
Liquid-Interface: Automatically Generating and
Optimizing User-Interfaces for Dynamic

Compositions
Eran Toch∗, Iris Reinhartz-Berger†, and Dov Dori∗
∗Faculty of Industrial Engineering and Management

Technion - Israel Institute of Technology
erant@tx.technion.ac.il, dori@ie.technion.ac.il

†Department of Information Systems
University of Haifa

iris@mis.hevra.haifa.ac.il

I. I NTRODUCTION

Dynamic composition is a new way for creating software
applications. Rather than manual coding the new application,
the application is generated automatically by reusing existing
software services according to the user’s requirements [3],
[7]. The method has several advantages: it answers an instan-
taneous request of the user, and the application is flexible:
the application can change instantly, reacting to changes in
the underlying services (e.g. failures, price change, quality of
service etc). While dynamic composition promises an exciting
vision for software development, it raises several questions
regarding the way users interact with the generated application.
Specifically, it raises a challenge for usability, which is defined
as the effectiveness, efficiency and satisfaction in which users
perform tasks using a given system [1].

In traditional software development processes, the user-
interface is derived from the requirements and desired func-
tionality of the application model. It can be carefully designed
and tested in order to insure its usability. In contrast, in
dynamically composed applications, the functionality is not
set during the design of the system. Therefore, it the user-
interface cannot be designed, let alone tested for usability.
The conclusion is that the user-interface should be generated
dynamically as well, reflecting the temporary functionality of
the application.

The field of automatic generation of user-interfaces attempts
to formally define the elements of user-interface, including
presentation and interaction, and use the formal model in
order to generate user-interfaces [5], [4], [6]. While model-
based user-interfaces provide the foundations for automatic
generation of user-interfaces, they do not deal with usability
optimization as they presume the models are already usable.
However, this approach will not suffice for dynamic compo-
sitions, as these compositions are not optimized for usability.

II. OBJECTIVES

In this work, we provide a model of user-interface genera-
tion and optimization for dynamically-composed applications.

Our framework, namedLiquid-Interfaceautomatically gener-
ates form-based user-interface from dynamic compositions.
The output of the generation process is amockup: a visual
presentation of a design that approximates what the final
application will look and behave. It does not, however, capable
of executing the functionality of the application.

The usability of the user-interface is enhanced through two
dimensions:

• Optimizing semantics: The user-interface is brought
nearer to the user’s concepts and vocabulary by provid-
ing additional information and explanations taken from
ontologies which are related to the application.

• Optimizing navigation: modifying the navigation of the
application with the intention of making it more efficient,
secure and manageable.

III. M ETHOD

The input to the generation process is a model of
dynamically-composed application, written in OWL-S [2],
which is a widespread language used to define dynamic com-
positions using rich semantic models. The parts of the OWL-
S model which are relevant to this research are the process
model, which defines the execution order of the processes, and
the process specification, which defines the input and output
parameters of processes using ontological concepts. In order to
exemplify our approach we use a simple composition, depicted
in Figure (a), describing a book buying application. The
application is composed of three sub-processes, represented
by the ellipses and ordered as a sequence. The square objects
represent input and output parameters of the processes.

The user-interface generation process creates a Web-form
for each sub-process, generating the form’s fields from the
input and output parameters. Figure (b) contains a screenshot
of such a form, generated for the process model in Figure (a).
The navigation between the forms is based on the execution
order of the sub-processes. For instance, if the processes are
ordered in a sequential form, then the user would be able
to navigate between the forms through a wizard-like fashion,
usingnext andback buttons. If the sup-processes are ordered



Book Finder 
Process

Barns-n-
Noble Price 

Process

Price 
Converter 
Process

Book Name

Book Info

Book Price

Final Price

(a) The Input: an OWL-S Process Model (b) The Output: a Generated Web-Form

as parallel, the user would be able to interact with each of the
processes using independent windows.

The semantic optimization process is based on analyzing
semantic concepts, which are part of the OWL-S process
specification. In OWL-S, each input and output parameter is
mapped to a concept that formally defines its essence. In order
to provide richer semantics to the users, these concepts are
expressed using interface widgets. For example, as theBook
Info concept contains several properties, such astitle, publisher
andcreator, these concepts are displayed as additional fields,
presented in the context of the parent field. In Figure (a)
and (b), dotted lines depict concept expressions. The type
of the user-interface widget is adjusted to the semantic type
of the concept. For example, concepts that express dates are
displayed using a calender, and concepts that have a bounded
set of values (e.g. countries or currencies) are displayed as
lists. Other semantic characteristics are expressed using user-
interface elements, including cardinality, concept generaliza-
tion, multi-lingual concepts and input validity checks.

Navigation optimization modifies the process execution
order of the original OWL-S model according to a set of
user-interaction design patterns. As measures for evaluating
the quality of user-interface navigation are rather vague, we
created a taxonomy of user-interaction design patterns, select-
ing patterns which are relevant to navigation. For example, the
Flat and Narrow Treedesign pattern defines optimal measures
to link distribution between the pages. Each of the selected
patterns were modeled as functions that assign anavigational
score to a configuration of the application’s navigational
properties, such as the number of links between pages and
the number of fields within a page. The functions were then
used in order to maximize the overall navigational score of
the application, using non-linear optimization methods.

IV. CONCLUSION

In this short paper we presented a model of user-interface
generation and optimization for dynamically-composed appli-
cations. Preliminary results include a proof-of-concept imple-
mentation that contains full semantic optimization and partial
navigation optimization. We had tested the implementation
with several different compositions from various sources and
observed an improvement in the overall usability of the
application. The preliminary results also reveal interesting
relations between design patterns used for optimizing nav-
igation, including patterns that contradict (or enforce) each
other. Investigating these relations, as well as experimentally
evaluating the general model, are planned for future research.

REFERENCES

[1] Iso 9241-11. ergonomic requirements for office work with visual display
terminals (vdts) part 11: Guidance on usability, 1998.

[2] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A.
McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng.
Daml-s: Semantic markup for web services. InProceedings of the
International Semantic Web Workshop (SWWS), pages 411–430, July 13
2001.

[3] S. Dustdar and W. Schreiner. A survey on web services composition.
International Journal of Web and Grid Services, 1(1):1–30, 2005.

[4] Deepali Khushraj and Ora Lassila. Ontological approach to generating
personalized user interfaces for web services. InInternational Semantic
Web Conference, pages 916–927, 2005.

[5] A. R. Puerta and J. Eisenstein. Towards a general computational
framework for model-based interface development systems.Knowledge-
Based Systems, 12:433–442, 1999.

[6] Josef Spillner, Iris Braun, and Alexander Schill. Flexible human service
interfaces. InICEIS (5), pages 79–85, 2007.

[7] Eran Toch, Avigdor Gal, Iris Reinhartz-Berger, and Dov Dori. A semantic
approach to approximate service retrieval.ACM Trans. Inter. Tech., 8(1):2,
2007.


