Linear Stability Analysis of Lid Driven and Convective Flows

Accelerated by an Efficient Fully Coupled Time-Marching Algorithm

Yu. Feldman and A. Gelfgat

School of Mechanical Engineering Faculty of Engineering Tel-Aviv University

Third International Symposium on Instabilities and Bifurcations in Fluid Dynamics, Nottingham, Great Britain, August 2009.

Outline

>Pressure-velocity coupled formulation of the Navier-Stokes equations
>Benchmark problems
> Analytical Solution Accelerated (ASA) smoother
> 3D Domain Decomposition and Scalability Properties
> Application to the linear stability analysis
> Conclusions

Incompressible N-S Equations – Numerical Challenge

Continuity - $\nabla \cdot \boldsymbol{u} = 0$

Momentum-

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{\operatorname{Re}} \nabla^2 \boldsymbol{u}$$

No separate equation for pressureNo boundary conditions for pressure

Incompressible N-S Equations – Numerical Challenge (Cont.)

Pressure Projection Approach

- ✓ High numerical robustness
- ✓ Low memory consumption
- Slow rate of numerical convergence
- X Non-physical pressure field
- Not applicable for liquid solid interface problems

Pressure–Velocity Coupled Approach

- ✓ High rate of numerical convergence
- ✓ The "most natural " way to solve N-S equations
- \checkmark The obtained pressure is physical
- **X** High memory consumption
- Not as numerically robust as pressure projection methods

Benchmark Problems

Lid-Driven Cubic Cavity

 $\nabla \cdot \boldsymbol{u} = 0$ $\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \boldsymbol{u}$ $\checkmark \text{Explicit Discretization}$

 $(u^n \cdot \nabla)u^n$ •Semi-Implicit Discretization

 $(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{u}^{n+1}$

Realistic Boundary Conditions:

u = 0 - at all static walls no slip/no penetration

|u| = v -at the moving wall the flow velocity is equal to that of the moving wall itself No boundary condition for pressure is needed

Benchmark Problems (Cont.)

Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \sqrt{\frac{1}{\text{Gr}}} \nabla^2 \boldsymbol{u} + \theta \vec{\boldsymbol{e}_z}$$

$$\frac{\partial \theta}{\partial t} + (\boldsymbol{u} \cdot \nabla) \theta = \frac{1}{\Pr \sqrt{\text{Gr}}} \nabla^2 \theta$$

✓ Explicit Discretization

$$(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{u}^n \quad (\boldsymbol{u}^n\cdot\nabla)\boldsymbol{\theta}^{n+1}$$

Semi-Implicit Discretization

$$(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{u}^{n+1}$$
 $(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{\theta}^{n+1}$

lateral walls

Boundary Conditions: $\frac{\partial \theta}{\partial n} = 0 \text{ or } \theta = 1 - y \quad \text{-horizontal and}$

 $\theta = 1, \theta = 0$ -isothermal vertical walls, v = H/Wv = 0

$$u = 0$$
 -at all walls,

No boundary condition for pressure is needed

Accelerated Coupled Line Gauss-Seidel Smoother (ASA-CLGS) -2D

Zeng and Wesseling (1993) – CLGS: Horizontal (vertical) sweeping with horizontally (vertically) adjacent pressure linkage Feldman and Gelfgat (2008) – ASA-CLGS:Horizontal (vertical) sweeping without horizontally (vertically) adjacent pressure linkage

CLGS and ASA-CLGS Efficiency Estimation for 2D

Domain Decomposition for 3D Configuration

 ✓ Existance of Analytical Solution for the Whole Column Allows for 2D
 Virtual Topology of 3D Configuration.

All volumes located at the sub -volume faces exchange data with neighbors

All volumes located at the sub -volume vertical edges exchange data with

diagonal neighbors

3D Configuration- Data Exchange Principle

The Method Scalability Characteristics

Number of CPU is restricted by the coarsest level (8x8=64 CPU)

The Method Scalability Characteristics (Cont.)

Differentially Heated Cavity, Gr=3.5x10⁶

Centro symmetry is preserved (opposite phases for opposite corners)

Leading Mod Frequency and Estimation of Critical Gr

According to the Hopf Theorem $Gr - Gr_{cr} \approx \mu A^2 \longrightarrow Gr_{cr} \approx 3.35 \times 10^6$ **Experimental Results of Jones and Briggs, 1989**: $\begin{aligned} f_{cr} \approx 0.25 \\ Gr_{cr} \approx 4.44 \times 10^6 \end{aligned}$

Conclusions

- An Accelerated Semi-Analytical Coupled Line Implicit Gauss-Seidel Smoother (ASA-CLGS) and Full Pressure Coupled Direct Solution (FPDS) were developed and implemented for the solution of incompressibel N-S equations.
- ✓ The Navier-Stokes and Boussinesq equations are solved without pressure-velocity decoupling.
- ✓ The code was verified on existing benchmark solutions for the liddriven and thermally driven cavities.
- ✓ The potential implementation of the developed time marching solvers to the linear stability analysis was studied.
- ✓ The characteristic CPU times consumed for a single time step per one node and per one CPU are of order 5 ×10⁻³ msec and 10⁻² msec for 2D and 3D calculations, respectively.