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Inferring similarity between Web services is a fundamental construct for service matching and compo-
sition. However, there is little evidence of how humans perceive similarity between services, a crucial
knowledge for designing usable and practical service matching and composition algorithms. In this study
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we have experimented with 127 users to define and evaluate a model for service similarity in the context
of semantic Web services. Our findings show that humans take a complex and sophisticated approach
towards service similarity, which is more fine-grained than suggested by theoretical models of service
similarity, such as logic-based approaches. We define a similarity model, based on our empirical find-
ings and prove that the similarity model, expressed by a distance metric, is complete and that it closely
predicts humans’ perceptions of service similarity. Finally, we describe an application of a Web service

ment

imilarity
pproximation search engine that imple

. Introduction

Service orientation is an emerging software engineering
aradigm that emphasizes the reuse of existing and distributed
oftware services. Two promising technologies in service orienta-
ion are service matching, which facilitates discovery of services on
he Web [1–3], and service composition, which aims to assemble
ervices into new applications [2–8]. These technologies, hence-
orth collectively referred to as service retrieval, promise to help
sers find and reuse new services, providing an agile and trust-
orthy environment for executing services and creating new

pplications.
A central aspect of service matching and composition is find-

ng a good notion of similarity between services. The way in which
imilarity is defined is crucial to determining how services match a
uery and how they can be composed. Good similarity measures
xist in many fields, including information retrieval, databases
nd image recognition, but they are far less developed in the
eld of semantic service retrieval. Particularly, to the best of our

nowledge, there are no studies that examined how human sub-
ects perceive service similarity in the context of semantic service
etrieval.
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As a motivating example, which runs throughout the paper, con-
sider the following query: Find a service that accepts an address as
input and returns the closest hospital. Even if the service reposi-
tory includes only services that accept a longitude/latitude input
parameter and return a hospital, software engineers would build a
transformation that maps the longitude/latitude parameter to the
address parameter. However, a large class of service retrieval algo-
rithms, namely logic-based approaches, would fail to approximate
an address with a longitude/latitude parameter unless they are con-
veniently related through a subsumption relation. Works such as
OWLS-UDDI [9], Inter-OWL-S [4], OWLS-MX (Logic) [10], and SAM
[8], are based on this underlying assumption. While logic-based
matching is theoretically sound, its notion of similarity differs from
the way humans perceive service similarity. This gap may reduce
the usability of service matching, resulting in applications that are
unintuitive to users and developers.

In this work we study how human developers perceive service
similarity. A questionnaire administered to 127 information sys-
tems engineering students was used to assess the similarity of
queries and service compositions by providing quantitative and
qualitative feedback. Our findings show that human subjects per-
ceive similarity in a more fine-grained way than predicted by
logic-based service matching approaches. Humans’ notion of sim-

ilarity is based on broader constructs and on a higher level of
approximation than the level predicted by logic-based service
matching. Similarity is based on a broader set of semantic relations
(e.g., object properties) and behavioral aspects (i.e., the structure
of the composition). At the same time, human subjects exhibited a

dx.doi.org/10.1016/j.websem.2010.10.002
http://www.sciencedirect.com/science/journal/15708268
http://www.elsevier.com/locate/websem
mailto:eran@cs.cmu.edu
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ig. 1. Location specification using two different ontologies. Logic-based approach
ould fail to do so when the service is specified using ontology (b).

ofter and approximate notion of similarity, which was based on the
valuation of the service reusability considering the task at hand.

We used the quantitative findings to design an approximate ser-
ice similarity mechanism, in which we integrated conceptual and
ehavioral approximations to capture people’s notion of similar-

ty. The model is based on a straightforward idea of estimating the
umber and depth of changes required to adapt the retrieved ser-
ice to the query. Similarity is hence measured as the edit distance
etween the original service and the estimation. Quite surpris-

ngly perhaps, we found this method to be sufficient for describing
emantic and behavioral aspects of similarity via a model that is
oth formal and intuitive. We prove two important properties of
he proposed similarity measure: (1) the similarity is based on a
istance metric that can simplify service retrieval applications, and
2) the similarity measure is complete, i.e., it covers all the possible
ntology-based compositions.

In summary, the contributions of this work are the following.

Describing human perceptions of semantic service similarity,
providing a complete formal metric for service similarity that is
meaningful and intuitive to human developers, and
combining semantic and behavioral approximation in a single
frame of reference.

The rest of the paper is structured as follows. Section 2 reviews
urrent approaches to service matching. Section 3 defines our the-
retical framework of similarity, while Section 4 describes the
imilarity patterns. Section 5 elaborates on the empirical evalua-
ion of our approach. Section 6 describes an implementation that is
ased on findings of this research. Section 7, which concludes the
aper, refers to future research directions.

. Current approaches to service retrieval

In this section, we review the literature pertaining to our
tudy and two related approaches in service retrieval: logic-based
pproaches and hybrid approaches.
.1. Semantic Web services

The underlying model of our research is semantic Web ser-
ices, which aim to resolve the heterogeneity and lack of semantics
n Web service specifications [11]. Languages such as OWL-S [12]
uld return the correct result when the service is specified using ontology (a), but

describe services unambiguously by providing meta-data descrip-
tions for Web services, including mapping service properties (e.g.,
input and output parameters) to common concepts. The concepts
are defined in ontologies [13] on the Semantic Web [14] using the
Web Ontology Language (OWL) [15]. Web ontologies serve as the
key mechanism to globally define and reference common under-
standing in a Web-based distributed environment.

Semantic Web services in general and OWL-S specification in
particular are used throughout this study, as they provide a clear
formal model for service description, and there exists a consider-
able body of work for reference and comparison. While interesting
results were available for retrieval of non-Semantic Web services
[16], they lack formal semantics, making them insufficient for auto-
mated service composition. Therefore, we limit the scope of this
article to Semantic Web services.

2.2. Logic-based approaches

Logic-based approaches in service retrieval are based on reason-
ing over the semantic descriptions of Web services to match queries
and service properties. Service matchmakers, such as OWLS-UDDI
[9], Inter-OWL-S [4], Bae et al. [2], and SAM [8], match service adver-
tisements with queries by inferring the relations between their
underlying concepts classes [17].

Zaremski and Wing defined a widely-used classification of
matching degrees in logic-based software component matching
[18]. We assume a set of concepts related to a given query CQ ={

C1, C2, . . . , Cn

}
, and a set of properties related to a given adver-

tised service, CS =
{

C ′
1, C ′

2, . . . , C ′
m

}
. The categories include four

levels of matching:

• exact, which represents perfect semantic identity of the query
properties (e.g., input) with the service advertisement properties,
denoted as CQ ≡ CS,

• plugin, in which properties of the service advertisement are fully
contained in the concepts of the query, such that the query has
at least one concept which is more general than a corresponding

property of the service (CS � CQ),

• subsumes, in which concepts of the query are fully contained in
the properties of the service advertisement, such that some of the
service properties may not fully answer the query in the sense of
set-theory (CS � CQ), and
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disjoint, in which none of the properties of the service can be
related to any concept of the query (CS � CQ =∅).

Logic-based methods have two main drawbacks: limited
pproximation and the subsumption assumption. Approximate
esults depend on whether the concepts are related through some
et-hierarchy relations. This is not always the case in many real-
stic scenarios, and as a result, logic-based methods are prone to
ow recall. Fig. 1 exemplifies this problem using two ontologies
hat express geographical entities: ontology (a) depicts the WC3
asic-Geo ontology,1 in which a Spatial Thing concept represents a
uperclass for both longitude/latitude pair and an address. Ontol-
gy (b) depicts the MIT Simile project ontology,2 in which the exact
ame data structure is modeled by having the longitude/latitude as
n object property (a relation) of a real-estate concept (an iden-
ical concept of address). While the two ontologies express the
ame intention, logic-based methods would be able to retrieve
ervices that have Address parameters to queries that need a longi-
ude/latitude parameter using ontology (a), but would not be able
o infer similarity based on ontology (b).

The second drawback of logic-based approaches is rooted at the
ubsumption assumption, which dictates that subset concepts are
cceptable as substitutes of the parent concept. This may result in
nconditional acceptance of inaccurate results. For example, given
query that requires a Spatial Thing concept, a logic-based match-
aker would return a service that exhibits either a Point concept or

n Address concept as perfect matches (see ontology (a) in Fig. 1).
owever, there is a difference between the ontological aspects and

he engineering aspects of the matching in this case. A human pro-
rammer would still need to convert the service from Spatial Thing
o an Address, and might reject the notion of perfect match in this
ase.

The similarity measure suggested in this study is designed to
ddress these two drawbacks of logic-based approaches, namely
he limited approximation and the subsumption assumption. It
xtends the approximation scope to handle several ontology mod-
ling approaches. Our similarity measure also provides a gradual
pproach towards service similarity, ranking results according to
he distance edit, i.e., the amount of work required to adapt them
o a query. Our edit distance measure for calculating semantic and
ehavioral differences between an advertised and a requested ser-
ice can also explain matchmaking results to users.

Our work is also related to non-monotonic service similarity of
oia et al. [19], who found it to be more intuitive than text-based
ector space model retrieval using an experimental evaluation of
hree test cases and 30 people. Our study differs from [19] in two
mportant aspects. First, we use a different methodology: rather
han developing a theoretical similarity model and then evaluat-
ng it, we first found out empirically users’ similarity preferences
nd then modeled them. Second, we study the similarity between
omplex services, which include behavioral properties and general
elations between concepts.

.3. Hybrid approaches

The rigidness of logic-based methods led to the development
f hybrid matchmakers [17]. This approach augments logic-based

ethods with other matching methods, especially from the infor-
ation retrieval (IR) field. Works such as LARKS by Sycara et al.

20], OWLS-MX by Klusch et al. [1], iSPARQL by Kiefer and Bern-
tein [21] and Stroulia and Wang [22] introduce methods that

1 WC3 Basic Geo Vocabulary, http://www.w3.org/2003/01/geo/.
2 MIT Simile Project Location Ontology, http://simile.mit.edu/2005/05/ontologies/

ocation.
gents on the World Wide Web 9 (2011) 16–28

combine text-based similarity, type signature matching, and logic-
based matching of concept classes. Experimental evaluations done
by Mikhaiel and Stroulia [23] and by Klusch et al. [24] show that
hybrid approaches outperform logic-based approaches, and that
using a multitude of methods improves the performance of the
matchers.

Our work complements the hybrid approaches; the edit-
distance similarity measure can be employed as a sub-method in
a hybrid matchmaker, along with text-based and other matching
methods. Our method can be used as a fine-grained addition to
logic-based matching, providing a similarity measure which can be
explained to the user via ontological concepts. From the practical
standpoint of service matching, it is highly likely that embedding
our method within a hybrid approach would provide more precise
matches than our method alone for two reasons. First, mounting
evidence has shown that the combination of multiple matching
methods outperforms any single method. Second, our method takes
into account semantic relations as expressed in an ontology, which
may limit the recall and precision if the ontology is incomplete or
insufficient.

Our work also differs from other efforts in service matching
in its motivation and methodology. Our main motivation is to
understand people’s preferences in service similarity rather than
improve service retrieval using existing measures for precision and
recall. Knowledge about users’ similarity perceptions can be used
to enhance existing hybrid approaches by guiding benchmarks and
test cases for Semantic Web services matching such as OWLS-TC
[24].

3. Approximate service similarity

In this section we describe a schema for measuring similar-
ity between Web services. We first introduce the basic definitions
used throughout the paper. We then formalize a general model
for measuring the affinity between two service compositions by
estimating the edit distance between two compositions, i.e., the
number of changes required to bridge the gap between the com-
positions.

3.1. Service retrieval components

The basic components of service retrieval are operations. An
operation is a specification of an atomic function provided by the
service that performs a task which is not further divided. Opera-
tions are defined using a set of properties, which specify meta-data
about the functionality of the operation. In this study we use only
two types of properties: inputs and outputs.3 We formally define
an operation as follows:

Definition 1 (Operation, OP). An operation is a tuple OP ≡〈
URL, Props, label

〉
, such that

• URL is a uniform resource locator—a text string that uniquely
identifies the operation.

• Props is a set of properties, p1, p2, . . ., pn. Each property is taken
from a type domain: pi ∈ Input ∪ Output

• label : Props → O is a labeling relation that associates a property

from the set Props with a concept class taken from an ontology O.

We base our definition of ontology on OWL [15], the most com-
mon ontology language. We assume that we have a single ontology

3 For the sake of simplicity, we consider OWL-S effects as outputs and OWL-S
preconditions as inputs.

http://www.w3.org/2003/01/geo/
http://simile.mit.edu/2005/05/ontologies/location
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, which denotes a unification of all the ontologies in the service
etrieval framework.4

A service is defined as an identifiable set of operations with no
andatory information about the execution order of the opera-

ions. The behavior of a service is described using a composition. In
ur model, compositions are used to describe both queries and the
esults of the service retrieval processes related to these queries.

efinition 2 (Composition, Com). A composition is a directed,
cyclic and weakly connected graph Com ≡

〈
OP, Flows

〉
, where:

OP =
{

OP1, OP2, . . . , OPn

}
is a set of operations.

Flows ⊆ OP × OP is a set of directed data flows between opera-
tions.

A composition provides a limited description about the behav-
or of a set of operations by specifying precedence between the
perations. This view is inherently limited, as we do not specify
nformation about such items as the conditions in which some
recedence takes place, the data that is passed from one operation
o another, and state changes.

.2. Composition affinity

In this section we define a general model for analyzing and mea-
uring the affinity between any two compositions. Our model for
imilarity is based on counting the number of changes required to
odify one composition to another, much like the way edit dis-

ance is used in strings. Given two compositions, Com1 and Com2,
e say that Com1 is similar to Com2 if Com1 is augmented with
finite set of operations which imitate the functionality of Com2.
he augmenting operations are called virtual operations, as they
eflect desired functionality, which does not necessarily exist.5

To illustrate how the similarity measure is applied, consider our
unning example depicted in Fig. 2 (the underlying ontology is dis-
layed in Fig. 3). The two operations, a and b, differ in their input
nd output parameters:
Operation a: Find Organization receives an address and returns an
Organization, e.g., a company or a non-profit organization.
Operation b: Find Hospital receives a longitude/latitude and returns
a Hospital.

4 We assume that O is a single ontology, which is a combination of the origi-
al ontologies used to annotate the Semantic Web services. More background of
ntology merging and aligning can be found in Euzenat and Shvaiko [25].
5 This definition holds for operations as well, as they can be considered composi-

ions that include a single operation.
gents on the World Wide Web 9 (2011) 16–28 19

None of the two operations suits perfectly the query expressed in
the caption of Fig. 2. Operation a receives an Address concept, which
is common to both the query and the operation, but returns an
Organization. Furthermore, it has an extra input parameter. There-
fore, by adding an operation that transforms an Organization to a
Hospital, Operation a can be reused. Similarly, Operation b can be
used by adding an operation that transforms a longitude/latitude
concept to an Address concept. The certainty that such transfor-
mations are feasible depends on the properties of the ontological
relations between the two concepts. A “rational” human engineer
would choose the operation that requires the least amount of adap-
tation operations to implement the service defined in the query.
This is the intuition that guides our similarity measure.

Similarity is measured by calculating the certainty of the
inferred virtual operations. The certainty is derived from either the
structure of the ontology or the composition. Consider the ontol-
ogy model in Fig. 3. As there is a 1:1 relation between Address and
longitude/latitude, it is likely that a mapping operation from longi-
tude/latitude to Address can be constructed. However, the relation
between Agent and Address is 1:m, lowering the probability of a
successful transformation between these concepts. In the follow-
ing section we define a schema for evaluating the constructability
of virtual operations. We analyze the situations in which virtual
operations can be created and how the impact on similarity can be
assessed.

The basic tool for evaluating similarity is a constructor, a func-
tion that maps two comparable compositions to a set of virtual
operations.

Definition 3 (Constructor). A constructor is a function:

� : Com × Com → VOP1, VOP2, . . . , VOPn

characterized by two properties:

• type : � → {Set-hierarchy, Relation, Behavioral}assigns each con-
structor an affinity pattern type.

• � : � → R is a cost function that assigns a single cost value to
each specific construction.

The cost function, �, is calculated differently for each type of
constructor, as described in the following section. The similarity
definition (Definition 8) uses � as the basic building blocks in com-
paring several compositions retrieved for a query, preferring those
with the minimal cost.

4. Affinity patterns

We classify the possible constructors of virtual operations into
three semantic affinity patterns, which reflect possible inferences
over the ontology and the structure of the composition. Two con-
structors are semantic, i.e., they are based on semantic properties
of the underlying ontology that defines the operation’s parameters.
The third constructor is behavioral, as it is based on the structure
of the composition graph. In this section, the three affinity patterns
are defined and explained. We then define two properties of these
patterns: completeness and similarity.

4.1. Semantic affinity patterns

The main challenge in designing the semantic affinity patterns
is to provide a single frame of reference which is adaptable to var-

ious types of ontological relations, and specifically the following
relations:

• Set relations between concepts classes, such as OWL sub-class,
intersection, and union.
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Property relations, as in the OWL object properties and datatype
properties.

Semantic constructors are handled by substituting an operation
arameter concept with another concept. The construction cost is
s function of the semantic relation between the concepts. In what
ollows, we assume two given operations, OP1 and OP2, each with
single parameter of the same type (e.g., input or output), C1 and

2, respectively. The constructor is denoted by �(OP1, OP2). Section
.1.3, in which combining semantic patterns is discusses, includes
ases in which the operations have more parameters. The construc-
ion cost is based on the cardinality of the relational similarity [26]
etween concepts C1 and C2. The relation cardinality represents
he information content of the relation. As the number of instances
f the relation grows, so does the uncertainty of finding an ade-
uate assignment of these instances. When the cardinality of Rel is

nfinite, finding a probable assignment becomes impossible.
.1.1. Set hierarchy pattern
The set hierarchy pattern is concerned with affinity between

perations whose parameters are related by a set relation of sub-
lass, union, intersection, or restriction. As depicted in Fig. 4(a), an
peration whose input concept is Person can be simulated by an
 Relation

hierarchy and relation pattern.

operation whose input is the concept Patient, which is a subclass of
Person. We define two concepts, Ck and Cl. With no loss of generality,
let us refer to Cl as the input concept of the original composition. We
denote P(Ci) as the set of data-type and object properties that con-
cept Ci exhibits. We define the constructor cost for a single concept
as follows.

Constructor 1 (Set hierarchy pattern). The construction cost for
two operations OPl with Cl as a parameter and OPk with Ck as a
parameter of the same property (e.g., input or output), is defined
as:

�(�set(OPl, OPk)) = |P(Cl) ∪ P(Ck)|
|P(Cl) ∩ P(Ck)|

�

For example, consider the two concepts, Person and Patient,

defined in Fig. 3, where Patient is a sub-class of Person. The property
sets of the two concept classes are:

P(Person) = {Email,Phone,Address}
P(Patient) = {Health Insurance Number,Takes Drug,Email,Address,Phone}
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The construction cost function is calculated as the ratio between
he union and the intersection of the property sets:

(�set(OP1, OP2)) = 5
3

To better understand how the construction cost is calculated,
onsider the construction cost of a slightly different operation, for
hich the Agent and the Patient concepts are parameters. The size

f the intersection between the properties of the two concepts is 1
based on the property Has Address), while the size of the union is 5
based on the properties Has Address, Has Phone, Has Email, Takes
rug, and Health Insurance Number). Therefore, the construction
ost would be 5. This example shows how the construction cost
eflects the semantic distance between concepts. As the semantic
ifference between Agent and Patient is greater than the semantic
ifference between Person and Patient, constructing a composition
etween operations with these concepts would require a greater
umber of modifications, as reflected by the construction cost.

The set hierarchy pattern finds the cardinality of the relation
etween the two concepts based on the proportion of common
roperties between the concepts. The motivation behind this
esign is to cover all the types of OWL hierarchical set relations,
uch as subclass, union, and intersection. Furthermore, this pat-
ern relies on theoretical foundations, including Jaccard similarity
oefficient [27], similarity in semantic networks by Rada et al. [28],
eature-based similarity in description logic by Borgida et al. [29],
nd general cognitive theories about similarity by Tversky [30].

This pattern has some limitations. First, concepts that do not
ontain object or datatype properties will not come out as being
imilar even if set hierarchy relations are specified. Second, the
verall number of properties influences the construction cost. For
oncepts at lower levels of the class hierarchy and which inherit
any properties, the construction cost is expected to be higher

han that of concepts that inherit only few properties.

.1.2. Relation pattern
In this study, we investigated how users substitute operations

ased on general relations. For example, in Fig. 4(b), the original
omposition exhibit a Phone concept as input. The relation pattern
escribes the construction that substitutes the composition with
ne in which the input concept is a Person.

Relations can be interpreted in various ways. An overview on
elations in description logic was done by Kü sters and Bordiga for
31]. In this study, we refer to relations which are known in OWL
s bidirectional (i.e., non-functional) object properties. We assume
hat relations are parameterized by mandatory cardinality, e.g., two
lasses that have min n and max m object properties. For example,
n Fig. 3, a medical center has an unlimited number of patients, and
patient has a single medical center. We also assume that relations
annot have restrictions over the type of instances belonging to the
elation.

Let Cs and Cd be two arbitrary concepts that are related through
elation Rel(Cs, Cd). As object properties are binary, using two
oncepts is sufficient for defining the pattern and calculating the
ardinality of the relation. The virtual operation maps properties of
ource concept to properties of the related destination concept. We
se the colon mark (:) to denote the relation between an instance
on the left-hand side) and a concept class (on the right-hand side).

onstructor 2 (relation pattern). The cost function of the con-
tructor is derived from the cardinalities of the relation as follows.
�(�rel(OP1, OP2)) =
|{x : Cd | (y, x) ∈ Rel(Cs, Cd)}| × |{y : Cs | (y, x) ∈ Rel(Cs, Cd)}| �

The possible assignment of instances in the relation is the
artesian product of the assignments on both directions of the rela-
gents on the World Wide Web 9 (2011) 16–28 21

tion. Therefore, the relation pattern exemplified in Fig. 4(b), which
Cs = Person, Cd = Phone and Rel(Cs, Cd) = has has the cost function:

�(�rel(OP1, OP2)) = 3 · 4 = 12

The cardinality reflects the uncertainty of finding a specific
instance pair among all pairs linked by the relation. In the case
of the relation between Person and Email, where every email has
a single Person, finding a specific assignment of the relation relies
only on the number of emails a person has (up to 3 in our example).
Therefore the construction cost is 3, much less than the construc-
tion cost of finding an assignment of phone to person. Unlimited
maximal cardinality (e.g., 0 to n, where n is unbounded), yields an
infinite cost, since the average cardinality is infinite as well.

4.1.3. Combining semantic patterns
The possibly complex structure of ontologies and operations

requires special handling of cases with complex ontological struc-
tures or multi-parameter operations. In this section we define two
additional constructors: (1) the Min constructor, which handles
complex ontological structures, and (2) the multiple constructor,
which handles multi-parameter operations.

Concepts can be related indirectly, through other concepts and
with multiple types of relations. Consider, for example, the rela-
tions between Organization and Person in the ontology depicted in
Fig. 3. As the two concepts are not directly related, comparing two
operations which are based on these concepts is not feasible with
the patterns introduced so far. Furthermore, some concepts are
comparable even if they are related by a combination of different
ontological relations, such as Address and Organization.

In order to compare operations based on two concept classes
that are not directly related, the algorithm iterates over the possible
paths between these concepts in the ontology and selects the path
that minimizes the overall construction cost. The Min constructor,
defined below, reflects the minimal amount of work necessary for
adapting a composition to a query.

Definition 4 (Min Constructor). Let path =
{

�1, �2, . . . , �m

}
be

a sequence of constructors, starting at the source concept class Cs

and ending at the destination concept class Cd. We define the cost
function of the combined constructor as the sum of the constructor
costs along the minimal path (minpath), i.e., the path that satisfies
the following equation:

�(�min) = �(minpath) = min
pathi

∑

�j ∈ pathi

�(�j)

The Min constructor finds the shortest weighted path, where the
cost is the sum of weights on the edges. For example, evaluating a
construction for two operations, OP1 with parameter Person and
OP2 with parameter Contact Method in the ontology depicted in
Fig. 3, could be done in two ways:

1. Using the Phone concept, with cost � = 12.
2. Using the Email concept, with cost � = 3.

Therefore, the cost of the construction is: �(�min(OP1, OP2)) = 3
The second constructor is the multiple constructor, which han-

dles the common case in which an operation includes more than
one parameter. To evaluate the similarity of the whole operation,
we define a cost function over the combination of the constructors
handling the parameters of the operation. As reusing the existing

operation requires adding virtual operations that would transform
all necessary parameters, we define the combined cost as the sum of
the costs of all the constructors. We define an orphan parameter as a
parameter which exists in one operation but does not have a coun-
terpart finite construction cost parameter in the other operation.
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4.4. Similarity definition

In this section, we define a measure of similarity, which is
based on the construction cost of affinity patterns. The construc-
ig. 5. An example of applying the behavioral pattern: composition a is matched
ith composition b by simulating b with a. If such a simulation exists, then the

imilarity is defined by its construction cost.

o comply with the definition below of the behavioral pattern, we
et the price of an orphan parameter to 1. The multiple constructor
s defined as follows:

efinition 5 (Multiple constructor). Let ConOPk
=

�1, �2, . . . , �m

}
be a set of constructors handling multiple

arameters 1 . . . , m of operation OPk. Let np be the number of
rphan parameters (parameters which appear in one of the opera-
ions and do not have a counterpart in the second operation). We
efine the cost of the multiple construction as the sum of the costs
f ConOPk

:

(�multiple(OPk)) = n(p) +
∑

�i ∈ ConOPk

�(�i)

Consider the two operations in Fig. 2 (page 2). The construction
ost between Address and longitude/latitude is 1, and the construc-
ion cost between Hospital and Organization is 3. The parameter
amed “Type” is orphan, as it does not have a counterpart. There-

ore, the overall construction cost is 1 + 3 + 1 = 5.

.2. Behavioral pattern

The behavioral pattern is used to compare compositions rather
han single operations. It evaluates inexactness stemming from the
tructure of the composition graph rather than from the semantic
roperties of the operations. For example, the behavioral pattern
valuates the similarity of compositions that share some of the
perations but not all of them.

Fig. 5 depicts two compositions, where composition b has
ne excessive operation, OP3, compared with composition a. The
imulated composition is defined as the intersection of the compo-
itions. It contains the operations shared by all the compositions.
n our example, the shared operations are OP1 and OP2. An empty
ransition operation, denoted VOP� and defined below, replaces
perations that originally connected existing operations and were
emoved by the construction. For example, OP3 connected OP1 and
P2 in composition b. VOP� serves as a channel for delivering infor-
ation between operations without affecting their interface.
We define the virtual operation, VOP�, using its constructor, ��:

efinition 6. (Empty Transition Virtual Operation Constructor -
�)
��(OPi, OPj) =
{

OPi, OPj, VOP�
}

s.t.
VOP.in = OPi.out ∧ VOP.out = OPj.in
gents on the World Wide Web 9 (2011) 16–28

The cost of VOP� is arbitrarily set to 1. Therefore, the cost of
the construction is the graph edit distance between the two orig-
inal compositions and the simulated composition. The graph edit
distance is defined as the number of node and edge deletions or
insertions necessary to transform one graph into another [32]. It
is a simple measure of graph similarity, similar to edit distance on
strings. If the graphs are identical, edit(Com1, Com2) = 0. If the graphs
are disjoint, i.e., they do not contain any common subgraph, then
edit(Com1, Com2) = | Com1 | + | Com2 |. In Fig. 5, the edit distance is 1,
as one operation was removed through the construction. Finally,
we define the constructor cost for two compositions:

Definition 7. Composition construction cost Given a complex
construction process �̂(Com1, Com2), which consists of a set of
lower-level constructors, �1, �2, . . ., �n, the overall construction
cost is:

�(�̂(Com1, Com2)) =
∑

i=1..n

�(�i)

4.3. Construction cost properties

We now prove that the construction cost � is a distance metric.
Proving this characteristic has several advantages. First, learning
algorithms such as K-means, nearest-neighbors classifiers and ker-
nel algorithms (e.g., SVM) require a distance metric. Proving that
the cost is a distance metric is useful for various applications
that rely on learning algorithms, including indexing by service
clustering and automatic categorization of services. Second, some
valuable distance metric properties of the construction cost are
inherited, including insensitivity to the order in which constructors
are applied to a composition.

Theorem 1. The construction cost function is a distance metric.

Proof. The construction cost � satisfies the four properties of a
distance metric as follows:

1. Non-negativity: � is a sum of relation set cardinality, which is
always non-negative. Therefore �(�) ≥ 0 for every �.

2. Identity: Applying a constructor to the same composition will
yield an empty set of virtual operations. As the composition
construction cost function is a sum of the virtual operations,
�(�(Comi, Comi)) = 0.

3. Symmetry: By the definition of the constructors, they are insen-
sitive to order, such that the following holds for each type of
constructor: �(Com1, Com2) = �(Com2, Com1). Thus, their costs
are equal too.6

4. Triangle inequality: �(�(x, z)) ≤ �(�(x, y)) + �(�(y, z)) Let us
assume that there exist three compositions, x, y and z, such
that �(�(x, z)) > �(�(x, y)) + �(�(y, z)). According to Definition
4, �min is the construction that yields the minimal cost. We
can construct �′ = �min(x, y) ∪ �min(y, z), with �(�′) ≥ �(�(x,
z)). Because this construction is feasible, it would be chosen
as the minimal cost construction, such that, �′ = �min(x, z), and
�(�min(x, z)) = �(�′). Therefore, �(�(x, z)) ≤ �(�(x, y)) + �(�(y,
z)). �
6 Note that the similarity function contains different weights to superclass and
subclass relations, which violates similarity. However, the proof given here relates
solely to the construction cost. In practice, when implementing the similarity func-
tion, weights are applied after the construction cost is calculated.
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Table 1
Affinity pattern weights. The weights were determined empirically such that higher
weight indicates a higher level of similarity between compared objects.

Pattern Weight (ω)

Set-Hierarchy (subclass) 3.2
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Table 2
Definitions of context classes, each representing groups of concepts with a particular
relation to the anchor concept, Č.

Context class of Č Definition

Equivalents {Ci ∈O | Ci = Č}
Types {Ci ∈O | Ci : Č}
Subclasses {Ci ∈O | Ci � Č}
Superclasses {Ci ∈O | Č � Ci}
Intersections {Ci ∈O | Č � Ci � Cj}
Unions {Ci ∈O | Č � Ci � Cj}
Datatype properties {Pi ∈O | Pi ∈ P(Č)}
Set-Hierarchy (superclass) 4
Relation 2.5
Behavioral 3.8

ion cost is a measure of dissimilarity, such that a high cost reflects
great difference between compositions. In many practical sce-

arios, however, users find more intuitive measures of similarity
han measures of dissimilarity. For example, in Web search engines,
igh ranked items are expected to be more similar to the query
han low ranked items. Thus, we wish to define similarity with two
oals in mind. The first goal is that the similarity definition reflects
heoretical principles in perceptions of similarity, e.g., information-
heoretic methods.

The second goal is that the similarity reflects our empirical find-
ngs, described in detail in Section 5. We have found that while the
onstruction cost is linear with the number of changes required in
he construction process, this is not how users perceive similarity.
herefore, we have designed a similarity measure that reflects this
henomenon using a mathematical model, which is both simple to
nalyze and intuitive for users and application developers.

Formally, similarity is defined as a function that accepts two
ompositions, Com1 and Com2, and returns a number in R:

efinition 8 (Similarity). The similarity between two composi-
ions, Com1 and Com2, is defined as follows:

im(Com1, Com2) = � −
∑

�i

logωi
(1 + �(�i))

The similarity function assigns the constant � to identical com-
ositions, which have a construction cost of � = 0, and a decreasing
alue to compositions with incresing construction costs. � is used
o parameterize the similarity value in a way that is intuitive to
sers. For example, to define the top similarity score to 5, as we did
hen analyzing the experimental results, we set � = 5.

The weight parameter, ω : type → R, is used to parameterize
he cost function according to the type of the pattern. The weight
arameter is the outcome of analyzing our empirical results, which
evealed different gradients of the similarity function for different
atterns. The weights were computed by performing linear regres-
ion analysis over the empirical results presented in Section 5.2
uch that the similarity is transformed into a linear function. Table 1
hows the weight values of the different affinity patterns. Based
n our empirical results, we split the weight of the Set Hierarchy
attern into a superclass case and a subclass case, as specified in
able 1.

Our definition of similarity is inspired by information-theoretic
ethods developed by Lin [33], Resnik [34], and Hau et al. [35]. In

wo separate studies, Lin and Resnik suggested associating a prob-
bility p with concepts in an ontology subclass hierarchy to denote
he likelihood of encountering an instance of a concept class C. If
1 � C2 (i.e., C1 is a sub-class of C2) then p(C1) < p(C2). The informa-
ion content of a concept C is then defined as a function over the
robability of its instance likelihood. Hau et al. extended this notion
o semantic Web service matching by defining the information car-
ied by each concept as its set of properties and comparing the sets

35]. We further extend the notion of information-theoretic sim-
larity in two ways: First, based on the composition structure, we
xtend semantic similarity to include behavioral similarity. Second,
e extend the possible set of semantic relations for similarity with

bject properties.
Object properties {Ci ∈O | ∃R, R(Č) = Ci}
Composed {Ci ∈O | ∃C1, C2, . . . , Cn, C1 ∈ Class(C2) . . . Cn ∈ Class(Č)}
Unrelated {Ci ∈O | Ci /∈ Class(Č)}

4.5. Completeness

In this section, we prove the completeness of the similarity mea-
sure. We show that the set of affinity patterns covers all possible
relations between compositions, such that the set of affinity pat-
terns returns a similarity value for any arbitrary composition. We
start by proving that the set of semantic patterns is complete, i.e.,
that we do not need any other pattern to compare any two opera-
tions based on their parameter semantics. We show how any two
concepts can be compared by our method. We do so by demonstrat-
ing that all the types of semantic relations within an ontology are
covered by one of the semantic affinity patterns or a combination
of them. We then prove that the behavioral pattern is complete.
Finally, we show that graph edit distance, which is equivalent to
our behavioral pattern method, is computable on any arbitrary
compositions.

Theorem 2. The set of affinity patterns is complete.

Proof. For any given concept, Č, we define a set of context classes,
each of which defines a subset of concepts in O, according to their
relation to the concept. Table 2 contains the formal semantics of
each of the relations within our definition of the ontology. Each
concept in the ontology is classified to one of the context classes.
For example, all the concepts equivalent to the concept Č are clas-
sified into the Equivalents context class. We now prove that the
set of semantic affinity patterns satisfies all the types of relations
between any two concepts.

All the classes except the Composed class in Table 2 cover all the
axioms of the ontology. Theorizing on the ontology as a graph [15],
these classes define all the direct relations between two concepts.
A concept which has an indirect relation to the anchor concept is
defined through the Composed class as a concept which is related to
the anchor concept through a set of concepts C1, C2, . . ., Cn. The con-
text class Unrelated defines all the concepts which are not related
through any other context class (including indirectly, through the
composed class).

Each one of the context classes is covered by an affinity pattern
as follows:

1. The set-hierarchy pattern covers all the cases of equivalents,
subclasses, superclasses, intersections and unions.

2. The relation pattern covers all the cases of object and datatype
properties (referred to in this paper as properties and relations,
respectively).

3. Pattern composition covers all the cases of the composed pat-
tern, where concepts are not related through a single relation.

As the construction cost is a distance metric, the composition
pattern returns the maximal similarity value.

4. Unrelated concepts are not similar, and thus cannot be bridged
by a construction process.
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Table 3
Experiment test cases, according to the pattern they were assigned to explore and
ontology domain

Pattern E-commerce HR Travel
4 E. Toch et al. / Web Semantics: Science, Services

Therefore, the set of semantic affinity patterns is complete. A
roof regarding the completeness of the behavioral pattern is pro-
ided in Appendix A. �

. Evaluating affinity patterns

We have evaluated the affinity patterns empirically, with the
bjective of predicting the way humans would benefit from
etrieval systems that utilize the patterns we defined. To this end,
e designed and administered a questionnaire, in which subjects
ere asked to assess the similarity of given models.

This study was inspired by the seminal work “Features of
imilarity” by Tversky [30], which suggested a general model of
ognitive similarity assessment. The study of Budanitsky and Hirst
36], which compared WordNet [37] similarity measures, and the
tudy of Bernstein et al. [38], which examined an ontology for ser-
ice description, have shown that in a setting of ontology-based
nowledge systems, human judgment provides the best assess-
ent of the quality of a measure for affinity between concepts.

.1. Method

The evaluation was done via a Web-based survey, in which par-
icipants were asked to assess the relation between a set of query
nd composition pairs. The pairs were assessed both quantitatively,
y providing a grade for the similarity, and qualitatively, by provid-

ng a detailed explanation for various aspects of the similarity. The
urvey consisted of three stages. At the first stage, participants sup-
lied demographic information, including their age, years of study,
nd education. At the second stage, participants provided feedback
n the similarity of query and composition pairs. At the final stage,
articipants reviewed their initial assessment and could modify it.

.1.1. Research population
The research population included 127 participants, of whom

5% were studying towards their masters or doctoral degrees, while
5% were in their 5th semester of studying towards their bache-

or degrees. Of the participants, 70% were students in the Faculty
f Industrial Engineering and Management at the Technion, Israel

nstitute of Technology, while the other 30% were students of the
echnion (tm)s Faculty of Computer Science. All participants were
tudents in a course teaching analysis and specification of informa-
ion systems. Filling in the questionnaire was defined as a bonus
ask for the course, crediting the participants with 3% of the final

Fig. 6. An example of two test cases on the same query: “F
Set-hierarchy 4 4
Relation 5 5 4
Behavioral 3 2

course grade. The grade was based on the level of details supplied
as answers to all the required questions.

All the participants had at least one basic and one advance course
in software engineering, and they also took at least one course in
systems analysis. Hence, our research population is a satisfactory
proxy to software engineers and systems analysts, who are the
potential users of service composition. One of the characteristics of
experienced software engineers and system analysts is their abil-
ity to intuitively evaluate semantic and structural approximations.
For our participants, who were novice users, these skills were less
developed.

5.1.2. Similarity assessment
Participants were presented with a sequence of 12

query/composition pairs. The pairs were randomly selected
and ordered from a set of 30 test cases from three domains:
e-commerce, Human Resources-HR, and travel. The concepts
used in each test case were based on a single OWL ontology. The
ontology was not presented to the participants in order to evaluate
intuitive usage of the system. We adjusted the number of pairs
assigned to each user according to a reasonable expected burden,
as participants were asked to provide detailed qualitative feedback
on each pair. Table 3 describes the exact distribution of the test
cases, domains and patterns.

We used OWLS-TC, a benchmark for semantic service retrieval
[24], to construct the test-cases. Test cases were designed using
well known domain ontologies from OWLS-TC [1]. We looked for
test cases that included sufficient semantic and behavioral variance.
Each set of test cases included several compositions, which were
identical except for an unrelated variable: a single change one of the
semantic or behavioral properties of the composition with regard

to the query. For example, in Fig. 6, test-case 2 includes an ISBN
input rather than a Title input. The composition that was identical
to the query was called the “baseline” composition. This way we
were able to control all the elements of the compositions except
for the independent variable and could evaluate how similarity is

ind the price of a book according to the book’s title”.
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erceived. Test-case 1 in Fig. 6 is a baseline test-case. All the test-
ases were assessed by two fellow researchers, which were not the
uthors of this article.

Fig. 6 depicts a sample of a query and two compositions. Queries
ere expressed using a short textual description to simulate usable

cenarios in service composition by end-users [39]. Compositions
ere expressed by Object-Process Diagrams, the visual formalism

f OPM (Object-Process Methodology) [40] to define the composi-
ions in an exact yet usable and readable format.

Test case grading was based on a Likert scale of 1 to 5 for each
ne of the following parameters:

Usefulness: The extent to which the model can be used to imple-
ment the query.
Completeness: The extent to which the model meets all the query’s
requirements.
Exactness: The extent to which the model contains the right
amount of elements, i.e., that the model contains neither exces-
sive nor missing elements.

The first parameter, usefulness, measures the correspondence
etween the query and the composition in the context of reuse.
he two other parameters measure the correspondence in a more
eneral context. Exactness and completeness overlap, as an exact
atching is also a complete matching. However, we wanted to

ain a more subtle distinction between a situation in which the
omposition contains excessive elements and a situation in which
he composition does not contain all the necessary elements. The
ompleteness parameter distinguishes between these two cases.
articipants were asked to provide one open-ended explanation
o describe their grading and another open-ended explanation for
escribing the changes they would make to the composition to
ake it more similar to the query.
Each set of compositions met the following criteria:

At least one composition answers the given query perfectly. We
denote this composition as the baseline composition.
At least one composition has a minor difference with respect to
the query.
At least one composition has a major difference with respect to
the query.

.2. Results

The results are organized in two categories. First, we looked at
eneral characteristics of service similarity, such as how various
arameters, e.g., usefulness and exactness. Second, we evaluated
ach affinity pattern. We measured the statistical significance of the
esults by comparing the scores for different test cases to the base-
ine composition. An unpaired t-test shows that the score sets for all
he test-cases were statistically significant (p < 0.03). Naturally, the
cores for the baseline composition are not maximal, since when it
omes to human judgment, there were different user perceptions of
he baseline test cases. We attribute some of the variance to the fact
hat queries were represented in text, while results were visually
epresented using diagrams. However, for each of the test cases, the
sers gave the top scores to the baseline, and the score variance for
he baseline case was significantly lower compared with the other
est cases.

The similarity measure is modeled by approximating the math-
matical model according to the empirical results. We evaluated

everal similarity models using the empirical results by looking at
he minimum of the average difference between the predictin of the
andidate model and the experimental results. The final model is
ompared with the users’ 1-5 Likert scale by parameterizing the
imilarity definition (Definition 8), such that the maximal simi-
Fig. 7. Set-hierarchy pattern similarity assessment. The X-axis represents the cost
construction, based on the set hierarchy distance. The Y-axis represents the similar-
ity. The bars are the averaged results over all the test cases, and the line represents
the prediction of our model.

larity prediction constant, �, was set to 5. This parameterization
allows model predictions to be compared directly with the empir-
ical results. Linear regression was used to find the pattern weights
presented in Table 1 (predictions and results were transformed to
a linear function to compute the regression).

5.2.1. Parameter grading
The correlation between the three parameters, completeness,

exactness and usefulness, is significant (Pearson correlation of
0.93). Participants tended to give higher values to usefulness, which
scored an average of 3.2 vs. 3.03 of exactness and 3.07 of complete-
ness. Nevertheless, no statistical significance was found between
the different criteria. The textual feedback provided some insight
into an explanation of this phenomenon. When describing their
grading, the participants tended to base their feedback on the exist-
ing aspects of the composition. They thoroughly described the
differences between the composition and the query in terms of
missing or excessive elements, different process orders, and dif-
ferent interfaces. In describing improvements, participants were
creative, specifying new operations and data structures, and relat-
ing them to the existing composition using relations, generalized
concepts, and specific concepts.

5.2.2. Set hierarchy pattern
The analysis of the set hierarchy relations yields a clear pattern,

shown in Fig. 7. Each column in the graph stands for the average
score (of all parameters) given by participants for all the test cases
related to the set hierarchy pattern. Each X-axis value stands for a
given set hierarchy distance. The results are ordered according to
their subset distance, which is their location in the class hierarchy.
For example, column 2 (sub) indicates test-cases in which the vari-
able concept is a subclass (more specific) by two hierarchy levels
than the baseline.

The average score by the hierarchical distance form a bell pat-
tern, where the highest score for completeness, exactness and
usefulness, is received for the baseline query/composition pairs.
The difference between more general results becomes less sig-
nificant after the initial difference from the baseline, so that the
average score of the 1 (superclass) set and the 2 (superclass) set are
almost identical. Our results show that similarity between concepts
and their superclass concepts is larger than between concepts and
their subclass. We model these results by setting a larger weight to

superclasses (ω = 4) than to subclasses (ω = 3.2).

5.2.3. Relation pattern
The relation pattern evaluation is presented in Fig. 8. Each col-

umn represents an average score for a given relation cardinality
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ig. 8. Relation pattern similarity assessment. The X-axis represents the cost-
onstructions, based on the set relation cardinality. The Y-axis represents the
imilarity. The bars are the averaged results over all the test cases and the line
epresents the prediction of our model.

alue, averaging all relevant relation-pattern results for all users,
ll test-cases and all parameters. The baseline column represents
he results for concepts that correspond directly to the query con-
epts. Columns with higher construction cost represent concepts
hat are related to the query concepts with higher cardinality. For
xample, a query that contains a book concept and a composition
hat contains an ISBN concept are related by 1:1 relation, which is
isplayed as a construction cost of 1. The last column, marked by
he ‘4.7” label, represents a set of several composition/query pairs
or which multiple cardinalities were presented.

The results show a decline in the average scores as the car-
inality grows. The baseline yields the highest similarity values,
hile higher cardinality yields lower similarity. The negative slope

f the curve becomes moderate as the cardinality grows, with good
orrespondence to the similarity prediction. We did not find a rela-
ion between the direction of the relation and similarity. Based on
he qualitative analysis of the written explanation written by the
articipants, we concluded that participants estimated similarity
ccording to the probability of relating two instances of concepts,
egardless of the relation direction.

.2.4. Behavioral affinity pattern

Fig. 9 presents the results for the behavioral similarity pattern.

he X-axis represents the graph edit distance between the compo-
ition and the query. The baseline column represents compositions
hat are functionally equivalent to the query. The 1 set represents a
ingle edit, whereas the 2 set represents two edits. Test cases with

ig. 9. Behavioral pattern similarity assessment. The X-axis represents the graph
dit distance between the composition and the query, and the Y-axis represents the
imilarity.
Fig. 10. Comparing logic-based similarity with our definition of similarity.

a larger number of edits were not included in the study, as they
were hardly usable and self-explanatory. The Y-axis represents the
similarity score over all the test cases, all the parameters, and all
the participants.

Behavioral similarity provided a higher level of approximation
in comparison to semantic approximation. We explain this result by
the relative simplicity of implementing changes to operation order
where operations are considered “black boxes”, with no assump-
tion on their state.

5.2.5. Discussion
The results raise several questions regarding approaches to

service similarity. For example, logic-based results assign equal
importance to plugin (more specific) and to exact (baseline) results
[17], because more specific results follow the axioms of the gen-
eral results. According to our empirical results, human participants
perceive specific results as different from exact results. This is
depicted in Fig. 10, where the Y-axis represents some abstract sim-
ilarity and the X-axis represents the specification dimension. The
difference starts with more specific results, through the baseline
results (identical to the query), and ending with the more general
results. Moreover, we discovered that human participants perceive
a “softer” notion of similarity than that defined by logic-based
methods [9,24]. This observation is apparent also from evaluating
the contexts in which humans judge similarities. In the context
of reuse, participants relaxed their similarity definitions and were
more forgiving towards inexact results.

Another significant result refers to the relation pattern. Human
participants perceive property relations as valid means for approx-
imation. The results show that there is a relation between service
similarity and the cardinality of the relation. As far as we know, this
is the first time such a relation is reported.

Our results have several implications for designing service
retrieval applications. First, the results can be used to create better
evaluation benchmarks, which take into account people’s percep-
tions with regard to the precision and recall of retrieval algorithms.
Service retrieval similarity is perceived like the analogous notion
in the field of information retrieval [25,34]. We believe that this
result demonstrates how information retrieval techniques, such as
latent semantic indexing, become relevant to service retrieval. Soft
similarities measures can also be used to create new types of appli-
cation for semantic Web service retrieval, including recommender
systems, service filtering, and service classification.

Finally, the results provide hints regarding the type of ser-
vice retrieval applications users might find usable and intuitive.
Current service retrieval approaches are based on the intention
of being used in a fully automated environment, which prompts

crisp notions of similarity. However, the soft notion of similarity
found in our study suggests using service retrieval in user-facing
applications, including search engines, ranking compositions, and
mobile application markets, such as Apple’s App Store and Google’s
Android Market.
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. Implementation

To provide a proof-of-concept of our model, we implemented
arts of the similarity measure defined in this study in an
xisting Web-based search engine for Web services named OPOS-
UM (Object-PrOcedure-SemanticS Unified Matching).7 OPOSSUM
rawls the Web for WSDL and OWL-S descriptions, making them
etrievable using simple text queries [41]. OPOSSUM supports the
atterns that were analyzed in this study, except for the behavioral
attern.8

As Fig. 11 demonstrates, users interacting with OPOSSUM are
resented with a GUI that provides them with experience simi-

ar to a common search engine. Queries for service retrieval and
omposition are entered using a query language with which users
escribe service properties and their order of execution. Results

nclude single operations as well as compositions, and are ranked
ccording to the similarity measure.

The OPOSSUM search engine contains several additional tech-
iques beyond those described in this study, including setting a
hreshold for similarity retrieval and an internal index for compo-
ition representation, a query parser, and a query optimizer. While
uery response times and time complexity were beyond the scope
f this paper, OPOSSUM has sub-linear query response time due to
n indexing mechanism.9 The system is based on MySQL 5.0 as a
atabase server, Apache Tomcat as a Web application server, and

he Java programming language.

7 OPOSSUM was not used for the user study, and was implemented mainly to
rovide a proof-of-concept of the theoretical model.
8 The code of OPOSSUM is distributed under open-source license, and can be

ownloaded from http://projects.semwebcentral.org/projects/opossum/.
9 OPOSSUM received the first prize for query response time in the Semantic

ervice Selection contest (http://www-ags.dfki.uni-sb.de/klusch/s3). At the same
ontest, OPOSSUM received the 5th place in the average precision results.
ngine was updated with the semantic similarity patterns defined in this study.

7. Conclusions

This study provides an empirical and theoretic basis for re-
evaluating similarity measures for semantic Web services. As far
as we know, this is the first study in which paradigms of ontology-
based service retrieval were examined with human participants on
this scale. The results enabled us to identify three affinity patterns
that capture the essence of similarity between service composi-
tions:

1. Set hierarchy pattern.
2. Relation pattern.
3. Behavioral affinity pattern.

We have proved that the list of affinity patterns is complete,
under the assumption that services are fully described using a
restricted ontology language. While the first pattern formally
defines a notion of similarity already discussed in the semantic Web
service composition literature, the two other patterns define new
notions of similarity.

We have shown that humans take a more fine-grained
approach when assessing similarity than predicted by logic-based
approaches. This difference may provide some explanation of the
slow adoption rate of automatic service composition paradigms
[17]. Our similarity measures exhibit some desired properties, such
as explainability, as each similarity-based decision can be analyzed
and explained to the user, based on the underlying ontology.

We are currently extending the model suggested in this paper
in several directions. First, we work on relaxing some of the restric-
tions of this study, such as supporting only a single ontology.
Second, we work on ranking compositions according to usability
and preciseness. Finally, empirical analysis of similarity measures

for service retrieval give rise to several interesting research ques-
tions that still remain open:

• Investigating how ontology modeling patterns affect service sim-
ilarity.

http://projects.semwebcentral.org/projects/opossum/
http://www-ags.dfki.uni-sb.de/klusch/s3
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Analyzing how usage scenarios (e.g., ad hoc vs. design-time ser-
vice composition) and user type (i.e., engineers vs. end-users)
affect the perception of similarity.
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ppendix A. Behavioral pattern completeness

emma 1. The behavioral pattern can compare any two arbitrary
raphs.

roof. We will prove this property by presenting an algorithm
hat compares any two arbitrary graphs. We then show that the
lgorithm is identical to the cost construction estimation on com-
ositions.

Let Ga and Gb be two directed graphs of type G =
〈

V, E, l(V)
〉

,
here V is a finite set of nodes, E ⊆ V × V is a set of edges, and l(V)

s a function that assigns unique labels to vertices. Let us compare
he graphs using the following algorithm:

. Compute the set of common vertices: Va ∩ Vb. The set is always
computable as V is finite and vertices can be uniquely identified.

. Compute the set of common edges: Ea ∩ Eb. The set is always
computable as every edge can be uniquely identified by two
vertices.

. Compute the edit distance: d = | Va | + | Vb | − | Va ∩ Vb | + | Ea |
+ | Eb | − | Ea ∩ Eb |.

As the composition nodes (operations) are directed graphs,
hich are uniquely identifiable using their URL, graph, edit distance

s computable on any arbitrary compositions. As the construction
ost on composition is the graph edit-distance, we conclude that
he behavioral pattern is complete for any arbitrary compositions.
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