
2

A Semantic Approach to Approximate
Service Retrieval

ERAN TOCH and AVIGDOR GAL
Technion - Israel Institute of Technology
IRIS REINHARTZ-BERGER
Haifa University
and
DOV DORI
Technion - Israel Institute of Technology

Web service discovery is one of the main applications of semantic Web services, which extend stan-
dard Web services with semantic annotations. Current discovery solutions were developed in the
context of automatic service composition. Thus, the “client” of the discovery procedure is an au-
tomated computer program rather than a human, with little, if any, tolerance to inexact results.
However, in the real world, services which might be semantically distanced from each other are
glued together using manual coding. In this article, we propose a new retrieval model for seman-
tic Web services, with the objective of simplifying service discovery for human users. The model
relies on simple and extensible keyword-based query language and enables efficient retrieval of
approximate results, including approximate service compositions. Since representing all possible
compositions and all approximate concept references can result in an exponentially-sized index,
we investigate clustering methods to provide a scalable mechanism for service indexing. Results
of experiments, designed to evaluate our indexing and query methods, show that satisfactory ap-
proximate search is feasible with efficient processing time.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online Infor-
mation Services—Web-based services

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Web service, semantic web, service retrieval, ontology

ACM Reference Format:
Toch, E., Gal, A., Reinhartz-Berger, I., and Dori, D. 2007. A semantic approach to approximate ser-
vice retrieval. ACM Trans. Intern. Tech. 8, 1, Article 2 (November 2007), 31 pages. DOI = 10.1145/
1294148.1294150 http://10.1145/1294148.1294150

Authors’ addresses: E. Toch (contact author), A. Gal, D. Dori, Technion, Israel Institute of Technol-
ogy, Technion City, Haifa 32000, Israel; email: erant@tx.technion.ac.il; I. Reinhartz-Berger, Haifa
University, Mount Carmel, Haifa 31905, Israel.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1533-5399/2007/11-ART2 $5.00 DOI 10.1145/1294148.1294150 http://doi.acm.org/
10.1145/1294148.1294150

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 2, Publication date: November 2007.



2:2 • E. Toch et al.

1. INTRODUCTION

Web services are distributed software components accessed through the World
Wide Web. They are considered first-class objects to be reused and combined in
order to implement business processes. Semantic description of Web services
(known as semantic Web services) was proposed in an attempt to resolve the
heterogeneity at the level of Web service specifications (including naming of
parameters and a description of the service behavior), and to enable automated
discovery and composition of Web services. Using languages such as OWL-S
[Ankolekar et al. 2001], Web services are extended with an unambiguous de-
scription by relating properties such as input and output parameters to common
concepts, and by defining the execution characteristics of the service. The con-
cepts are defined in Web ontologies [Bechhofer et al. 2004] which serve as the
key mechanism to globally define and reference concepts.

A major portion of the research involved in semantic Web services was de-
signed to be used in the context of automatic service composition [Medjahed
et al. 2003; Cardoso and Sheth 2003]. In automatic composition, the user pro-
vides a description of a service requirement, and a composition engine aims
at satisfying the requirement by planning a valid composition of services, re-
sulting in an operational application. Most composition engines use logic-based
proof inferencing, relying mainly on concept hierarchies as a means for provid-
ing approximate matching of services [Paolucci et al. 2002; Klusch et al. 2005].

In real-world settings, the process of service composition may be of an ex-
ploratory nature rather than one of planning (in the AI sense). In order to
generate an executable composition, all the requirements assigned to the com-
poser must be fulfilled. It is often the case that only partial solutions to composer
requirements exist, as Web services are created autonomously without any a
priori knowledge of their intended use. Furthermore, composer requirements
may not be well defined; rather, they may be driven by the availability of Web
services. For example, budgetary constraints may limit the scope of available
services, causing the user to compromise and use only affordable Web services.
This type of usage requires composition and selection of partial services which
are not well suited for handling by logic-based methods.

In an attempt to support exploratory composition, an engineering approach
we advocate in this work calls for approximate service retrieval, followed by
“gluing” services together using some additional programming work. Such an
approach has the benefit of using existing services for increased reusability,
while limiting the number of required services, since rewriting the missing code
is always an option. Naturally, a Web service composer is intuitively interested
in finding the most similar composition for her needs, thus reducing the amount
of needed code. Therefore, there is a need for ranking search results according
to the amount of required modifications for their utilization. Furthermore, as
exploratory composition requires several iterative sessions, the response time
of the query processor is crucial.

In this article, we present an efficient method for semantic indexing and
approximate retrieval of Web services. The search engine relies on graph-based
indexing in which connected services can be approximately composed, while
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graph distance represents service relevance. Taking advantage of semantic Web
services, the query interface translates a user’s query into a virtual semantic
Web service, which in turn is matched against indexed services. Semantic Web
services are indexed in a service base that provides fast retrieval of individual
services and approximate composition of multiple services. The service base is
constructed using an algorithm [Toch et al. 2005] which classifies service
properties and associated ontology concepts according to their relevance to the
service description. The algorithm provides service ranking that is based on the
certainty of matching a query. The contributions of this research are threefold.

—At the conceptual level, we define a new exploratory model for service compo-
sition which is aimed at human users, allowing them to query a service base
using a simple and extensible query language in an interactive way.

—At the semantic level, we extend current service composition approaches to al-
low approximate compositions: compositions that require additional manual
effort. An approximate composition is accompanied by a ranking mechanism,
based on an estimation of the required manual effort. Manual effort is esti-
mated using partiality of the composition and its overall semantic distance.

—At the computational level, we present a sublinear service retrieval algorithm
by using a two-level service index of concepts, services, and compositions. We
use semantic clustering techniques in order to supply a compact representa-
tion of the index.

To demonstrate and evaluate our results, we have developed OPOSSUM
(Object-PrOcess-SemanticS Unified Matching), a search engine for Web ser-
vices which is based on the methods presented in this article, including approx-
imation methods based on semantic and procedural similarity. Experimental
results designed to evaluate our indexing and query methods show that satis-
factory approximate search is feasible with efficient processing time.

The article is organized as follows. Section 2 presents a case study which
will be used as a running example throughout the article. Section 3 describes
the data model for service specification. Section 4 describes the syntax and
semantics of the query language. Indexing methods for efficient processing of
queries are specified in Section 5. Section 6 presents the setup and results of the
experimental evaluation of our work. Section 7 describes related work. Finally,
Section 8 concludes the research and provides directions for future work.

2. CASE STUDY: HEALTHCARE SERVICE REPOSITORY

As a motivating example for our work, consider the following scenario. An emer-
gency healthcare center uses a sizeable number of computer services, accessed
as Web services. Web services describe computer services using some standard,
such as Web service description language (WSDL) [Christensen et al. 2001],
describing the input and output parameters needed for the operation. For ex-
ample, the service “Find Nearest Medical Center” in Figure 1 receives as input
GPS Position and provides as output Medical Center. These services may be
part of the internal IT infrastructure, or located externally in hospitals, health
insurance companies, and the public Web. In order to achieve various business
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Fig. 1. The architecture of a search engine for Web services.

tasks, a project or an IT manager requires information regarding available
service resources, such as the following.

—Linking Services. Can a new service be assembled from existing services? For
example, can a patient be directed to the available hospital nearest to the
patient’s address?

—Gluing Services. If a new service cannot be implemented by a simple com-
position of existing services, then what further coding would be needed and
where would it be placed?

—Mining Services. Which services are needed in a composition to start or end
a given service? For example, the hospital notification service is needed in a
variety of complex hospitalization services.

In this work we assume that Web services are enhanced semantically, using
some language of semantic Web services (e.g., OWL-S [Ankolekar et al. 2001]).
Such an enhancement extends standard Web services, with the objective of
providing an unambiguous description of their capabilities and properties. The
additional information includes mapping of service attributes, such as input
and output parameters, to concepts which are defined in a common ontology. For
instance, in Figure 1, an output parameter of the service operation Find Nearest
Medical Center refers to the Medical Center concept and an input parameter of
the service Check Hospital Availability refers to the Hospital concept.

To illustrate the architecture of a search engine that can handle these
queries, consider Figure 1. The search engine contains four parts: a crawler,
an index, a query interface, and a result interface. A query interface allows
the user to set constraints on the desired services. The retrieved services are
ranked and presented to the user via the result interface. The crawler discov-
ers, analyzes, and indexes semantic descriptions of Web services. The structure
of the index allows the aforementioned questions to be answered by indexing
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services according to the concepts to which they relate as well as to their rela-
tions with other services.

3. SERVICE NETWORK MODEL

In this section we define a data model for querying Web services. In Section 3.1
we provide a narrow definition of semantic Web services to fit our needs of ap-
proximate search. For broader definitions of this concept, the interested reader
is referred to Ankolekar et al. [2001]. The model is based on a directed graph
in which nodes represent operations and edges the procedural dependencies
between operations. Dependencies can be either inferred by analyzing the rela-
tions between operation properties, or empirically derived from wider-context
sources such as OWL-S specifications. Context classes will be presented in Sec-
tion 3.2. Section 3.3 defines rules for inferring dependencies, and Section 3.4
describes methods of deriving dependencies from OWL-S models. Finally, Sec-
tion 3.5 describes our implementation of aligning heterogeneous ontologies.

3.1 Basic Definitions

We define a semantic operation to be an atomic component of a Web service,
performing an atomic task, which the service description does not further di-
vide. Our notion of a semantic operation is a subset of an OWL-S [Ankolekar
et al. 2001] atomic or simple process. Each operation receives an optional set
of input messages and delivers an optional set of output messages. In order
to answer queries for a service represented in different levels of expressibility,
our proposed definition of an operation does not include OWL-S’s effects (logical
expressions that define the results of operations) nor preconditions. These are
described using output and input parameters, respectively.

Definition 1 (Semantic Operation). A semantic operation is a quadruple
O P = 〈In, Out, l , γC〉, such that:

—In is a set of input parameters.
—Out is a set of output parameters.
—l : In ∪ Out ∪ OP → O is a labeling function that associates each input

and output parameter, as well as the operation, with a concept taken from
an ontology (O).

—γC : l → [0, 1] assigns a value that signifies the certainty of the concept
mapping.

The semantic operation definition is based on an ontology, denoted by O, to
which input parameters, output parameters, and the operation itself refer.1 We
use the Web ontology language (OWL) [Bechhofer et al. 2004] as an ontology
language of choice, mainly due to its solid theoretical foundations and the wide
variety of tools, ontologies, and applications associated with OWL. OWL comes

1In order to simplify the model, we assume that O is a single ontology combined from the original
ontologies that were used to annotate the semantic Web services. Not all of the concepts in O are
connected to each other. Section 3.5 explains the construction process of O.
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In: Hospital
In: Patient Arrival Time
In: Diagnosed Symptoms
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flow
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Out: Arrival Time

Contact
Emergency

flow flow
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In: DateTime
In: Treatment
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In: Treatment
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Check Personnel  Availability

empirical

empirical

empirical

Fig. 2. An example of operations and dependencies.

in three flavors, each representing a level of language expressibility: OWL-Lite,
OWL-DL, and OWL-Full. We use the simplest form, OWL-Lite, as it contains
sufficient constructs for our task (such as class hierarchies), while being rela-
tively simple and easy to use.

A service network is a graph of operations where nodes signify operations and
edges represent relations between operations. Each relation is associated with
a certainty value, allowing relaxed relations to be introduced into the model.

Definition 2 (Service Network). A service network is a connected graph
SN =

〈
OPER, D, c, t

〉
, such that:

—OPER = {op1, op2, · · · , opn} is a finite set of operations.
—D : O×O is a finite set of dependencies, namely, directed relations indicating

relations between operations.
—c : D → {flow, empirical}, assigns a type category to each of the dependencies.
—γD : D → [0, 1], assigns a certainty value to each dependency.

A service network is depicted in Figure 2. As noted earlier, the directed ar-
rows in the figure represent dependencies between operations. Input and out-
put message parameters (respectively notated by the in and out labels) are
mapped to ontological concepts, described in Figure 3. The directed arrows
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Fig. 3. An example of an ontology for the healthcare domain.

form dependencies which represent procedural links between operations, con-
necting separate operations into service networks. Dependencies can be stat-
ically inferred by recognizing similarities between operator parameters ( flow
dependencies), or by learning about relations between operations from external
sources (empirical dependencies). The first type is discussed in Section 3.3 and
the second in Section 3.4.

Finally, we denote the union of all service networks by BASE . It serves as a
service base (a repository of services) and has the form of a graph of operations
(nodes) and dependencies (edges). Note that service networks are connected
graphs, while the service base may not be connected.

3.2 Context Classes

In this section we provide a general method for calculating the semantic cor-
respondence between concepts, based on the structure of the ontology and the
semantic relations between concepts. Our proposed method for analyzing re-
lations between concepts depends on the notion of context classes, which form
groups of concepts that allow the investigation of relations between them. We
next discuss the different concept classes, followed by a definition of semantic
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correspondence. We shall illustrate the discussion with the use of Figure 3,
which depicts a simple healthcare ontology.

For any given concept, we define a set of context classes, each of which defines
a subset of the concepts in O according to their relation to the concept. Given a
query leaf node associated with a concept c, we define a set of concepts Exact(c)
as c itself and concepts which are equivalent to c. The Exact class may contain
concepts that have identical semantic meaning. OWL provides relations such
as equivalentClass to define concept equivalence. As an example, consider the
concept Hospital in Figure 3. As there are no equivalent classes in this ontology,
Exact(Hospital) = {Hospital}. The other context classes contain concepts with
related meaning. For each concept c ∈ O, we define the following sets of classes.

—General. These are concepts that supply higher-level context; that is belong-
ing to the transitive closure of superclasses of c. For instance, the Medical
Center, Health Organization, and Organization concepts are superclasses of
the Hospital concept and therefore fall under the category of General with
respect to Hospital.

—Specific. These are concepts that provide a more specific context; namely
those that belong to the transitive closure of subconcepts of c. For example,
Regional Hospital belongs to the Specific class of Hospital.

—Properties. Properties are concepts which are Datatype Properties of c, or
properties of General(c). Object Properties, which identify general relations
in OWL, are not used for identification at this stage. We further classify
properties into those that either can or serve for identifying concepts. For
instance, the property PersonName identifies a person (to some degree), while
the property Age does not. Three criteria were used in order to distinguish
between identifying and nonidentifying properties.

(1) Functional Properties. Properties for which each concept is associated
with a single property value.

(2) Inverse-Functional Properties. Properties for which each property value
is associated with a single concept. Naturally, properties which are func-
tional and inverse-functional are considered stronger candidates for iden-
tifying properties.

(3) Property Naming Heuristics. We had recognized that some naming con-
ventions for properties can serve for identification purposes, for example,
Physician ID and Person Name. We list them next.

—InvertProperties. This class holds all concepts for which c is a property, or
a property of their Specific concepts. For instance, the concepts Person and
Physician are in the InvertProperties class of Physician ID.

—Instances. These are concepts that are instances of c. For example, the concept
Mount Sinai is in the Instances class of Regional Hospital and Hospital. In
OWL, elements of finite enumerations, represented by the oneOf construct,
can also indicate an instance.

—Classifiers. Given an instance c, its class holds the concepts which classify c.
For example, Regional Hospital is a member of Classifiers(Mount Sinai).
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—Siblings. Concepts that have a mutual parent concept (a general concept or
classifier). For example, Patient and Physician are siblings, as Person is a
mutual general concept. We define ĉ as the mutual parent, and the set of
sibling concepts as

Siblings(c) = {c′ ∈ O | ∃ ĉ , ĉ ∈ General(c) ∧ ĉ ∈ General(c′)}.

—Unrelated. This set holds all the concepts that do not belong to any other
context class, that is, no connection between c and c′ was found. Formally we
define this as

Unrelated(c) = {c′ ∈ O | c′ /∈ Specific(c) ∪ General(c) ∪ · · · ∪ Siblings(c)}.

The semantic correspondence between two concepts is based on the seman-
tic distance between them. We based the definition of the semantic distance
function on a study by Bernstein et al. [2005] which evaluated different sim-
ilarity measures in ontologies. While their findings suggest that no single
semantic measure is dominant, they show that a strong relation exists be-
tween the type of semantic measure and the structure of the ontology. Our
semantic measure is founded on a combination of two approaches taken from
the study by Bernstein et al., namely the information-theoretic approach and
the ontology distance approach. These methods were chosen because they are
simple to implement and compatible with our type of ontologies, which fea-
ture clear hierarchy. We augmented the measures by: (1) referring to prop-
erties of concepts in addition to the concepts themselves, and (2) handling
instances.

Given an anchor concept c ∈ O and some arbitrary concept c′ ∈ O, we define
the semantic correspondence function d (c, c′) to be

d (c, c′) =






1 , c′ ∈ Exact(c)
1

2logαn·logβ (1+δ) , c′ ∈ General(c) ∪ ClassesOf(c) ∪ Properties(c)
1

2n·logβ 1+δ , c′ ∈ Specific(c) ∪ Instances(c) ∪ InvertProperties(c),
1

2logα (n1+n2)·logβ (1+δ) , c′ ∈ Siblings(c)
0 , c′ ∈ Unrelated(c)

where n is the length of the shortest path between c and c′, and δ is the difference
between the average depth of the ontology and the depth of the upper concept.
The log bases α and β are used as parameters in order to set the magnitude of
descent of the function. In the implementation of OPOSSUM, we had set both
parameters to 4. For each type of context class, the function d (c, c′) is defined
differently.

(1) In the first case, the two concepts are equal or equivalent and their simi-
larity is set to 1, which represents the highest similarity possible.

(2) In the second case, c′ has a broader semantics than c. The distance be-
tween the two concepts is calculated according to a descending function
which depends on the distance between the two concepts in the hierarchy.
Specifically, log(1 + δ) is added to reflect the notion that low-level classes
are closer to each other than higher-level ones [Bernstein et al. 2005]. For
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example, the difference between the concepts Organization and Health Or-
ganization is more substantial than that between the concepts Hospital
and Medical Center. Because of multiple inheritance, a concept may have
several “depth” values. In this case, we choose the maximum value. As δ

can be equal to 0 (in the likely case that the concept is a leaf node in the
ontology), 1 is added to the log calculation.

(3) In the third case, c′ has a narrower semantics than c. As a result, some
properties of the concept c′ may not have corresponding properties. For
example, Medical Center ∈ Specific(Health Organization), therefore Med-
ical Center has all the properties of Health Organization, but the oppo-
site is not true; Health Organization lacks properties such as Physician.
Therefore, the correspondence function has a higher descending ratio than
before.

(4) In the fourth case, c and c′ are not directly connected in the hierarchy, but
have a common parent, denoted as ĉ. In this case, the function is the same
as before, but the distance is set to be the sum of n1 and n2, reflecting the
distance between c and c′ to ĉ.

(5) In the last case, the two concepts are unrelated, so their similarity is set
to 0.

3.3 Inferring Dependencies

In order to retrieve compositions that contain operations from different sources
and origins, the dependencies between operations are to be inferred, as prior
knowledge of existing relations is incomplete. The following section describes
a set of rules for inferring dependencies, based on the notion of context
classes.

Two operations q and p are flow dependent, denoted as q
f→ p, if the output

of q can be used as an input of p. In other words, all inputs of p must be
satisfied by some output of q. Formally, q

f→ p ⇐⇒ ∀Ip , ∃ Oq : Ip = Oq . Our
definition of flow dependency resembles the horizontal dependency described
in Medjahed and Bouguettaya [2005]. This dependency can be relaxed in several
ways, detailed as follows.

(1) Parameter Relaxation. We relax the original definition of flow dependency
by allowing a matching of a subset of the parameters. Rather than re-
quiring all input parameters to be matched with compatible output pa-
rameters, only a subset of input parameters is required to be matched.
Therefore ∃Ip, ∃Oq : Ip = Oq . For example, in Figure 2, the operation In-
form Hospital receives three parameters, while flow dependency can be
derived on the basis of a single parameter i.e., (Hospital).

(2) Concept Hierarchy Relaxation. Rather than requiring full compatibil-
ity from p’s concepts, we relax the dependency by accepting output
parameters which are subsumed by the input parameters, or vice versa:
∀Ip , ∃Oq : Oq ∈ General(Ip) ∨ Ip ∈ General(Oq). For example, in Figure 2,
the operation Find Nearest Medical Center can flow into Inform Hospital
because Hospital is subsumed by Medical Center.
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(3) Instance Relaxation. This relaxation is similar to the previous one, but now
the dependency is satisfied with instances of q such that ∀Ip, ∃Oq : Oq ∈
Instances(Ip). For example, an operation that requires a Hospital concept
can flow from an operation that outputs Mount Sinai Hospital, a specific
instance of the Hospital concept.

(4) Property Relaxation. The original requirement is relaxed by accepting
concepts that are properties of q’s output parameters. This relaxation
is limited to functional and inverse-functional properties only. Formally
∀Ip, ∃Oq : Ip ∈ Properties(Oq), where the property is a functional and
inverse-functional object property relation (such that for each instance of
Ip, there is a single instance of Oq and vice versa).

3.4 Empirical Dependencies

Empirical dependencies are used when prior knowledge of relations between
operations exists. However, the transformation between external service mod-
els (e.g., OWL-S) to our service base is not straightforward. In this section we
define transformation rules in a semiformal manner. OWL-S serves as a repre-
sentative example of a Web service specification language. It has been shown
that WSMO [Lara et al. 2004] and BPEL4WS [Wohed et al. 2003] have ade-
quate transformations to OWL-S, and therefore the transformation we present
is applicable for these languages as well. OWL-S was chosen as the primary lan-
guage of reference for the considerable amount of research and tools associated
with it.

The transformation starts with the atomic process, the basic component of
the OWL-S process model. Each atomic process p which belongs to an OWL-
S model is transformed to an operation O P ∈ BASE . The input and output
properties of the atomic process are mapped to the input and output concepts
of O P . Preconditions and effects of O P are abstracted and mapped to O P ’s
input and output concepts, respectively. Composite processes are represented
as dependencies between operations.

OWL-S supports control constructs, such as conditional and parallel exe-
cution, in order to coordinate the execution of groups of operations. For in-
stance, in OWL-S, the execution of one atomic process can be dependent on
a specific result of another. However, these constructs are not supported by
the service model, as they provide overspecification not needed by the search
engine. Therefore, complex control constructs are transformed to simple de-
pendencies between operations. In this process, some information is lost. All
conditional control constructs, such as if-then-else and repeat-until, are trans-
formed to empirical dependencies between participating processes, without the
actual condition logic. The following list specifies transformation patterns for
OWL-S control constructs. A visual representation of the patterns is depicted in
Figure 4.

(1) Sequence. The control construct is mapped to a set of empirical depen-
dencies between operations, ordered according to the original order of the
atomic processes.
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(4) 
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Fig. 4. Transformation patterns for OWL-S control constructs.

(2) If-Then-Else. Empirical dependencies are added between the operation
that describes the condition (the if operation) to the conditioned opera-
tions: the then and the else.

(3) Repeat-Until. An empirical dependency will be added from the conditioned
operation (repeat) to the condition operation (until), and vice versa. Note
that this construct generates a cycle of dependencies which is resolved in
the construction of the index.

(4) Split. For each split construct, a special operation, OP(source) will be added to
the service network, representing the beginning of the operation split. An
empirical dependency will be added from OP(source) to each of the operations
belonging to the split.

(5) Split+Join. Similarly to the transformation pattern for split, an OP(source)
operation will be added, as well as a synchronization operation OP(dest).
Empirical dependencies will be added to OP(dest) from all operations taking
part in the construct (excluding OP(source)).

3.5 Aligning Ontologies

The service model is based on the assumption that all concepts belong to a
single ontology O. However, the original ontologies to which the services are
related originate from different and heterogeneous sources. These ontologies
may contain concepts with similar meaning which differ in labeling, content,
or language. In order to increase the recall of the retrieval process, the original
ontologies are merged to construct O. The process of ontology merging takes
as input a set of source ontologies and returns a merged ontology containing
a union of the elements of the ontologies such that equivalent concepts are
merged.

The first step in merging ontologies is to map the relations between their
concepts. We have adopted the approach of Euzenat and Valtchev [2004], which
uses a combination of matching techniques in order to map concepts. These
techniques include matching by string and lexicon-based terminology, as well
as data-type, property, and relation comparison. The weighted contributions of
all the techniques are combined to provide the final matching. We have chosen
this approach as it is designed for OWL-Lite and is fully automatic, making it
suitable for processing large amounts of ontological data. After the ontologies
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are matched, they are merged by combining equivalent concepts, including their
properties and relations. Foreign concepts without any correspondence to other
concepts are copied to the merged ontology.

Ontology merging can also be used to bridge multilingual ontologies which
define the same concepts in different languages. As the approach we adopt for
ontology matching supports lexicon-based matching, multilingual lexicons such
as EuroWordNet [Vossen 1998] can be used to enable multilingualism in the
merged ontology. While OPOSSUM supports English ontologies in its current
version, we plan to augment it with multilingual ontologies in future ones.

4. QUERY INTERFACE, SYNTAX, AND SEMANTICS

In this section we describe the query interface of OPOSSUM and the underly-
ing query language. Section 4.1 describes the user interaction involved in query
composition. Section 4.2 describes the syntax underlying the query language.
Section 4.3 defines the semantics of basic query operators, while Section 4.4 de-
fines the semantics of complex query expressions. Finally, Section 4.5 describes
an extension mechanism for the query language.

4.1 Query Interface Overview

Users communicate with the OPOSSUM search engine through either the ba-
sic or advanced query interface. These two interfaces share the same query
language, but employ different levels of formality and expressiveness. Figure 5
displays a screenshot of the two interfaces. The basic query interface requires
no more than a set of keywords. The user does not need to specify operators,
which are added automatically using predefined settings. In contrast, the ad-
vanced query interface allows the user to specify exactly the types of service
properties to query. It also allows the user to employ logical operators in order
to get more general or more specific results.

Both query interfaces generate a declarative specification of a virtual se-
mantic Web service. It is declarative in the sense that: (1) It does not enforce
an implementation on the query results; and (2) a query can be matched by
compositions of operations, rather than by a single operation. The query is re-
laxed in that it contains keywords instead of formal concepts, and may contain
disjunctions and/or approximate conjunctions.

User queries are transformed into formal queries (described in Section 4.2)
by automatically mapping keywords to concepts. In order to formalize a sim-
ple query “address hospital” into a query expression, each of the keywords
is mapped to a concept term by using content matching techniques.2 If more
than one concept is matched with the keyword, that keyword with the highest
matching score is used in the query evaluation. The user is also alerted, and
can choose between the proposed alternative concept terms. Queries entered
via the simple interface undergo two additional processing steps, as detailed
next.

2The content matching techniques are beyond the scope of this article. The interested reader is
referred to Gal et al. [2005] for an elaborated discussion.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 2, Publication date: November 2007.



2:14 • E. Toch et al.

Fig. 5. Screenshots of OPOSSUM’s simple (top) and advanced (bottom) query interface.

(1) Adding Connectors. Query terms are connected automatically using a con-
junctive connector. Applying this stage on an example query “address hos-
pital” yields “address ∧ hospital”.

(2) Annotating Terms. Concept terms are annotated with a property category
defining which property will be matched with the term. Available categories
are input, output, and operation. These categories are aligned with the term
labeling function l , as defined in Section 3.1. The search engine chooses an
initial default category and lets the user change these defaults after the
query is evaluated.

In order to annotate the terms, a prefetching process is carried out. The
index is queried regarding the existence of concepts which are either input,
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Fig. 6. An abstract query.

output, or operation. Afterward, the query is expanded with the disjunction of
each category to which at least one concept is related. For example, applying the
annotation on “address ∧ hospital” results in “input:address ∧ output:hospital”.

4.2 Abstract Query Syntax

The abstract query presented in this section forms a mathematical abstraction
of queries presented in the previous section.

Definition 3 (Abstract Query). An abstract query is a quadruple Q =
〈T, l , pc, o〉, where:

—T is a rooted, directed, binary tree.
—l : N → O is a term labeling function that associates each leaf node in T

with a concept c ∈ O.
—pc : N → {in, out, op} is a property category function that associates each

leaf node in T with a categorization of its property, which can be input,
output, or operation.

—o : N → {∧, ∨} is an operator function that associates each nonleaf node
with conjunction or disjunction connector, respectively.

Each leaf node nQl is annotated with a property category (i.e., input, output,
on operation) and a concept. A nonleaf node nQ is the application of a Boolean
connector over its children. If o(nQ ) = ∧, then nQ is an and-node, and if o(nQ ) =
∨, then nQ is an or-node. Figure 6 depicts an abstract query requesting services
that have an input parameter aligning either with an Address concept or with a
GPS Position concept, and that should also have a Hospital output parameter.

4.3 Query Matching Semantics

In this section we provide an overview of the query semantics. Adopting a
bottom-up approach, the next two sections start with a detailed element de-
scription and continue with a complete structure of the query.

The result of the query evaluation is a set of virtual services. A virtual service
V is a sequence of one or more operations ranked according to their order of
execution such that V = 〈op1, op2, . . . opn〉. Note that a virtual service may
contain operations that originate from diverse sources. Each virtual service is
associated with a matching certainty expressing the certainty with which the
virtual service answers the query. The notion of matching certainty is embodied
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by the µ-satisfiability relation. Let V be a virtual service, and let Q be a query.
The µ-satisfiability relation, denoted as V |=µ Q , indicates that V satisfies the
requirements of Q with a certainty of µ.

We define the levels of matching in a recursive manner. The basic unit of
matching is related to a single operation which is matched with a query leaf
node (nQl ). In this case, the matching certainty is determined according to
the semantic correspondence between the node’s and operation’s concepts. The
matching certainty of virtual services is computed based on the certitude of
each of the operations and that of the relation(s) between them.

In order to formally define the µ-satisfiability of an operation, we first define
semantic correspondence. The function µ : O×O → [0, 1] defines the semantic
correspondence that maps query leaf node concept (c) and operation parameter
concept (c′) to a value between 0 and 1, where 0 implies no compatibility and 1
full compatibility. We can now define the operation satisfiability of a query leaf
node as follows.

Definition 4 (Operation Satisfiability). An operation O P satisfies nQl if the
following jointly applies:

(1) O P contains a parameter p with the same property category of the leaf
query node, pc(nQl ).

(2) µ(l (nQl ), l (p)) > µ̂, namely the semantic correspondence between the two
concepts, is higher than a threshold µ̂.

The method for calculating µ, that is, the semantic correspondence function,
is identical to the context-classes-based method described in Section 3.2.

4.4 Complex Queries Semantics

In order to define the semantics of complex queries, the notion of µ-satisfiability
is broadened from operation matching to the matching of complete queries,
including conjunctive and disjunctive operators. We say that V |=µ Q , when a
query can be satisfied by a virtual service in a given µ level of certainty.

In order to define the semantics of disjunction, the query is transformed
into a disjunctive normal form. For instance, the example query depicted in
Figure 6, which has the original form of ((in, Address) ∨ (in, GPS Position)) ∧
(out, Hospital)), will be transformed into the form

((in, Address) ∧ (out, Hospital))
∨

((in, GPS Position) ∧ (out, Hospital)).

A virtual service satisfies an or-node if it satisfies one of its child nodes. Let nQ1

and nQ2 be the child nodes of the or-node nQ . The µ-satisfiability specification
of the or-node is defined as follows.

Definition 5 (Disjunction Matching). V |=µ (nQ1 ∨ nQ2 ) ⇔ V |=µ nQ1 ∨
V |=µ nQ2 . The certainty is defined as µ = max {µ1, µ2}. The certainty values
of matching nQ1 and nQ2 are µ1 and µ2, respectively.
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While matching an or-node is straightforward, matching an and-node is more
complex. An and-node can be satisfied by an ordered pair of virtual services. The
basic assumptions underlying the semantics of and-nodes are the following:

—In order to allow relaxed service retrieval, an and-node can be satisfied
by a composition of operations. For instance, the query (in, GPS Position) ∧
(out, Hospital) might be satisfied by a single service (Find Nearest Medical
Center), or by a composition of two services (Contact Emergency and Find
Nearest Medical Center).

—If two services satisfy an and-node with equal certainty (the ceteris paribus—
“all other things being equal”—of our model), then the shortest composition
of operations will be chosen. In light of the previous example, the service
Find Nearest Medical Center will be chosen, as its composition length is 0.
The rationale of this assumption is that any operation added to an existing
composition reduces the overall certainty of the latter.

—The order of the elements in the query is important. If an and-node is satisfied
by a composition, the left child of the and-node (In, GPS Position) should
precede the right (Out, Hospital ). As users search for procedural artifacts,
we assume that there is a direct link between the location of elements within
the query and the location of operations within the procedure.

In conjunction matching, the two query child nodes form a simple pattern,
starting from the leftmost node and ending with the rightmost. The pattern is
matched against the service network, resulting in a correspondence value that
depends on the correspondence of the nodes and the certainty of the composi-
tion. The formal µ-satisfiability specification of an and-node is as follows.

Definition 6 (Conjunction Matching). We say that V |=µ (nQ1 ∧ nQ2 ) if the
following conditions hold:

(1) V contains two sub services V1 and V2 such that V1 |=µ nQ1 ∧ V2 |=µ nQ2 ,
and BASE contains a path which starts with V1 and ends with V2. Since the
query is transformed into disjunctive normal form, any node can be either
an and-node or a leaf node.

(a) If nQi is a leaf node, then Vi holds a single operation and path matching
is based on the operation as a starting or ending point.

(b) If nQi is an and-node, then Vi is a sequence of operations. The path
matching starts with the first operation of the sequence (if nQi is the
left node), or the last operation of the sequence (if nQi is a right node).

(2) The overall composition certainty of the path is higher than a given
threshold.

The composition certainty reflects the certainty of the dependencies between
operations. Recall from Section 3.1 that each dependency is associated with
a certainty value, denoted as γD. We define path(op1, op2) as the set of edges
belonging to the shortest path between two operations op1 and op2. The com-
position certainty function γcc is calculated as the product of edge certainty of
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the path, as is common in the literature [Do and Rahm 2002].

γcc(l ,k) =
∏

(i, j )∈path(op1,op2)

γD(i, j )

Finally, γcc is bounded by a threshold, ˆγcc, as follows.

γcc =
{

γcc, γcc > ˆγcc

0, γcc ≤ ˆγcc

Note that Definition 6 accepts situations in which the and-node is satisfied with
a single operation, namely, op1 = op2, and in which the path has a length of
0. Moreover, it is likely that single-operation results will receive high certainty
value, as their composition certainty is maximal.

In OPOSSUM, partial results are allowed to be retrieved by relaxing condi-
tion (1) of Definition 6. We redefine |=µ to accept partial services that do not
necessarily satisfy the full conjunctive chain. We define V p ⊂ V as a partial
virtual service which is contained in V .

Definition 7 (Partial Conjunction Matching). We say that V p |=µ (nQ1 ∧
nQ2 ) if the following conditions hold:

(1) The partial service satisfies at least one of the child nodes: V p |=µ nQ1 ∨
V p |=µ nQ2 .

(2) The partial certainty is higher than the conjunction threshold.

The partial certainty takes into account the proportion of the partial service
with respect to the complete service, and is defined as

µ(nQ1 ∧ nQ2 , V p) =
|V p|
|V | min {µ(nQ1 , V p), µ(nQ2 , V p)}.

The certainty function ranks a conjunction subsets according to their size, giv-
ing higher scores to larger subsets. The highest certainty will be given to V it-
self: the service that answers the complete intersection. The remaining subsets
will receive monotonically nonincreasing scores. To demonstrate the relaxed
conjunction semantics, consider a simple query (in, Address) ∧ (out, Hospital).
Let us evaluate the query against the subset of BASE depicted in Figure 2. The
leaf node (in, Address) is matched with a single operation, Find Position, with
a certainty score of 1. The leaf node (out, Hospital) is matched with a single
operation, Find Nearest Medical Center, with a certainty score of 0.85 (due to
the inexact matching of Emergency Medical Center with Hospital). The relaxed
conjunction between the nodes is the set given in the following:

(Find Position, Find Nearest Medical Center), (Find Position),
(Find Nearest Medical Center)

The first virtual service is a path starting with Find Position and ending with
Find Nearest Medical Center. The path has an initial certainty score of 0.93,
based on the composition certainty. The approximate conjunction recalculates
the score, assigning 0.93 to the first virtual service, 0.5 to the second, and 0.43
to the third.
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4.5 Query Language Extensions

We now present an extension mechanism for the query language. Its aim is to
allow users to write advanced queries without compromising the simple syn-
tax of the query language. There are two types each of syntax extensions and
property extensions.

Syntax extensions broaden the query language by adding syntactic sugar.
In order to demonstrate our approach, we define two syntax extensions: the
optional expression and the any expression. Unlike the default configuration
which mandates that all a query parts be retrieved, the optional extension al-
lows users to define optional query phrases. For example, in the query “address
hospital optional(availability)”, the last token is elective, and therefore results
which contain the availability property will be assigned the same ranking as
those which do not.

The implementation of the extension is simple. It is based on rewriting the
query using disjunctions in the preprocessing phase. Each query of the type
“x ∧ optional(y)” will be transformed to a query of the type “(x ∧ y) ∨ x”. Thus,
results satisfying x and results satisfying both x and y will be ranked equally. In
order to avoid illegal queries, queries which contain solely optional expressions
such as “optional(y)” are not allowed.

The any expression allows users to define sets of options. The user can specify
different options for a single property. For example, if the user wishes to select
services with an output which is either hospital, clinic, or doctor, the query
pattern “address any(hospital,clinic,doctor)” can be used.

Property extensions allow definitions of new property categories for concepts.
The basic definitions of the query language include three types: in (for input),
out (for output), and op (for a concept which is assigned with the operations).
However, services may have more specific properties that can be used in re-
trieval. Examples for interesting properties include the following.

—Price. The price of using the operation.
—Availability. The times in which the service is available.
—Provider. The organization which provides the service.
—Location. The geographical location in which the service is carried out.
—Language. The interface language used by the service (e.g., English, Hebrew,

Arabic).

Extension properties are defined by the users simply by assigning a label to
a specific property of all, or some, of the semantic Web services. Thereafter, the
user can use this name for restricting the results according to a certain value
of the property, writing queries such as “flight provider:singapore location:new
york”. The query evaluator maps the value following the property name to a
value assigned with the original concept before continuing with the retrieval
process.

5. INDEXING AND QUERY EVALUATION

In this section, we discuss the indexing method for the service model. The ob-
jective of the index is to enable efficient evaluation of queries with respect to
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Fig. 7. An example of Iconcepts: the concepts index.

processing time and storage space. The index is composed of two data struc-
tures: Iconcepts and Iservices. Specifically, Iconcepts is a hash-based index that maps
concepts to their associated operations, allowing efficient evaluation of query
concepts. By contrast, Iservices is a graph-based index that represents the struc-
tural summary of the service network, and is used to answer queries that re-
quire several atomic operations. This section is organized as follows. Section 5.1
discusses the structure of the Iconcepts index and describes its construction pro-
cess through concept expansion. Section 5.2 describes the structure and con-
struction process of Iservices. Finally, Section 5.3 describes and analyzes the query
evaluation algorithm operating on the index.

5.1 Concept Index

Iconcepts is based on a hash table where each entry represents a concept pointing
to a node in Iservices. Formally, Iconcepts immerses a mapping function and is
defined as

Iconcepts : C × {in, out, op} → GN .

Here C is defined as a set of concepts, {in, out, op} is a property type (for
input/output/operation), and GN is a set of operation index keys in Iservices.
Each mapping is associated with a certainty function γI (Iconcepts) → [0, 1]
reflecting the semantic affinity between the concept and the concepts of the
operation. Figure 7 represents an instance of Iconcepts which partially reflects
the healthcare services running example (refer to Figure 2). Concepts that
serve as keys of Iconcepts are derived from the service model. For instance, GPS
Position is associated with an input parameter of the Find Nearest Medical
Center operation, with a certainty of γI = 1. Moreover, Hospital is associated
with an output parameter of Find Nearest Medical Center, with γI = 0.5. In
this case, γI reflects a lower certainty, originating from the distance between
the Hospital concept and the Medical Center concept, the actual concept
related to Find Nearest Medical Center.
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Algorithm 1. Operation indexing in Iconcepts

Input: OPi , O
Output: Iconcepts(OPi) ⊆ Iconcepts

Iconcepts(OPi) ← φ

for all param ∈ OPi do
c = l (param)
Iconcepts ∪ (c, role(param)) → Iservices.OPi

γI (→) = 1
for all c′ ∈ General(c) ∪ Specific(c)... do

γ ′ = d (c, c′)
if γ ′ > γ̂I then

Iconcepts ∪ (c′, role(param)) → Iservices.OPi

γI (→) = γ ′

end if
end for

end for

Iconcepts is expanded with additional concepts that convey a broader meaning,
in order to retrieve approximate services. Expanding the index is carried out
through the index construction process. Constructing Iconcepts is a multiphase
procedure in which a basic set of concepts is expanded with others that increase
the retrieval scope of the index. Context classes are used in order to construct
the key set of Iconcepts, and to assign the operations associated with each con-
cept. Algorithm 1 describes the indexing process of an operation. The algorithm
traverses all the parameters of an operation, adding the parameter’s concept to
the index. Following this, the algorithm adds index entries for concepts whose
mapping certainty is higher than a given threshold.

5.2 Compact Service Index

Iservices represents the structural summary of the service network using a di-
rected graph. Given two operations, the objective of Iservices is to efficiently an-
swer whether a composite service, starting with the first operation and end-
ing with the second, can be constructed, and to calculate the certainty of the
composition. Hypothetically, this task can be performed using the service base
itself, by exhaustively searching for all possible compositions on the operation
graph. Furthermore, indexing each path will result in an exponential num-
ber of index entries. Therefore, our main design goal was to design an in-
dex with a minimal number of nodes and edges that would enable efficient
traversal of the service network without compromising the precision of the re-
sults. The design of Iservices is based on principles taken from semantic routing
in peer-to-peer networks. Due to the limited scope of the article, we refrain
from presenting the techniques in detail. Rather, we give the main ideas via an
example.
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Fig. 8. An example of Iservices : the service network index.

Schmidt and Parashar [2004] and Schlosser et al. [2002] proposed the use
of semantic clustering to classify peer nodes to concepts and provide efficient
traversal in peer-to-peer networks. In both methods the underlying ontology
is segmented according to a multidimensional hierarchy, and each concept is
assigned a multilevel identifier that enables an efficient routing from source to
destination concepts.

In Iservices, operations are associated with multidimensional clusters on the
basis of a set of clusters of their corresponding concepts. Figure 8 depicts the
operations framed by the relevant clusters. Concept clusters are obtained by
using the algorithm described in Grau et al. [2005] for hierarchical clustering of
OWL-Lite ontologies. All operations within a cluster have concepts with close
affinity to each other. For example, the operations Inform Hospital and Contact
Emergency are located within the Emergency Operations cluster, as they share
similar concepts and have interrelated dependencies. Clusters are organized
according to a hierarchy where 0-level clusters represent atomic clusters (e.g.,
Emergency Operations), 1st-level clusters contain 0-level clusters (e.g., Medical
Operations), and so forth.3

The number of edges in the index is reduced by replacing the dependen-
cies between operations with those between respective clusters. For example,
the dependencies between Inform Hospital and Check Hospital Availability,
and between Contact Emergency and Check Hospital Availability are replaced

3Clusters are nameless. We have named clusters for the sake of clarity.
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by a single dependency between the Emergency Operations cluster and the
Hospital Procedures Operations cluster. Dependencies exist only between clus-
ters of the same level. For instance, if a dependency existed in BASE between
Inform Hospital and Authorize Treatment Plan, there will be no direct edge be-
tween the clusters, as Emergency Operations is a level-0 cluster, while Insurance
Operations is a level-1 cluster. When evaluating a path that crosses multilevel
clusters, higher-level edges will be evaluated if lower ones do not satisfy the
query. Thus the search space is reduced. This method is efficient mainly due
to the nature of the service network. Empirical results show that the service
network is a sparse graph, and that most connections are between operations
with similar semantics.

As operations contain several parameters, there is no guarantee that all
of the parameters’ concepts will belong to the same cluster. Therefore, opera-
tions are organized into multidimensional clusters which reflect their different
semantic affinities. For instance, the operation Contact Emergency has parame-
ters involving geographical concepts and medical concepts, and is located in the
Geographical Operations and Emergency Operations clusters simultaneously. A
query that requires a service that takes an address and returns hospital avail-
ability will be answered by a path of operations that starts in the Geographical
Operations cluster, goes through the Emergency Operations cluster (as there
are mutual operations belonging to the two clusters), and ends at the Hospital
Procedures Operations cluster. Multidimensional clustering is feasible because
the number of parameters associated with an operation is bounded and low.
Empirical results show that over 90% of the services in our benchmark have 4
or less parameters.

5.3 Query Evaluation

In this section, we present an algorithm for query evaluation, based on the in-
dex discussed previously. The algorithm is described in Algorithm 2. Given
a query, Q and the index, the algorithm returns a set of virtual services
{V(1), V(2), ..., V(k)} ranked according to their certainty. The algorithm starts by
transforming the query into disjunctive normal form, resulting in a set of query
parts C. If a query part includes a single query node, then the results contain
operations from Iconcepts. The results are filtered by the Prune function, which
removes services with lower certainty value than the threshold. If the query
part includes more than a single node, then it contains a conjunction. The
algorithm uses the Route function to find paths between origin operations (as-
sociated with the lefthand query node) and destination operations (associated
with the righthand query node). The function Rank orders the virtual services
according to their certainty.

We denote by |C| the number of disjunctions in the query and |O P | represents
the number of operations associated in Iconcepts with a given query node (with
certainty higher than the threshold). Moreover, |V| is the number of results, N
the number of peers (operations), and b the hypercube base, namely the number
of dimensions needed to segment the ontology. The query evaluation algorithm
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Algorithm 2. Evaluate Query

Input: Q , Iconcepts, Iservices

Output: V = {V(1), V(2), ..., V(k)}
V ← φ

C = toDNF(Q)
for all Ci ∈ C do

n = Ci .left-node
Ssource ← Iconcepts(l (n), pc(n))
Ssource ← Prune(Ssource)
if C.right-node = φ

V ← V ∪ Ssource

else
ndest = Ci .right-node
Sdest ← Iconcepts(l (ndest), pc(ndest))
Sdest ← Prune(Sdest)
for all OPi ∈ Ssource, OP j ∈ Sdest

Scompose ← Scompose ∪ Route(OPi , OP j )
Scompose ← Prune(Scompose)

end for
V ← V ∪ Scompose

end if
end for
Return Rank(V)

complexity is given by

O
(

|C| ·
(

|O P |2 · 1
2

logb N
)

+ |V| log |V|
)

.

The main algorithm loop depends on the number of disjunctions, and runs in |∨|
steps. The routing function iterates over the Cartesian product of the operations
returned by Iconcepts. The complexity of Route is calculated in Schlosser et al.
[2002] to be 1

2 logb N . Finally, the complexity of the ranking of results (|V| log |V|)
is added to the general complexity.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach in three ways by: (a) analyzing the
precision of the search engine; (b) by comparing precision and performance
to OWLS-MX [Klusch et al. 2005]; and (c) evaluating the scalability of our
approach through simulation. Evaluation was based on an implementation of
OPOSSUM using Java and an MySQL server. A dedicated personal computer
running Windows XP with 1.5GB RAM was used for all the experiments.

In order to evaluate the search engine, we used OWLS-TC, an existing bench-
mark for semantic service retrieval supplied by Klusch et al. [2005]. OWLS-
TC includes more than 550 services which are semantically annotated using
more than 40 different ontologies from various domains, including economy,
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communication, and healthcare. In addition, OWLS-TC includes a set of prede-
fined queries and relevance sets that enable to calculate the precision and recall
values of query results. OWLS-TC was augmented with queries and relevance
sets that reflect composed services.

Ranking serves as the main method for expressing relevance and certainty
in our approach. Therefore, we measured the precision of the results in the
top-K places, as depicted in Figure 9. Precision at top-K is calculated as Lq,k∩Sq

Lq,k
,

where Sq is defined in the benchmark as the set of services that are relevant
to a query q, and Lq,k is the top-K results on the list. The results show that
services with high certainty (and therefore, higher ranking) were found to be
more relevant than those with lower certainty. We explain the loss of precision
around the top 3 and 4 results by the precedence of shorter services, derived
from the method of calculating the compositional certainty. If this precedence
is canceled, the precision of the top 1 and 2 places will decrease.

We compared the precision/recall values of OPOSSUM with those of OWLS-
MX by running OWLS-TC queries. Our results show that we succeeded in
matching our precision/recall performance to those of OWLS-MX. However,
the two methods vary considerably in query response time. Table I presents a
comparison of average response time of OPOSSUM and OWLS-MX.4 The re-
sults clearly show the benefits of an indexing mechanism, which improves the
performance of the query evaluation algorithms by an order of magnitude.

4It is worth noting that the average query response time we measured for OWLS-MX was slightly
higher than that reported by Klusch et al. [2005]. The difference can be attributed to the different
hardware configurations of the testing platforms.
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Table I. Average Query Response Time of OPOSSUM vs. OWLS-MX
(measured in ms)

Query OWLS-MX OPOSSUM
hospital investigating 1710 33
book price 1647 35
country skilled occupation 1742 20
car price service 1682 15
geopolitical entity weather process 1364 27
government degree scholarship 1782 32
novel author 1662 40
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Fig. 10. Average query response time.

The scalability of our approach was evaluated by simulating large numbers
of semantic Web services. Using the existing 500 OWLS-TC benchmark services
as a core, 2500 additional services were simulated by imitating the properties
of core services. The service generation function was parameterized using 3
random variables: p, the number of parameters, nc, whether to associate the
parameter with a new concept or with an existing one, and c, the identity of
the associated concept if nc is false. Figure 10 represents the average query
response time according to the number of services in the index. The black line
represents a linear trend line on top of the discrete measurements. While the
number of services increased by a factor of 3000 (from 500 to 3000), the average
response time increased by a factor of 2.3 (from 15 ms to around 35 ms). The
results exhibit the scalability of our indexing approach.
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7. RELATED WORK

Activity in the area of service retrieval can be divided into three main ap-
proaches: keyword-based, semantics-based, and behavioral matching. In this
section, we overview these methods in that order.

7.1 Keyword-Based Approaches

Currently, the keyword-based approach is the most widespread in industrial
attempts to implement service retrieval. The most prominent example is the
UDDI protocol [Bellwood et al. 2002], which is an industry standard for locating
Web services through keyword and category search. The main drawback of
UDDI, as well as other keyword-based approaches, is the lack of sufficient
information for describing Web services. Web service interfaces are defined
using WSDL descriptions, which contain a very small amount of information
regarding Web service operations. Therefore, keyword search solutions fail in
providing satisfactory recall for Web service search [Ankolekar et al. 2001; Sirin
et al. 2003].

7.2 Semantic Approaches

Several techniques have been proposed to deal with service discovery using
logical inference. These approaches are based on an ontology-based formal de-
scription of Web services. Several works, including those of Paolucci et al. [2002]
and Sirin et al. [2003], propose a method based on OWL-S for matching requests
and advertisements of semantic Web services. The OWL-S profile ontology is
used to describe the capabilities of services, and service matching takes the
form of logic inference over the properties of the services. Another technique
for semantic matching of Web services is based on planning methods taken from
the AI research domain. In Traverso and Pistore [2004] semantic Web services
are translated into state transition machines, and the composition problem is
defined as a planning issue over the available services, with the required com-
position defined as the planning goal. While all of these works provide precise
matching they exhibit a limited notion of relaxed matching based on the hier-
archy of subtypes.

Several research initiatives suggest hybrid approaches for semantic Web
service discovery, augmenting logic-based methods with content-matching tech-
niques. Traverso and Pistore [Syeda-Mahmood et al. 2005] describe a hybrid
approach for Web service discovery, combining methods based on thesaurus
and ontological inference. In Klusch et al. [2005] and Bernstein and Kiefer
[2006] logical inference is compared with content-based matching. The latter
was found to perform better both in terms of recall and precision. Furthermore,
hybrid approaches that combine properties of logic inference and content match-
ing were shown to outperform any of the pure techniques.

Both logic-based and hybrid methods aim at automatic composition; there-
fore, they require a highly accurate and trustful description of services and
queries, as well as an unambiguous matching process. In contrast, our work
relies on adjustable confidence values for semantic mappings. It allows the
use of syntactic service description such as WSDL. Also, our work relaxes the
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semantic and structural evaluation of compositions, expressing the approxima-
tion level through ranking. Furthermore, we use a user-oriented form of query
language, automatically translating a simple keyword query to a formal struc-
ture of concepts. While the hybrid approach relaxes the semantic matching by
using content-based similarity methods, our work relies solely on ontologies for
semantic matching. Our relaxation methods rely on both a broader definition of
the equivalence between ontological concepts and on approximating the struc-
ture of the composition imposed by the query. Finally, OPOSSUM outperforms
the semantic approaches described earlier in terms of response time, due to the
utilization of indexing methods.

7.3 Behavioral Matching

BP-QL [Beeri et al. 2006] is a query language for BPEL4WS [Wohed et al.
2003] process definitions. It uses a graph-based visual query language that
represents a BPEL script and it searches for a subgraph isomorphism in a
repository of BPEL scripts. While BP-QL supports an expressive query lan-
guage, it ignores the semantic attributes of services. Klein and Bernstein [2004]
present a method for recognizing semantically-annotated services through pat-
tern matching of activity sequences. Shen and Su [2005] encode semantic Web
services and queries as regular expressions, defining matching as the intersec-
tion between them. Indexing methods for regular expressions were introduced
to enhance behavioral matching performance. These methods differ from our
approach in two main aspects. First, these methods evaluate a query against
each service independently, while our proposed work matches queries against
service networks dynamically built from isolated operations by analyzing and
inferring relations between operations. Second, these methods provide limited
support for approximate matching, and do not rank results according to their
semantic and compositional certainty.

8. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a semantic approach to Web service retrieval.
Our approach is based on three strategies: (a) using the current research in
semantic Web services to enrich the querying abilities of users; (b) using ap-
proximation techniques to increase the recall of possible service compositions;
and (c) exploring indexing techniques for sublinear response time. To motivate
our approach, we have proposed Web service composition as an exploratory pro-
cess in which designers seek the use of existing Web services to gain a leading
edge in their businesses. Composition as exploration suggests that services can
be composed by the use of additional gluing effort, even if they do not match
exactly. Such an approximate matching therefore accounts for the amount of
extra effort needed, and this is reflected in the ranking of the results. The
ranking combines both the semantic distance between query and result and
the partiality of the result. Thus, a lower ranking suggests additional gluing
effort necessary in order to bridge the semantic distance between components
or to implement the missing functionality.
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We propose a general framework of a service search engine, where the var-
ious components of our work provide solutions to issues of indexing, retrieval,
and ranking within this framework. As a proof-of-concept we have built OPOS-
SUM, a Web service search engine, and share our experiences with discovering,
indexing, querying, and ranking using real-world data.

The contributions of this research are at conceptual, semantic, and com-
putational levels. First, we define an efficient, graph-based data structure for
organizing services. Second, we provide a semantically rich query language,
allowing both simple and advanced service search capabilities. Finally, we
provide a sublinear service retrieval algorithm.

There are several directions for future work. We are currently extending
our research to include a broader notion of service ranking, based on service
reusability (i.e., the ability to use a service in a given context). Furthermore,
we intend to extend the applicability of our approach to syntactic Web services
(represented by WSDL documents) and Web forms. Also, we intend to extend
OPOSSUM with advanced capabilities, including multilingual ontology align-
ment and content-based matching techniques. We plan to offer OPOSSUM as
a service to the general Web community, allowing users to submit Web services
and to query the database. By opening the engine to the public we hope to
gain realistic information that would help us characterize searching and uti-
lization patterns for Web services. Finally, we intend to apply OPOSSUM for
model-driven engineering of information systems, embedding semantic service
retrieval within service development environments.
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