
and (b), dotted lines depict concept expressions. The tyg@yjuating the general model, are planned for future research.
of the user-interface widget is adjusted to the semantic type

of the concept. For example, concepts that express dates are
displayed using a calender, and concepts that have a bounded

: ; ; [HIs0 9241-11. ergonomic requirements for office work with visual display
set of values (e.g. countries or currencies) are displayed gsterminals (vdlts) part 11: Guidance on usability, 1998.

lists. Other semantic characteristics are expressed using UBgrA. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A.
interface elements, including cardinality, concept generaliza- Mcllraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng.

. i : P Daml-s: Semantic markup for web services. Mmoceedings of the
tion, multi Ilngual concepts and Input Va“dlty checks. International Semantic Web Workshop (SWWapes 411-430, July 13

2001.
Navigation optimization modifies the process executidfl |S Dustdar i’igd W. ISth\r;\elinber- é°~ GSU_&VZV on évé((?lt)) feg\gcgzocgmposition-
Py _ : nternational Journal of Web and Grid Servi¢ :1-30, .
Order, of the_ O”gmafl OWL-S model according to a Se_t El] Deepali Khushraj and Ora Lassila. Ontological approach to generating
user-interaction design pattern&\s measures for evaluating = personalized user interfaces for web servicesinternational Semantic
the quality of user-interface navigation are rather vague, we AWe%C%nferencnggs 9E16—9273 2005T- 4 | onal
r . . A. R. Puerta and J. Eisenstein. Towards a general computationa
F:reated a taxon,omy of user mteractlo'n d§5|gn patterns, SEIé%t framework for model-based interface development systétnewledge-
ing patterns which are relevant to navigation. For example, the Based Systemd2:433-442, 1999.
Flat and Narrow Trealesign pattern defines optimal measurd§é] Josef Spillner, Iris Braun, and Alexander Schill. Flexible human service

: s atrilag b interfaces. InICEIS (5) pages 79-85, 2007.
to link distribution between the pages. Each of the SeIeCtFﬁI Eran Toch, Avigdor Gal, Iris Reinhartz-Berger, and Dov Dori. A semantic

patterns were modeled as functions that assigaagational approach to approximate service retrieveCM Trans. Inter. Tech8(1):2,
score to a configuration of the application’s navigational 2007.

properties, such as the number of links between pages and
the number of fields within a page. The functions were then
used in order to maximize the overall navigational score of
the application, using non-linear optimization methods.

REFERENCES

