
1 
 

Experimental observation of the steady – oscillatory transition 

in a cubic lid-driven cavity  

A. Liberzon, Yu. Feldman and A. Yu. Gelfgat 

School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat 

Aviv, 69978, Tel-Aviv, Israel 

Abstract 

Particle image velocimetry is applied to the lid-driven flow in a cube to validate the 

numerical prediction of steady – oscillatory transition at lower than ever observed 

Reynolds number. Experimental results agree with the numerical simulation 

demonstrating large amplitude oscillatory motion overlaying the base quasi-two-

dimensional flow in the mid-plane.   A good agreement in the values of critical Reynolds 

number and frequency of the appearing oscillations, as well as similar spatial 

distributions of the oscillations amplitude are obtained. 

 

I. INTRODUCTION 

Accurate prediction of the flow conditions in the driven cavity is of outmost 

importance for a number of technological applications, such as coating and polishing 

processes in microelectronics, passive and active flow control using blowing/suction 

cavities and riblets 1. Moreover, citing Shankar and Deshpande1, “…the overwhelming 

importance of these flows is to the basic study of fluid dynamics”. The driven cavity flow 

has well defined boundary conditions and it is apparently straightforward to use this 

configuration for benchmarking of numerical and experimental studies of fluid flows. 

Moreover, it can be shown that upon geometrical similarity (the width to height and 

width to span ratios) a single dimensionless number describes the flow state, namely the 

Reynolds number. Typically it is based on the cavity length, L and the driving lid 

velocity, U. The fixed flow domain makes this flow attractive also for experimental 

purposes, in particular, for studying flow transitions at large Reynolds numbers. Though 
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apparently simple, the lid-driven cavity flows exhibit a vast variety of flow patterns, from 

2D to 3D, secondary, corner and streamwise eddies, chaotic trajectories and more.  

Despite the extensive research effort and very accurate numerical description of the 

two-dimension lid-driven cavity flow, the prediction of properties of corresponding three-

dimensional flows for a given cavity geometry and at a given Reynolds number is still 

elusive. For example, the critical Reynolds number for a primary flow bifurcation was 

reported to be below 6000 (e.g. Ref. 1 and references therein). Bogatyrev & Gorin 
2 and 

later Koseff & Street 3 experimentally observed 3-D unsteady flows at much lower 

Reynolds numbers, being close to 3000 in a cubical cavity. The observation was then 

verified by a more recent numerical study of Iwatsu et al. 4 who predicted an instability 

onset at the range of 2000 < Re < 3000.  Thus, Figure 20a in Shankar and Deshpande 
1, 

shows oscillations of velocity close to the wall of a cubical cavity, measured at Re = 3200 

by Prasad and Koseff. 
5 The authors, however, did not pursue this research to identify the 

lowest Reynolds number at which the large amplitude fluctuations are observable. Very 

recently we (Feldman and Gelfgat 
6) reported rather accurate time-dependent 

computations of a 3D cubical lid-driven cavity flow, in which the steady – oscillatory 

transition was found to take place at even lower Reynolds number of approximately 

1900. In order to validate these numerical results we conducted a series of experiments in 

a cubical cavity that was used for the Lagrangian tracking (Krezier et al. 
7). We report 

here on the very good qualitative and quantitative agreement between the numerical and 

experimental results.  

The experimental setup is briefly described in the following Section II, for the sake of 

completeness. We proceed to the main results in Section III, comparing the flow before 

and after the steady oscillatory transition, namely at the Reynolds numbers of 1480 and 

1970. We present flow snapshots, describe in details the unstable modes and give some 

conclusive remarks in Section IV.  

II. EXPERIMENTAL SET UP 

Experiments are performed in a cubical with a side length L =80 mm, whose upper 

boundary moves with a constant velocity U  in the x direction as shown in Figure 1-a. All 

other cavity boundaries are stationary. The cavity is filled with a tap water and its moving  
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(a) (b) 

FIG. 1. Lid driven cavity:  (a) physical model and coordinate system ;(b) sketch of the experimental set up.  

lid comprises a circularly closed plastic belt driven by a DC motor. The particle image 

velocimetry (PIV) technique was used for the flow measurements. The experimental 

setup is shown schematically in Figure 1-b. A more detailed description including 

hardware and software components for data acquisition and processing, as well as 

estimated accuracy of the experimental measurements can be found in. 
7 The flow 

velocities were measured in the mid-plane, being also the symmetry plane, using particle 

image velocimetry (PIV) system by TSI Inc. (including the 120 mJ NewWave Solo 

Nd:YAG laser, 4096 x 2048 pixels CCD camera, Nikkor 60mm lens). About 2000 PIV 

snapshots were taken at the rate of 2 Hz and analyzed using the standard FFT-based 

cross-correlation algorithms using various commercial (Insight 3G, TSI Inc)  and open-

source software (OpenPIV , http://www.openpiv.net) for the verification purposes.  

  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

All experimental results obtained in the present study were normalized using the 

scales L, U, t=L/U for length, velocity and time, respectively. Thus, the only 

dimensionless parameter determining the flow in a cubical cavity is the Reynolds number 

defined as Re=UL/ν, where ν  is a kinematic viscosity. Note also that for the constant 

values of  cavity length  L and kinematic viscosity ν, the Reynolds number is varied only 

by a variation of the velocity, U. In the presented series of experiments we varied the 
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velocity of the lid to obtain the stable flow below (Re = 1480) and above (Re = 1970) 

critical point, predicted in our numerical study (Feldman and Gelfgat 
6). 

Validation of the experimental results 

Figure 2 illustrates a cross-verification of the experimental and numerical results in 

the sub-critical steady state regime, showing velocity distributions along two centerlines 

(x,0,0) and (0,y,0) at the cavity mid-plane cross section for Re = 1480.   

 

 

 

 

 

 

 

 

FIG.2.Comparison of the numerically (solid line) and experimentally (◊) obtained centerline velocities at 

the cavity mid-plane, Re = 1480.  

A very good agreement is observed between the experimental and numerical results for 

the entire range of vx and vy velocity components with the exception of two narrow 

regions -0.5 ≤ y ≤ -0.4  and  0.4 ≤ y ≤ 0.5 where the PIV measurements are not accurate 

enough, so that the corresponding points are not included in the figure.  The experimental 

accuracy is limited near the reflecting surfaces. In spite of that, the experimental and the 

numerical vy values are compared favorably in the vicinity of the cavity left and right 

walls. 

Steady and non steady flow analysis 

Following the numerical results of Feldman & Gelfgat 6, who investigated a set of 

sub- and slightly supercritical flows in a cubical lid-driven cavity, the steady – unsteady 
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transition occurs via subcritical Hopf bifurcation with 1914≈crRe .  It was also observed 

that at Re = 1970 the flow exhibits oscillations characterized by a dimensionless angular 

frequency ω=0.575 and its subsequent multiple harmonics.  This fact motivated the next 

step of the present study at which a set of experiments have been performed for gradually 

increasing Reynolds numbers: Re =1480, 1700, 1970, 2100. It should be emphasized that 

because of the assumed sub-criticality of the Hopf bifurcation 6 the experiments should be 

performed in order of increasing Re numbers. When going between two adjacent Re 

numbers, the data acquisition for each Re started only after a sufficiently long time period 

(at least 500 turn-over times) necessary for the flow to reach asymptotic steady or 

oscillatory state. Figure 3 presents Fourier transform analysis of  vx component measured 

at the cavity mid-plane cross section in the control point (-0.325,-0.378,0) .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.Fourier transform of  vx velocity component measured  at the  control point           ( -0.325, -0.378, 0) 

located in the cavity mid-plane (z = 0) for: (a)-steady state flow, Re = 1480; (b)-unsteady flow, Re = 1970.  

 

Re = 1480 

Re = 1970 
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The control point is characterized by maximal amplitude of vx oscillations observed 

numerically in the unsteady flow regime. As follows from Figure 3-a, at Re =1480 the 

frequency spectrum over the entire range of angular frequencies is flat with the close to 

zero amplitude, indicating on the steady state flow regime. The behavior at Re =1700 is 

similar, in agreement with the numerical results of Ref.  6 and not shown here for the sake 

of brevity. Further increase of Reynolds number to the value above the critical one,       

Re = 1970, led to a qualitatively different spectrum pattern containing discrete frequency 

spectrum with non-zero amplitude values corresponding to several non-decaying modes 

which determine unsteady oscillating flow inside the cavity (figure 3-b). These 

observations comprise a clear evidence for steady – unsteady transition taking place in 

the range of 1700 < Re < 1970. The angular frequency of the most unstable mode, 

corresponding to the largest amplitude, is ω = 0.486. Note also that the leading mode is 

accompanied by its subsequent doubled harmonic  2ω = 0.972 whose presence is typical 

for non-linear dynamic systems. It should be noted that experimentally obtained angular 

frequency value of the most unstable mode differs by approximately 16% from that 

estimated numerically in Ref.  6. Along with the leading mode and its subsequent doubled 

harmonic there are also two additional modes whose influence on the cavity flow is 

significant. The modes are characterized by the angular frequency values equal to 

 ω = 0.208 and ω = 0.694 which are close to 1/2 and 3/4 of the leading mode angular 

frequency. Note that the larger frequency ω = 0.694 is just a superposition of the two 

lower ones, so that only the lowest frequency can be an independent harmonics.  

Unfortunately, the experimental sampling rate is too low to enable a definite conclusion 

here. We believe that appearance of the lower frequency is due to either a period-

doubling or secondary Hopf bifurcation. The definite conclusion needs to be done by 

further experimental measurements allowing high resolution of the discrete frequency 

spectrum, which in the present work is restricted by the second decimal digit. The Fourier 

transform of vx  component performed for Re =2100  resulted in a wide dispersion of the 

angular frequencies indicating on appearance of continuous spectrum. This is an apparent 

nonlinear effect expected for the growing Reynolds number. The flow characteristics 

measured at Re =1970 are considered to be the closest to those of an instability onset 

predicted numerically. 
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For further comparison with the numerical results we filter out the main harmonics of 

oscillations using a standard band-pass filter. Figure 4 compares spatial distributions of vx  

and vy  amplitudes at the cavity mid-plane computed and measured at Re =1970.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Spatial distributions of maximal vx and vy oscillation amplitudes at the cavity mid-plane,             

Re = 1970: (a)-(b) numerical results; (c)-(d) experimental results.    

A good qualitative agreement between the numerical and the experimental spatial 

distributions for both amplitudes makes us confident of the fact that the same instability 
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has been computed and measured. As it has been already stated in Ref.  6  the maximum 

values of  vx  and vy oscillation  amplitudes are located at the interface of the primary 

eddy with  the secondary downstream and the secondary upstream eddies located 

respectively in the lower right and left corners of the mid plane cross section (see also 

figure 5). These numerical observations are in full agreement with experimental ones of 

the present study. The quantitative comparison reveals that the numerical values of vx  

and vy amplitudes are larger than the experimental ones. The maximum values of the 

measured vx and vy amplitudes comprise about 64% and 80%, respectively, from the 

corresponding computed values. This fact may be explained by existence of the energy 

dispersion intrinsic in the experimental set up in terms of undesirable vibrations of the 

moving lid and also induced by the measurement inaccuracies near the walls. The latter 

explains also the deviations between the numerical and the experimental spatial locations 

at which the maximal amplitude values of both velocity components are observed (see 

Table I).  

 

 

 

Table I. Comparison between locations of maximal values of velocity amplitudes obtained numerically 

experimentally.   

The filtered flow field, containing only the most unstable mode and its subsequent 

doubled harmonic, is used also for a visualization of the 3D cavity flow. Figure 5–a 

presents a snapshot of the typical flow pattern  at the cavity mid-plane at Re =1970  

characterized by secondary upstream and secondary downstream eddies located in the  

left and right corners, respectively, and by a primary eddy located in the central part of 

the cavity.  Figures 5b-5e show four velocity snapshots at the left and right corners of the 

mid-plane where the maximum values of velocity oscillations are observed. It is assumed 

that the latter, as well as the entire instability mechanism, is a result of interaction 

between the primary and the secondary eddies taking place at the boundary between 

them.  The oscillating pattern of a slightly supercritical flow has been already described  

Maximal value  of   
vy  Amplitude 

Maximal value  of  
vx  Amplitude 

 

(0.289,−0.383,0) (−0.338,−0.343,0) Numerical results  

(0.275,−0.427,0) (−0.325,−0.378,0) Experimental results 
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Fugure 5. Flow velocity vectors at the cavity mid-plane (x, y, 0) over a single period, Re = 1970 :(a) general 

view; (b)-(e) velocity snapshots of the secondary upstream and downstream eddies: (b) t = 0;(c) t = 3.23; 

(d) t = 6.46; (e) t = 9.7. The lid motion is indicated by the arrow (enhanced online). 

numerically in Ref.  6.  The snapshots in figure 5 are equally spaced in time over a single 

period. For the visualization purposes all velocity vectors are plotted with the uniform 

length independently of their numerical values. Because of the low precision of the flow 
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(b) (c) (d) (e) 
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properties measured close to the cavity boundaries the velocity values in these regions 

were estimated by a linear interpolation between the corresponding boundary values, 

known from the non-slip boundary conditions, and the nearby measured interior velocity 

values.  

IV. CONCLUSSIONS 

An experimental study of a cubical lid driven cavity flow for a set of Re numbers 

corresponding to the steady and unsteady flow regimes has been performed. The study 

showed that the steady state is stable for Re < 1700  at least. The obtained experimental 

results have been then successfully compared with the corresponding numerical steady 

state solutions. It was found that a steady – unsteady transition occurs in the range     

1700 < Re < 1970. Beyond Re = 1970 the flow becomes oscillatory with the 

dimensionless angular frequency of the main harmonics 486.0≈ω . Both, the location of 

the threshold and the oscillations frequency are in a good agreement with the numerical 

results of Ref.  6 where instability had been predicted at 1914≈crRe    with 0575≈ω . 

The experimental pattern of the spatial distribution of the velocity amplitudes is in good 

qualitative agreement with that of the numerical solution, thus proving that both results 

address the same instability mode. Accurate quantitative measurement of the critical 

Reynolds number remains open and will comprise the scope of our future studies. 

Nevertheless, we believe that the accuracy of the present results is sufficient for the 

validation of the main result - experimental observation of the oscillatory instability at 

Reynolds numbers, which are lower than predicted in former experiments and rather 

close to the recently predicted value. Undoubtedly, further improvement of the 

experimental set up and a larger set of experiments, varying the size, velocity and the 

kinematic viscosity of the fluid, directed toward diminishing of the experimental 

uncertainties is still needed to gather the quantitative data for the primary and consequent 

transitions in three-dimensional lid-driven cavity flows.   
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