Linear Stability Analysis of Lid Driven and Convective Flows

Accelerated by an Efficient Fully Coupled Time-Marching Algorithm

Yu. Feldman and A. Gelfgat

School of Mechanical Engineering Faculty of Engineering Tel-Aviv University

Third International Symposium on Instabilities and Bifurcations in Fluid Dynamics, Nottingham, Great Britain, August 2009.

Outline

Pressure-velocity coupled formulation of the Navier-Stokes equations
The direct and the multigrid approach
Numerical technique
Analytical Solution Accelerated (ASA) smoother
Comparison to existing benchmark solutions
Application to the linear stability analysis

≻Conclusions

Incompressible N-S Equations – Numerical Challenge

Continuity - $\nabla \cdot \boldsymbol{u} = 0$

Momentum-

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\nabla p + \frac{1}{\operatorname{Re}} \nabla^2 \boldsymbol{u}$$

No separate equation for pressureNo boundary conditions for pressure

Incompressible N-S Equations – Numerical Challenge (Cont.)

Pressure Projection Approach

- ✓ High numerical robustness
- ✓ Low memory consumption
- Slow rate of numerical convergence
- X Non-physical pressure field
- Not applicable for liquid solid interface problems

Pressure–Velocity Coupled Approach

- ✓ High rate of numerical convergence
- ✓ The "most natural " way to solve N-S equations
- \checkmark The obtained pressure is physical
- **×** High memory consumption
- Not as numerically robust as pressure projection methods

Benchmark Problems

Lid-Driven Cubic Cavity

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \boldsymbol{u}$$

$$\checkmark \text{Explicit Discretization}$$

$$(\boldsymbol{u}^n \cdot \nabla) \boldsymbol{u}^n$$

Semi-Implicit Discretization

$$(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{u}^{n+1}$$

Realistic Boundary Conditions:

u = 0 - at all static walls no slip/no penetration

|u| = v -at the moving wall the flow velocity is equal to that of the moving wall itself No boundary condition for pressure is needed

Benchmark Problems (Cont.)

Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \sqrt{\frac{1}{\mathrm{Gr}}} \nabla^2 \boldsymbol{u} + \theta \vec{\boldsymbol{e}_z}$$

$$\frac{\partial \theta}{\partial t} + (\boldsymbol{u} \cdot \nabla) \theta = \frac{1}{\mathrm{Pr}\sqrt{\mathrm{Gr}}} \nabla^2 \theta$$

✓ Explicit Discretization

$$(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{u}^n \quad (\boldsymbol{u}^n\cdot\nabla)\boldsymbol{\theta}^{n+1}$$

Semi-Implicit Discretization

$$(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{u}^{n+1}$$
 $(\boldsymbol{u}^n\cdot\nabla)\boldsymbol{\theta}^{n+1}$

Boundary Conditions:

 $\theta = 1, \theta = 0$ -isothermal vertical walls, v = H/Wv = 0

$$u = 0$$
 -at all walls,

No boundary condition for pressure is needed

 $\frac{\partial \theta}{\partial n} = 0 \text{ or } \theta = 1 - y \quad \text{-horizontal and}$

6/27

lateral walls

Time and spatial discretization

Second order backward differentiation - $\frac{\partial f^{n+1}}{\partial t} = \frac{3f^{n+1} - 4f^n + f^{n-1}}{2\Delta t} + O(\Delta t^2)$ Stokes operator linearization
— Temperature – velocity decoupling $\left(a_{(i,j,k)}^{\theta} - \frac{3}{2\Lambda\tau}\right)\theta_{(i,j,k)}^{n+1} + \sum_{i,j,k}a_{i,j,k}^{\theta}\theta_{i,j,k}^{n+1} = RHP_{\theta}^{n}$ Energy -Continuity - $\frac{\left(u_{(i,j,k)}^{n+1} - u_{(i-1,j,k)}^{n+1}\right)}{Hx(i-1)} + \frac{\left(v_{(i,j,k)}^{n+1} - v_{(i,j-1,k)}^{n+1}\right)}{Hv(i-1)} + \frac{\left(w_{(i,j,k)}^{n+1} - w_{(i,j,k-1)}^{n+1}\right)}{Hz(k-1)} = 0$ Momentum- $\left(a_{(i,j,k)}^{u} - \frac{3}{2\Lambda\tau}\right)u_{(i,j,k)}^{n+1} + \sum_{(i,j,k)}a_{(i,j,k)}^{u}u_{(i,j,k)}^{n+1} - \nabla p^{(n+1)} = RHP_{u}^{n}$

Conservative second order control volume method

The Multigrid Algorithm Symmetrical Coupled Gauss-Seidel Smoothing Operator (SCGS)

S.P. Vanka (1985) – analytical solution for a *single* finite volume

$$(u,v)^{\text{new}} = (u,v)^{\text{old}} + r_{(u,v)}(u,v)'$$

$$p^{\text{new}} = p^{\text{old}} + r_p p'$$

$$A_1 = a_e^u - \frac{3}{2\Delta\tau} \qquad A_3 = a_w^u - \frac{3}{2\Delta\tau}$$

$$A_5 = a_n^u - \frac{3}{2\Delta\tau} \qquad A_9 = a_s^u - \frac{3}{2\Delta\tau}$$

for Stokes operator and constant time step formulation A_1, A_3, A_5, A_9 are constants

Accelerated Coupled Line Gauss-Seidel Smoother (ASA-CLGS) -2D

Zeng and Wesseling (1993) – CLGS: Horizontal (vertical) sweeping with horizontally (vertically) adjacent pressure linkage Feldman and Gelfgat (2008) – ASA-CLGS:Horizontal (vertical) sweeping without horizontally (vertically) adjacent pressure linkage

Accelerated Coupled Line Gauss-Seidel Smoother (ASA-CLGS) -2D, (Cont)

Zeng and Wesseling (1993) – CLGS:

Feldman and Gelfgat (2008) – ASA-CLGS:

 $\begin{aligned} A_{i+1/2,j}^{(x)} u'_{i+1/2,j} + B_{i+1/2,j}^{(x)} p'_{i,j} &= R_{i+1/2,j}^{(x)} & A_{i+1/2,j}^{(x)} u'_{i+1/2,j} + B_{i+1/2,j}^{(x)} p'_{i,j} &= R_{i+1/2,j}^{(x)} \\ A_{i-1/2,j}^{(x)} u'_{i-1/2,j} - B_{i-1/2,j}^{(x)} p'_{i,j} &= R_{i-1/2,j}^{(x)} & A_{i-1/2,j}^{(x)} u'_{i-1/2,j} - B_{i-1/2,j}^{(x)} p'_{i,j} &= R_{i-1/2,j}^{(x)} \\ A_{i,j+1/2}^{(y)} v'_{ij+1/2} - B_{i,j+1/2}^{(y)} \left(p'_{i,j+1} - p'_{i,j} \right) &= R_{i,j+1/2}^{(y)} & A_{i,j+1/2}^{(y)} v'_{ij+1/2} + B_{i,j+1/2}^{(y)} p'_{i,j} &= \widetilde{R}_{i,j+1/2}^{(y)} \\ A_{i,j}^{(x)} \left(u'_{i+1/2,j} - u'_{i-1/2,j} \right) + A_{i,j}^{(y)} \left(v'_{i,j+1/2} - v'_{i,j-1/2} \right) &= 0 & A_{i,j}^{(x)} \left(u'_{i+1/2,j} - u'_{i-1/2,j} \right) + A_{i,j}^{(y)} \left(v'_{i,j+1/2} - v'_{i,j-1/2} \right) &= 0 \end{aligned}$

where

re
$$\widetilde{R}_{i,j+1/2}^{(y)} = R_{i,j+1/2}^{(y)} + B_{i,j+1/2}^{(y)} p'_{i,j+1/2}$$

A Schematic Description of ASA-CLGS Smoother

CLGS and ASA-CLGS Efficiency Estimation for 2D

Advantages of ASA-CLGS Approach

Zeng and Wesseling (CLGS, 1993) Feldman and Gelfgat (ASA-CLGS, 2008)

☑ Still effective for stretched grids.

Still effective for flows with a dominating direction

- ***** Block three-diagonal system is to be solved numerically.
- Increased number of arithmetic operations when transferring from 2D to 3D geometry
- ☑ There exists an analytical solution for the entire corrections row (column).
- ✓ Only O(5M) operations are needed to obtain the entire row (column) corrections per one sweep for both 2D and 3D geometries

The Multigrid Characteristics

☑ Approximately O(N) of the CPU memory and time consumption for both 2D and 3D configurations **FPCD** and Multigrid Approaches – Pros and Cons

FPCD

Multigrid

✓Independent of operating conditions :
 ∆t magnitude, Re, Gr numbers
 ✓Good Scalability of LU decomposition

- **☑** Very effective for small time steps.
- ✓ Very good scalability for both 2D and 3D configurations.
- **☑** Small memory consumption.
- Extremely memory demanding for 3D × Performance of the method depends
 (3D calculations is still a challenge) on operating conditions
- Still insufficient scalability of back substitution process
- Performnce of the method depends on initial guess

FPCD and Multigrid Approaches – Pros and Cons (Cont)

CPU time consumption for one time step -2D configuration

Cubic lid- driven cavity, grid resolution 103³ Comparison with Albensoeder & Kuhlmann, 2005. Flow at Re= 1000

Cubic lid-driven cavity, grid resolution 103³ (cont) Comparison with Albensoeder & Kuhlmann, 2005. Flow at Re= 1000

Cubic lid-driven cavity, grid resolution 103³ (Cont.2) Comparison with Experiments of A. Liberzon, 2008. Flow at Re= 1000

Subproject : which resolution is necessary to fit experimental data with larger Reynolds number ?

Temperature Distribution in a Laterally Heated Cubic Cavity, 103³ Nodes

flow at $Ra=10^6$ θ θ 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 23/27

Application to the Stability Analysis

Newton iteration for steady state solutionL.S. Tuckerman 1999 $(N_U + L)u = (N + L)U$ $U \leftarrow U - u$ $\left[(I - \Delta tL)^{-1} (I + \Delta tN_U - I) \right] u = \left[(I - \Delta tL)^{-1} (I + \Delta tN(U) - I) \right] U$ Difference between two
consecutive linearizedDifference between two
to state the state solution

time steps

consecutive time steps

For large $\Delta t (I - \Delta t L)^{-1} \approx L^{-1}$ is a preconditioner for $N_U + L$ 25/27

Application to the Stability Analysis (Cont)

Inverse power method for the leading eigen value

L.S. Tuckerman 1999

$$u_{n+1} = \left(N_U + L\right)^{-1} u_n$$

$$\left[\left(I - \Delta tL\right)^{-1} \left(I + \Delta tN_U - I\right)\right] u_{n+1} = \underbrace{\left(I - \Delta tL\right)^{-1}}_{-1} \Delta tu_n$$

Difference between two consecutive linearized time steps

Difference between two consecutive time steps of the Stokes operator

Good performance for 2D configuration Still a challenge for 3D configuration

Conclusions

- An Accelerated Semi-Analytical Coupled Line Implicit Gauss-Seidel Smoother (ASA-CLGS) and Full Pressure Coupled Direct Solution (FPDS) were developed and implemented for the solution of incompressibel N-S equations.
- ✓ The Navier-Stokes and Boussinesq equations are solved without pressure-velocity decoupling.
- ✓ The code was verified on existing benchmark solutions for the liddriven and thermally driven cavities.
- ✓ The potential implementation of the developed time marching solvers to the linear stability analysis was studied.
- ✓ The characteristic CPU times consumed for a single time step per one node and per one CPU are of order 5 ×10⁻³ msec and 10⁻² msec for 2D and 3D calculations, respectively.