A novel multigrid approach for solving incompressible Navier-Stokes equations on massively parallel supercomputers

Yu. Feldman and A. Gelfgat

School of Mechanical Engineering Faculty of Engineering Tel-Aviv University

Outline

>Concept and motivation

>Pressure-velocity coupled formulation of the Navier-Stokes equations

➢ Benchmark problems

> Analytical Solution Accelerated (ASA) smoother

>3D domain decomposition and scalability properties

>Application to the linear stability analysis

≻Conclusions

Target: Incompressible Navier-Stokes equations

Continuity:

$$\nabla \cdot \boldsymbol{u} = 0$$

Momentum:

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{Re}\nabla^2 \boldsymbol{u}$$

No separate equation for pressure
 No boundary conditions for pressure
 Assume: no simplifications possible

Concept: *Fixed structured grid* + *Pressure-velocity linked formulation*

Curved boundaries on fixed grid:

Immersed boundary approach (Peskin, 1977)

Choi et al., 2007

Moving boundaries on fixed grid:

Volume-of-Fluid (Hirt & Nichols, 1981) or Level Set (Osher, 1988) methods

Numerical Simulation of Splashing Drops

M. Rieber and A. Frohn ITLR University of Stuttgart Germany

Why not to decouple pressure and velocity ?

Pressure-velocity decoupling:

- ✓ Good robustness
- ✓ Low memory consumption
- **X** Slow rate of convergence
- × Non-physical pressure field
- Not applicable for liquid solid interface problems

Pressure-velocity coupling:

- ✓ Better convergence
- \checkmark This is what the nature asks for
- \checkmark The obtained pressure is physical
- **×** High memory consumption
- X Not as robust as decoupling methods

Staggered grid for finite volume method

7

The target: *efficient time-stepping*

To perform a time step <=> inverse of the *Stokes operator*

Multigrid approach – a possible choice

✓ Low memory and CPU time consumption, O(N)

✓ Pressure-velocity coupling can be utilized

✓ Easily parallelized (by MPI or Open MP tools)

X Non-constant convergence rate

× Sophisticated programming is needed

Multigrid approach – the concept

Symmetrical coupled Gauss-Seidel smoothing operator (SCGS)

S.P. Vanka (1985) – analytical solution for a *single* finite volume

$$(u, v)^{\text{new}} = (u, v)^{\text{old}} + r_{(u, v)}(u, v)$$

$$p^{\rm new} = p^{\rm old} + r_{\rm p} p'$$

Accelerated Coupled Line Gauss-Seidel Smoother (ASA-CLGS) -2D

Zeng and Wesseling (1993) – CLGS: Horizontal (vertical) sweeping with horizontally (vertically) adjacent pressure linkage: inverse of block – tri-diagonal matrix for single row (column)

Feldman and Gelfgat (2009) – ASA-CLGS: Horizontal (vertical) sweeping without horizontally (vertically) adjacent pressure linkage: analytical solution over single row (column)

Accelerated coupled line Gauss-Seidel smoother (ASA-CLGS) -2D

Zeng and Wesseling (1993) – CLGS:

Feldman and Gelfgat (2008) – ASA-CLGS:

 $\begin{aligned} A_{i+1/2,j}^{(x)} u'_{i+1/2,j} + B_{i+1/2,j}^{(x)} p'_{i,j} &= R_{i+1/2,j}^{(x)} & A_{i+1/2,j}^{(x)} u'_{i+1/2,j} + B_{i+1/2,j}^{(x)} p'_{i,j} &= R_{i+1/2,j}^{(x)} \\ A_{i-1/2,j}^{(x)} u'_{i-1/2,j} - B_{i-1/2,j}^{(x)} p'_{i,j} &= R_{i-1/2,j}^{(x)} & A_{i-1/2,j}^{(x)} u'_{i-1/2,j} - B_{i-1/2,j}^{(x)} p'_{i,j} &= R_{i-1/2,j}^{(x)} \\ A_{i,j+1/2}^{(y)} v'_{ij+1/2} - B_{i,j+1/2}^{(y)} \left(p'_{i,j+1} - p'_{i,j} \right) &= R_{i,j+1/2}^{(y)} & A_{i,j+1/2}^{(y)} v'_{ij+1/2} + B_{i,j+1/2}^{(y)} p'_{i,j} &= \widetilde{R}_{i,j+1/2}^{(y)} \\ A_{i,j}^{(x)} \left(u'_{i+1/2,j} - u'_{i-1/2,j} \right) + A_{i,j}^{(y)} \left(v'_{i,j+1/2} - v'_{i,j-1/2} \right) &= 0 & A_{i,j}^{(x)} \left(u'_{i+1/2,j} - u'_{i-1/2,j} \right) + A_{i,j}^{(y)} \left(v'_{i,j+1/2} - v'_{i,j-1/2} \right) &= 0 \end{aligned}$

where

e
$$\widetilde{R}_{i,j+1/2}^{(y)} = R_{i,j+1/2}^{(y)} + B_{i,j+1/2}^{(y)} p'_{i,j+1}$$

Analytical solution over a column for ASA-CLGS smoother

$$V_{L} \begin{pmatrix} y \\ k-1 \\ k-1$$

CLGS and ASA-CLGS efficiency estimation for 2D

ASA-CLGS -efficiency estimation for 3D

Advantages and limitations of ASA-CLGS Approach

- There exists an analytical solution for ***** Up to now applicable only for the entire corrections row (column).
 structured Cartesian grids.
- ✓ Only *O*(5M) operations are needed to obtain the entire row (column) corrections per one sweep for both
 2D and 3D geometries
- **Given Stretched Brids.**
- Effective for flows with a dominating direction

Slow convergence rate for large time steps

Domain decomposition for 3D configuration

Existence of analytical solution for the whole column allows for 2D virtual topology of 3D configuration.

All volumes located at the sub -volume faces exchange data with neighbors All volumes located at the sub -volume vertical edges exchange data with diagonal neighbors

3D Configuration: data exchange principle

Critical points to enhance algorithm scalability

- > Blocking communication between neighboring processors (synchronous send-and-receive commands).
- > Explicit data communication between all neighbor processors , including the diagonal neighbors.
- > Utilizing telescoping multigrid approach may cause problems in proper balancing on the finest grid, therefore blocking communication should be used.
- > The decoupled energy equation is solved only on the finest grid by a simple Gauss-Seidel iteration.

Scalability characteristics of ASA-CLGS multigrid approach

Number of CPU is restricted by the coarsest level (8x8=64 CPU)²¹

Scalability characteristics of ASA-CLGS – single grid approach

only 16 hours for 10⁶ time steps

General solution strategies

- For a large number of processors the single-grid scalability is significantly more efficient than that of the multigrid.
- The efficiency of single-grid approach may be obliterated if at two consecutive time steps the velocity and/or pressure are considerably different. In this case a relatively low amount of involved cores will be compensated by a high convergence rate of the multigrid.
- Once a stable asymptotic regime is approached, the calculations can be performed on the single finest grid only with maximal possible number of CPU cores.

Verification: Lid–driven cavity, $Re=10^3$

p, v_v and v_z distribution along two centerlines

The present solution riangle and the solution of Albensoeder and Kuhlmann (2005) \Box

Steady flow in the cubic lid-driven cavity, *Re*=1900

Lid-driven cavity with lid moving at 45° to the *x* axis, *Re*=1000.

Reflection symmetric flow with respect to diagonal plane No evidence of the secondary upstream eddy ²⁷

Oscillatory flow inside cubic lid-driven Cavity, *Re*=1970.

The period of oscillation remains grid-independent

The maximum deviation between the values calculated on 152³ and 200³ grids is less then 0.5%.

Oscillatory instability in 2D and 3D lid-driven cavities

2D absolute values of perturbations v'_v and v'_z , *Re*=8700 v′_y 0.065 v'z 0.05 0.06 0.04 The maximum oscillations 0.05 Ζ 0.04 0.03 Ζ for the both perturbations 0.03 0.02 are at the same place 0.02 0.01 0.01 0 0 Y 3D v_x and v_z oscillations amplitude at the cavity midplane, Re=1970 $A(v_z)$ $A(v_{v})$ 0.09 0.06 0.08 0.05 0.07 The maximum oscillations 0.06 0.04 for the velocity oscillations 0.05 Ζ 0.03 Ζ 0.04 are not at the same place 0.03 0.02 0.02 0.01 0.01 0 0 V 29

Iso-surface of oscillations amplitude

A decay of the amplitudes is observed when approaching the no-slip spanwise boundaries

Subcritical Character of Bifurcation

Oscillations of *x*- and *z*- velocity components at the point (-0.338,-0.338,0)

Calculation is preformed on 104^3 grid at *Re*=1945 starting at *t*=0 from oscillatory state at *Re*=1970.

Estimation of Re_{cr} for **subcritical** Hopf bifurcation

Oscillations of f(t) decay ~ $\exp[(\lambda_r + i\omega)t], \lambda_r < 0$

$$\lambda_r = \frac{\ln(A_k/A_{k-1})}{t_k - t_{k-1}}$$

 $A_k - k$ -th maximum of an oscillatory signal

Grid			<i>Re</i> _{cr}	Richardson	
Resolution				Extrapolation	
104 ³	Re=1925 $\lambda_r = -3.99 \times 10^{-3}$ $\omega=0.575$	Re=1955 $\lambda_r = -4.12 \times 10^{-4}$ $\omega=0.575$	1958		
152 ³	Re=1900 $\lambda_r = -4.41 \times 10^{-3}$ $\omega=0.575$	Re=1925 $\lambda_r = -1.44 \times 10^{-3}$ $\omega=0.575$	1937	$Re_{cr} \approx 1919$	
200 ³	Re=1900 $\lambda_r = -3.36 \times 10^{-3}$ $\omega=0.575$	Re=1925 $\lambda_r = -2.81 \times 10^{-4}$ $\omega=0.575$	1927	$Re_{cr} \approx 1914$	

Symmetry breaking during the transition from steady to oscillatory flow

Maximal v_x and v_y Oscillation Amplitudes at the Cavity Mid-Plane

Lid-driven cavity – Summary

- ✓ Transition from steady to oscillatory state was studied by timedependent three-dimensional computations on three successive grids of 104³, 152³ and 200³ nodes. Grid independence of the results was established.
- ✓ Present time-dependent computations showed that the oscillatory instability of lid driven flow in a cube with no-slip walls takes place at Re_{cr} ≈1914 with a dimensionless frequency ω_{cr} =0.575.
- ✓ The instability sets in via a subcritical Hopf bifurcation.
- ✓ The transition from steady to oscillatory state is followed by breaking of the symmetry with respect to the cavity midplane.

Verification: Differentially heated cavity

Comparison with Wakashima, 2004. Adiabatic horizontal walls

		Ra=10 ⁴			$Ra = 10^5$		Ra=10 ⁶			
		Wakashima 120 ³	Present 100 ³	Dev. (%)	Wakashima 120 ³	Present 100 ³	Dev. (%)	Wakashima 120 ³	Present 100 ³	Dev. (%)
	$u_{y max}(z)$ (x=0.5,y=0.5)	0.1984 (0.825)	0.197 (0.825)	0.7	0.1416 (0.85)	0.1434 (0.85)	1.26	0.0811 (0.8603)	0.0802 (0.8605)	1.1
-	$u_{z max}(y)$ (x=0.5,z=0.5)	0.2216 (0.177)	0.2202 (0.12)	0.6	0.2464 (0.068)	0.2464 (0.063)	0	0.2583 (0.0323)	0.2575 (0.0337)	0.3
	Nu _{hot}	2.0624	2.0547	0.37	4.3665	4.3349	0.72	8.6973	8.7584	0.7
	Nu _{cold}		2.0547			4.3349			8.7584	

At the constant y plane the average Nu number is $\operatorname{Nu}_{y} = \int_{0}^{1} \int_{0}^{1} \left[\operatorname{Pr} \sqrt{\operatorname{Gr}} V \theta - \frac{\partial \theta}{\partial Y} \right] dX dZ_{3\theta}$

Steady flow visualization inside the cubic differentially heated cavity

Adiabatic horizontal walls, $Ra = 10^6$

Temperature distribution in a laterally heated cubic cavity

Adiabatic and perfectly conducting horizontal walls, $Ra = 10^6$

Ra_{cr} for Steady-Oscillatory Transition in a Differentially Heated Cavity, (104³ grid)

Experimental Results of Jones and Briggs, 1989 : $f_{cr} \approx 0.248 Ra_{cr} \approx 3.0 \times 10^6$

Differentially heated cavity – Summary

- ✓ The code was successfully verified on existing steady state benchmark solutions for the wide range of *Ra* numbers.
- ✓ Preliminary estimation of critical *Gr* number for the Hopf bifurcation on 103³ grid was performed. The obtained result is well compared with existing experimental data.
- ✓ The grid independence should be established by use of finer grids.

Newton iteration with time-stepping L.S. Tuckerman, 1999

 $(N_U + L)u = (N + L)U$ $U \leftarrow U - u$

$$\left(I - \Delta tL\right)^{-1} \left(I + \Delta tN_{U} - I\right)\right] u = \left[\left(I - \Delta tL\right)^{-1} \left(I + \Delta tN\left(U\right) - I\right)\right] U$$

Difference between two consecutive linearized time steps Difference between two consecutive time steps

For large Δt , $(I - \Delta tL)^{-1} \approx L^{-1}$, is a preconditioner for $N_U + L$

Linear stability analysis with time-stepping L.S. Tuckerman, 1999

Inverse power method for the leading eigen value $u_{n+1} = (N_U + L)^{-1} u_n$ $\left[(I - \Delta tL)^{-1} (I + \Delta tN_U - I) \right] u_{n+1} = (I - \Delta tL)^{-1} \Delta tu_n$

Difference between two consecutive linearized time steps Difference between two consecutive time steps of the Stokes operator

Good performance for 2D configuration Still a challenge for 3D configuration

Conclusions

- ✓ A novel multigrid solver for time-dependent incompressible Navier-Stokes equations in pressure-velocity coupled formulation is developed and implemented.
- ✓ The characteristic CPU times consumed for a single time step per one node and per one CPU are of order 5 ×10⁻³ msec and 10⁻² msec for 2D and 3D calculations, respectively.
- ✓ The approach performs well for time-dependent calculations with a small time step,
- ✓ Direct Newton and Arnoldi iterations needed for stability analysis require large time steps, which causes a slow convergence for 3D problems