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1. Introduction

The objective of the proposed research is twofAldthe first stage we intend to develop an
efficient three-dimensional time marching solverelging reliable DNS (direct numerical
simulation) results for confined three-dimensioflalvs in flow regions with realistic physical
boundary conditions. The term “realistic boundaopditions” assume those conditions that can be
realized experimentally, e.g., no-slip conditioAs example of “unrealistic conditions” in this
sense is conditions of translational symmetry. Mhmerical solution must be obtained with a
reliable accuracy, which means use of fine gride. Wdd set effective computations using a non-
uniform grid of 108 nodes as a primary target. For test calculatioas@nsider two well-known
model flows in a three-dimensional rectangular baxnatural convection flow and a three-
dimensional lid-driven cavity flow. Two-dimensionaérsions of these problems are used for
benchmarking purposes only. At the second stagbeofesearch a series of DNS computations
will be carried out with the purpose to study sepécal oscillatory flow regimes. To complete
this task it will be necessary to gather a largewm of numerical data, sufficient for its statsli
post-processing. We estimate that we’ll need sévena of thousands time steps corresponding to
analyze a single asymptotically stable unsteadynmegTherefore we are searching for a numerical
method vyielding the least CPU-time consuming tinmkegdration. Having in mind future
applications of this method to applied problemsnadterials processing we do not want our
numerical method to be restricted by a certain tgpdoundary conditions or shape of flow
domain. We are willing also to check a possibitifytransformation of our three-dimensional time-
stepper into a fully three-dimensional stabilitjveo.

Time marching solver: we discuss a possible acceleration of 2D and &k tmarching
algorithms by implementation of a direct linear rsgamatrices solver to the time-propagation
operator itself, or a similar semi-analytical apmio to the inner iteration of a multigrid iteration
procedure. Both approaches do not need the pregslaety decoupling, which is already an
advantagel]. In the first case the solution is based o drfactorization of the Stokes operator,
defined on the whole computational domain. THe factorization is carried out by a direct
multifrontal sparse solver (we use the MUMPS paekagnd is performed only once at the
beginning of the time-stepping procedure. The st&ige calculation of the velocity and pressure
fields is obtained by the backward substitutioncpdure also realized for sparse trianglland
U matrices.

Another approach utilizes the block implicit muttdysolution based on a coupled line Gauss-
Seidel smoother (CLGSP]. The line-wise smoother computes pressure aftatiae corrections
simultaneously over the entire row of finite volisn&/e had derived an analytical solution of this
assembled equations system, which drastically exateld the whole iterative process. The
modified method is extremely fast since it needsmae than O(H) operations to compute the
values ofN corrections over the entire row for both 2D and @bmetries. A typicaV-cycle
technique 8] is used for multigrid solution of the problem.



Natural convection flow: natural convection is produced by non-uniform dgrdistribution
resulted by the fluid temperature deviation. Themdmenon is of considerable scientific and
engineering importance relating to the problemscofstal growth, solar energy collectors,
electronic equipment cooling, thermal comfort inlldimgs and compartment fires. It has been
extensively studied inside rectangular two- anéekiimensional cavities because of geometrical
simplicity of the boundary conditions. Most of thean be classified in three main groups: cavities
where the flow is due to internal heat generatiavyities heated from below (Rayleigh-Bernard
configuration), and those heated or cooled fronr thigles. The configuration of the latter class
named also differentially heated cavity is an otiyecof the present research.

Lid-driven cavity flow: the motion of a Newtonian fluid within a lid-drieeectangular three-
dimensional cavity is maintained by the continuousmentum diffusion from the moving wall.
Large pressure gradients existing close to thetyaan-slip boundaries, lead to three-dimensional
flow phenomenon. Therefore, despite its simple geoyn the lid-driven cavity flow exhibits
features of more complex geometry flows, comprising of the most important benchmarks for
numerical Navier-Stokes (NS) solvers.

2. Scientific Background

Natural convection in enclosures, as well as lidedr cavity flow are traditional benchmark
problems widely used in computational fluid meclkaniHaving simple geometry and boundary
conditions both configurations allow us to examaiglity of different CFD methods to predict
features of complex flows governed by NS and energations.

An extensive literature survey reveals a large remab papers devoted to natural convection
and lid-driven cavity flows. Here we review onlyotle that are directly relevant to the present
study.

2.1 Free convection in a differentially heated caty

2.1.1 Steady state flows

Steady state flows in a two dimensional thermaliyeh cavity have been used to validate
numerical models during last three decades. The ma@nchmark case proposed by G. de Vahl
Davis [4] corresponds to the air convection with Prandthber of 0.71. Benchmark-quality steady
state solutions for the Rayleigh numbers ot 10f,10°and 16 and adiabatic horizontal walls were
obtained by Le Quere and Alziary de Roquefbit These results are in good agreement with those
obtained in later studie$8] that applied stretching at the near-wall regitmsesolve very thin
boundary layers developing at large Rayleigh numbefr 10 and more. Along with two-
dimensional studies continuing also nowadays, octive in three-dimensional differentially
heated cavity had being explored. Pioneering tdisensional studies were performed on rather
coarse grids and intended to obtain qualitativeialigation of the flow rather then its quantitative
characteristics (see e.®,10]). Further 3D studied [-14] focused on revealing of similarities and
discrepancies between two- and three-dimensioowasstl It was shown that the flow exhibits clear
three-dimensional properties close to non-slip lblanies. In more recent studies the steady state



solutions for values of Rayleigh number varyingwestn 18 and 16 on 112 grid [15] and 128

grid [16] were calculated. The results reportedli@] [were obtained for a high grid resolution and
fourth order finite-differences scheme are therefare believed to be rather accurate. Therefore
they are used as a reference for the validatiagheohumerical code developed in the present study.

2.1.2 Transition to unsteadiness and unsteady flows

Despite a clear three-dimensional physics of thenpmena the prohibitive computational
costs of the three-dimensional numerical simulaiestricted the majority of previous studies on
steady states, transition and supercritical natoamvection flows in enclosed cavities to two
dimensional formulations.

The configuration with perfectly conducting horitainwalls is more unstable than the
configuration with adiabatic ones due to the presest high temperature areas at the bottom of the
cavity. The transition to unsteadiness in a squangty with conducting horizontal walls was
studied by Winters1[7] who obtained a critical number &2&2.109x16. Later it was confirmed by
Jones and BriggslB] performing three-dimensional experiments and-tivnensional numerical
simulations. For the square cavity with adiabatcizontal walls, the critical Rayleigh number is
close to 1.82x10[19], which is almost two orders of magnitude largean that for conducting
boundaries. Le Quer@(Q] studied convection in a cavity with adiabatrikhontal walls and height
to length aspect ratio equal to 4 and found a prnidopf bifurcation at Rg1.03x10. He
observed also a chaotic behavior beyond Ra=2%xA0 extensive two-dimensional unsteady
analysis for differentially heated cavity with higo length aspect ratio 8 was performed by Xin
and Le Queredl]. It was found that beyond a critical Rayleigimber, the flow becomes time
dependent (periodic, chaotic and eventually fullsbtilent). This problem was also defined as a
benchmark case with the main bulk of results sunpredrin P2]. For this configuration, the
critical Rayleigh number is Ba=3.0619x18. In addition, a valuable experiment&3p4] and
numerical P5] data was obtained investigating supercrititav$ in two-dimensional square and
three-dimensional tall cavities, respectively.

The transition from quasi-two-dimensional steadynitear to a three-dimensional time-
dependent regime was first considered2@] [for the case of perfectly conducting horizomtalls
in a cubic cavity with solid vertical walls and nerically imposing flow symmetries. The study
was then extended to the configuration of diffeiedhyt heated cubic cavity for the case of adiabatic
horizontal walls 27]. It was found that the critical Rayleigh numbeor the transition to
unsteadiness are between 2.25+2.38xi@ between 2.5+ 3x1or configurations with perfectly
conducting and adiabatic horizontal walls, respetyi which is larger than those of the two-
dimensional configurations. Only several unstedddiss have been performed regarding realistic
boundary conditions, without assuming symmetry eniqalicity. Fusegi et al2B] investigated an
oscillatory flow regime for the case of perfecthnducting walls in a cubic cavity for Ra=8.5%10
Labrosse et al.2P] extended this study for the configuration watthiabatic horizontal walls and
found a non-symmetric transition for Ra= 3.19%Mhich is significantly lower than in the similar
two-dimensional case. A number of DNS was perfortoedbtain a time-averaged quantities and
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statistics of the supercritical flows3Q31]. However, three-dimensional structure of cosdin
convective flows is far from being fully understoadany differences between numerical and
experimental results remain unexplained. For examiilermal stratification in the cavity still
cannot be predicted welRh]. Moreover, the existing DNS resul®0[33] needed to be improved
since they are restricted to periodical boundanydd@ns in second horizontal direction and are
performed on a too coarse grids with less thanrif@l®s in the shortest direction, which according
to Gelfgat B4] would not provide the quantitatively correcsuts.

2.2 Lid-driven cavity flow

2.2.1 Steady state flows

The steady state lid-driven cavity flow is consatkras a classical test problem for the
assessment of numerical methods and validationS®tbdbes. Ghia et al3%] and Schreiber and
Keller [36] were among the first to report benchmark datdahe lid-driven cavity flow. At about
the same time, the interest in the flow physicsmffined recirculating flows was revived after the
pioneering works of Burgra3[/] and Pan and Acrivo88]. The renewed interest led to a series of
papers focusing on three-dimensional vertical stines and on end-wall effects, see e3940].
Over the years the grid resolution and the numksdcauracy were significantly improved and
even more accurate solutions of the two-dimensipnablem have been obtained using spectral
methods 4142].

Three-dimensional properties of the lid-driven ta¥iow have been firstly studied by Davis
and Mallinson 43] and Goda44]. The relevance of three-dimensional flows imeyal was
demonstrated by Freitas et db]. In particular, three-dimensional effects ntaa end-walls of a
finite-size system, which always exist in a laborgtsetup, were emphasized #6]. During last
years, further three-dimensional steady state klons have been performed, e.g., 47-H0].
Studies of $1-54] primarily focused on the flow structure topofognd not on benchmarking.
Recently an accurate three-dimensional benchmdiki@o was obtained by Albensoeder and
Kuhlmann B5] who treated a steady state flow at Ré4iY) a Chebyshev-collocation method,
providing a high spatial accuracy of the result¥hese results are used here as a reference for
validation of the present numerical model.

2.2.2 Transition to unsteadiness and unsteady flows

Since two-dimensional, time-dependent calculatians significantly less costly than full
three-dimensional simulations, the Hopf bifurcatiainhigh Reynolds numbers of purely two-
dimensional flow was extensively investigated wdhrather good precision5¢-60]. Being
important for benchmarking these resluts cannotrdes completely realistic 3D flows. The
oscillatory two-dimensional flows exist for suctghiReynolds numbers Re=Of)1@hat they are
very unlikely to be observed experimentally. Albeeder et al. §1] showed that quasi-two-
dimensional steady flow becomes unstable to gehuittgee-dimensional flows at Reynolds
number one order of magnitude smaller than thosehath the two-dimensional flow oscillations
have been computed. In order to clarify the obskthieee-dimensional flow structures numerically



a series of benchmark tests for the lid-driven tyawias undertaken for a Reynolds number of
3200. The results, however, remained inconclusuge the numerical simulations obtained by
different methods and resolutions exhibited a $icgmt disagreemen6p].

After becoming unsteady, with further increaseh&f Reynolds number the three-dimensional
cavity flow develops into a turbulent regime. Sisimgly, there is almost no numerical results for
Reynolds numbers of the order of R¥x0") and larger except DNS study by Leiriche and
Gavrilakis B3] and LES (Large Eddy Simulation) simulation byuBfanias et al.g4].

The foregoing survey revealed a severe lack of mgade data describing the three-
dimensional flow transitions to unsteadiness andrdgynamic features of supercritical flows
regarding thermally- and lid-driven cavities. Takimto account the physical and technological
significance of laminar three-dimensional supeicalt flows and continuous growth of
computational recourses a systematic study of itireensional supercritical flows should be
performed. The main guidelines and purposes ofptiesent research are detailed in the next
section.

3. Research Objectives and Significance

The aim of the present research is to perform syatie study of three-dimensional steady
and supercritical flows developing in differentjalheated or lid-driven rectangular three-
dimensional boxes. For each configuration no-stiprimlary conditions are applied in all the spatial
directions. The main goal is to to determine imaotttopology characteristics of three-
dimensional steady and unsteady flows in configomat that can be realized in a laboratory
experiment. The numerical simulations performecwiigh temporal and spatial resolutions, (no
less the 100 nodes in the shortest direction assteded in 34]) providing full-scale spectrum of
the frequencies and eddies characterizing the fspdow. The performed research would extend
our understanding of the flow pattern spatio-terap@volution at large Grashof and Reynolds
numbers. The study includes:

i. Development of a robust numerical tool for solvingsteady three-dimensional NS and
energy equations. An extensive validation studyukhde performed by a comparison of
obtained results with existing benchmark solutidPerticular emphasis should be placed on
numerical robustness augmenting of the developgaritim by utilizing the semi-implicit
temporal discretization of convective terms. Thmud allow to enlarge the time step and to
provide a necessary amount of numerical data nedéaledorthcoming statistical post-
processing. Last but not least, the numerical satians should be accelerated by the code
parallelization taking advantage of available magenassively parallel supercomputers.

ii. Direct numerical simulation will be carried out fhrermally- and lid-driven cavities. Both
transient and periodical states of the flow posseg time scales requiring long integration
times (no less then several hundred periods incs® of a periodic flow). The critical
Reynolds and Grashof numbers corresponding toitsteHopf bifurcation point for steady-
periodical transition would be obtained, which wik followed by an attempt to localize
consequent bifurcations. Given the detailed futllscmumerical data would provide the basis
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for considering the scaling behavior of the meanperature, the mean velocity profile and
of the profiles of different turbulence statistics.

iii. The post-processing of supercritical oscillatorgimees should be performed in terms of
statistical turbulence parameters: mean values h&f primitive variables (velocity
components, pressure and temperature), Reynoleisses, velocity correlations, turbulence
intensity, and turbulence kinetic energy. Suchigtatanalysis would shed light on spatial
topology of supercritical flows, determining thendoant flow scales and hydrodynamic
mechanisms responsible for the flow redistributioside the cavities. A large enough
amount of the time-dependent data will allow alew €alculations of such stochastic
properties as Lyapunov exponents and fractal dirneas

iv. As an option a problem of stability of steady castixee and lid-driven flows may be studied.
The onset of oscillatory instability for the flow differentially heated and lid-driven cavities
will be located by computing a steady-state andyairay its stability via an eigenvalue
problem. The analysis would reveal the charactesistnd the manner of mutual influence of
dominant modes determining the system physics.stéddality analysis implies development
of an effective three-dimensional steady stateesplwhich would be based on the Newton-
Raphson method owing to non-linear character oNBesquations.

4. Methodology and Research plan
4.1 Formulation of the problem

4.1.1 Differentially heated cavity — governing equ#ons.

Natural convection in a three dimensional box afjta W, heightH and widthD is considered
(see Fig. 1). The box aspect raticAsH/W and the width ratio i8=D/W. Two opposite vertical
walls of the box are maintained at different constamperatures whereas all four remaining walls
are either adiabatic or perfectly conducting.

Cold Wal

D Side wall:

Hot Wall

Figure 1. Differentially heated cavity -physical malel and coordinate system.
The flow is described by the momentum, energy anttiguity equations in the Boussinesq
approximation. Following Ref2fl], the dimensionless governing equations are:



V-u=0 (1)

% +(u-V)u=-Vp+ r0.5V2u+6’§Z ()
o6 1 2

— +(u-V)@= v 3
ot ( ) PrGpr° )

where u=(u,v,w), p, t, and @ are the dimensionless velocity, pressure, time t@miperature,
respectively, ande; is the unit vector in the direction. These non-dimensional equations were
obtained using characteristic length (see Fig.1), buoyancy velocity schle-\/gAWAT , time
scale =W /U, and pressure scdbe= pU?. Herep is the mass density is the gravitational
accelerationjs is the isobaric coefficient of thermal expansiand AT =T, —T. is the temperature
difference between the hot and cold walls. The dsmnless temperatureis defined in terms of
the wall temperature difference as:

0=(T-T.)/AT 4
The Grashof number is
3
Gr=9AATW. 5)
1%
and the Prandtl number is
Pr=v/a (6)

wherev is the kinematic viscosity, and is the thermal diffusivity.

4.1.2 Lid-driven cavity -governing equations.

Lid driven flow inside a box of lengtiv, heightH and widthD is considered (see Fig. 2).
Similarly to the previous model the cavity is claesized by aspect and width ratios defined as
A=H/W and B=D/W, respectively. The top wall of the cavity is mayim y direction with a
constant velocity, while all other cavity walls are stationary. Ndexnal body forces are acting.

D L)

Figure 2. Lid-driven cavity - physical model and cordinate system.



The flow is described by the momentum and contynaduations. The dimensionless governing
equations are:

V-u=0 (7)
% +(u-V)u=-Vp+Re' Vi (8)
where u=(u,v,w), t and p are the dimensionless velocity, time and pressespectively. The
dimensionless equations were obtained utilizing dharacteristic lengthV (see Fig.2), velocity
scaleU =v and scales for time and presssmnilar to those chosen for the differentially resht

cavity.

4.2, Discretization in time and space.
The time derivative in the unsteady momentum amdehergy equations is approximated by a
second order backward differentiation formula:
8fn+1:3fn+1_4fn+fn1+0(At2) ©)
ot 2At

In both models diffusion terms are treated imglcwhile convective terms are treated explicitly.
In the free convection problem, rearranging okajplicit terms to the right hand sideHS) allows
one to decouple the energy equation (3) from thetimoity and momentum equations (1) and (2)
and to present the momentum equation (2) in then fdefined by the Stokes operator. The
momentum equation (8) in the lid-driven cavity desb is treated in the same way. Due to the
explicit advancement of the nonlinear terms, theral scheme is subjected to restrictions in the
size of the time step. Thus the time increment msatisfy the usual Courant number criterion for
purely explicit schemes:

C, =|u[At/Ax<1.0C, =|VAt /Ay < 1.0C, =|WAt Ay< 1.C  (10)
Also, when a non-zero value of kinematic viscosity thermal diffusivity are used, momentum

and thermal energy must not diffuse more than etfiercone time step, leading to:

(v.a) [ 1/(ax)’ + 1/(Ay)" + 1(Az)"] g% (11)

Through the number of numerical tests it was fotinad for discretization having no less than 100

nodes in the shortest direction the time stepsAbf1x10° and At=4x10° convergence to
steady states insensitively to initial conditidmsregular and stretched grids, respectively.

4.2.1 Differentially heated cavity —the numerical pocedure.
Calculations in this case proceed as follows.

1. Assume initial pressure and velocity distribn@nd solve the energy Eq. (3):
1 2 3 n 1 _

v - — 9D =1 (u.v)0 | +—(-46"+6"" 12

2. Substitute the obtained temperature into the embom equations and solve the coupled

continuity - momentum Eqgs. (1) — (2):

V-u™ =0 (13)
1 Vzu(n+1)_iu(ml)_vp(ml)zl:(u‘v)u:ln+_1(_4un+u(n—1))_6(n+1éz (14)
Gro® 2At 2At



A conservative second order accuracy finite volumethod 5] is used for the spatial
discretization of the Egs. 12-14). A staggered mesgle Fig.3) has been used to eliminate the
possibility of checkerboard volumes of pressureaidcity fields B5].
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Fig.3 Staggered grid arrangement (a) control volumefor scalar fields, (b) control volume for u velody
component.

Note that the control volumes forandw velocity components are directly obtained by a 90°
rotation of theu component control volume (see Fig. 3-b) aroundztéwed they axis, respectively.
Utilizing the staggered grid arrangement (see [igv@ derive finite volume discretization of Egs.
(12-14):

1 0 3 n+1 n+l _ n

- =RHP, 15
(PrGrD'SaP 2Atj " Pr GPSZa“ " (13)
(U —uy o =, )+ (”*1 V(e - v )+ W - W) (z,-2)=0  (16)

1 u 3 n+1 m—l n+1 pg+l n
—=a& —— =RHP 17.1

1 3 n+ . N+l an+l .
( GREd ZAJ T+ GOSZanbv - p;‘/ 5: =RHP] (17.2)

1 " 3 n+ n+1_pn+l .
(Wad - AL j u l Gr 05Zanbwnb _%= RHPW (173)

Expressions for the coefficiens, ae, a,, aq, an, for each unknown function are obtained by the
finite volume discretization of the Laplace operatBxpressions forRHR",RHP, RHP',
RHP/ consist of time discretization terms of the funetioand finite volume representation of
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convective terms known from previous time step (8ppendix A[70] for the discretization
details).

4.2.2 Lid-driven cavity -numerical procedure.
The discretization of continuity and momentum eoprett (7-8) is performed in the same way as
for the differentially heated cavity:

(e = uy Y = x, )+ W vy = v )+ (W2 =Wz, - z) =0 (1)

Retal - Jurts Re'Yatyn - PE P _pypr (19.1)
2At ) ¢ o " e % ’ .
B 3 . 9 L pn+1_ pn+1
2At nb yN - yP
1 an+l
(Rela;‘ _ijwﬂ+1+ Re’Y avwri P “Pe _pypn (19.3)
2At nb ZU - ZP

where the expressions for the all coefficients BRHS parts are derived by the same finite volume
discretization as for differentially heated cavigee Appendix A[70] for the discretization
details) . As for the previous model the discretizguations (18) and (19.1)-(19.3) are solved with
a complete coupling of pressure and velocity.

4.2 Solution algorithms

4.2.1The Full Pressure Coupled Direct (FPCD) Solutin.

The algorithm is based on &tJ factorization of the Stokes operator, defined om \whole
computational domain. TheU factorization is carried out by a direct multiftahsparse solver
(we use the MUMPS package) and is performed onbeat the beginning of the time-stepping
procedure. The successive calculation of the vigloand pressure fields is obtained by the
backward substitution procedure also realized fmarse triangulal and U matrices. Due to
effective utilization of the matrix sparsity bothU- factorization and back substitution are
relatively fast. The characteristic CPU times andmmury requirements needed for thé-
factorization are detailed i134]. The flow chart of the algorithm is detailedAppendix B[70].

The boundary conditions are of the Dirichlet type ¥elocities (no slip boundary condition),
the Dirichlet and the Newman type for temperatupesrfectly conducting or adiabatic walls
respectively). No pressure boundary conditions reeded because eqs. (19.1)-(19.3) include
pressure values in inner nodes only. The resuftyggem is singular since the pressure is defined
within an addition of a constant. The singularisyremoved by adding a Dirichlet point at the
corner node. For free convection flow inside thigedentially heated cavity the decoupled energy
equation (3) was solved by the Bi-CGSTAB algorit[s]. By this way we decrease a computer
memory usage up to about 20 percent comparing selving the same equation by the MUMPS
package. It was also found that for the energy egughe Bi-CGSTAB and the MUMPS consume
almost same CPU time.
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4.2.2 The Multigrid Solution.

The developed algorithm is a modification of thetmoe originally developed and validated
by Vanka for a squares¥] and cubic §8] lid-driving cavities. Linearity of the Stokeperator
allows us to use the correction scheme (CS) of ] and the Coupled Line Gauss-Seidel
smoother (CLGS) developed i2][ A typical V-cycle technique 3] is used for the multigrid
iterations. A flowchart and detailed explanatioas de found irAppendix C [70]. Contrary to so
calledsdlf-controlling algorithms detailed ing[7 68] theV-cycle technique is controlled only by the
rate of convergence and does not require any additaccommodative criteria for switching from
one grid to anotheBP]. Therefore it is expected to be more efficimtanalysis of unsteady flows
proceeding with small time intervals and charaztsti by small flow variations between two
sequential time steps. The line-wise smoother cdesptihe pressure and the velocity corrections
simultaneously over the entire row of finite volulsn&Ve derived an analytical solution of this
assembled equations system. The modified methaddban Accelerated Semi-Analytic Coupled
Line Gauss-Seidel smoother (ASA-CLGS) is extrenfabt since it needs no more than R)5
operations to compute the values Nfcorrections over the entire row for both 2D and 3D
geometries. The overall complexity of the algorithowever is larger and strongly depends on a
discretization method, as a result of additionahpatations involved in updatingHS parts after
obtaining the corrections over each rowhe characteristic CPU times consumed for a sitigie
step per one node and per one CPU for both appesae of order 5x1msec and 16 msec for 2D
and 3D calculations, respectively.

4.2.2.1 The ASA-CLGS smoother details
We start the description from the characteristictrixafor the coupled pressure-velocity
corrections for the SCGS smoother develope®).[This matrix is illustrated in Fig.4.

Y | _ B}
X A0 0 0A | R
pnmnnn- — 0 A 0 0A [|U ||R,
1 W P E I ! =
: X Vl'., X i X I H 0 0 AE, 0 Ab X Vs Vs
| ) I 0 0 0 A A V' R,.
L. _—— 4
! 'S : __As As_As Ae 0 | P L Yep |
X -
I S 1
1
Fig.4 Single finite volume matrix for Symmetrical Gupled Gauss-Seidel (SCGS) smoothe8T].
For free convection problem defined by discretizgdations (12-14) we hav = %3; —%,
R

1 3 1 3 1 , 3
= u__’ = u_ y = - f :_1/ _XW )

A=Y, = ¥.) A ==Y (%= Xu) A =Y (% %) A ==Y(¥, = ¥s) Ao =Y (Ya— Vo)

The matrix is inversed analytically, so that reqdicorrections are easily computed and are

12



immediately added to the values of the current tsemiu Under-relaxation is implemented by
adding a fraction of the calculated correctionh® ¢urrent variables.

The cell-wise implementation described above is vwkmoto have poor convergence
characteristics when grids are stretched or the folargely unidirectional. An improvement can
be achieved by an update of variables for the etitie (column or row). This concept was firstly
proposed by Zeng and Wesselinf who used a block-tridiagonal structure of thetnra
assembled from the matrices corresponding to esitiges of finite volumes. The corresponding
linear equations system is solved by the standac@viard-forward substitution. Our study extends
the approach ofl]] by derivation of an analytical solution for tegstem of correction equations
corresponding to one line. A schematic of the dgwedl algorithm for the two-dimensional
geometry is shown in Fig.5.

?k _—Als' -A A0 A 0] Vi, | R, —’Slk—l_:ff (\I/lk—4’vlk’u'k—3’ulk—1)
" kI~ kI R2 f 0 g AeE 0 0l |uha | |Re _’uk-:fzplk-l)
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(k-4 0 0 AL' A:; 00 plk—l Rk-z —’ulk-z: f(plk-l)
Via 0 00001 [V ] [R] —v-=0

Vi
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v . .
—» 8X —m
6 7 _ — _' T _R ] 1 1 1 1 1
\5 Aeamon] [V ][R ]ty
| A0 0 A O u', R |—v,=f(p",)
—> 4X = 1 1 XUy |=| Ry _’u'2:f(pl4)
3 0 0 0 ,
2 ?1 —> 0 gi A; g 0 P, R, _>u'3:f(p'4)
- SV ] LR
V=

Fig.5 A schematic description of ASA-CLGS smoother

For a 2D problem a typical column (row) consistd dinite volumes denoted by; up toV,.
Each volume contains 5 unknown corrections (4 fobeity components and 1 for pressure). In
total, the entire column contaiksunknown corrections (see Fig. 5). Imposing DitHloundary
conditions for velocities, the', and v', are set to be equal to zero. At the next stepeagange
the characteristic matrix of Vanka's smoott@f][(see Fig.4). Starting wit¥f,. volume (see Fig.5)
the correction equation fork-1 node is written first, and followed by the corientequations for
k-4, k-3, k-2 nodes as marked by a dotted line. Then the cesreet', ,, u', V', are written as
functions of the pressure correctiph), . Its further substitution into the correction etioia for
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k-1, together with a zero value of, yields an analytical solution for tipg, ,. Once thep', ;
correction is found its backward substitution irtkee equations fok-4, k-3, k-2 nodes vyields
theu',,, u', V', corrections. The procedure is successively redefateall volumes along the
given line, providing the values of all correctioiitie developed solver is easily extended to three-
dimensional geometry by treating a line of thremehsional finite volumes.

To estimate the complexity of the developed algarifor the two-dimensional geometry we write
it in a vector form as follows:

plk-l = (C1R¢<—2+C2R<—3+CB<— 4t Rk— 1t Cy' k)/CE

Vi Cs CoR_4 (20)
Ues [=[C X Plat| CiRes
Uy Cq CuR

Werec;: ¢;; are known coefficients, which are calculated arige at the beginning of the process.
Thus, we need 11 multiplications and divisions 8mslmmations to calculate 4 correctioNs4)

for the one volume that is approximately equalD®&N) complexity. For the three-dimensional
geometry the complexity is obtained by the same avay/it also does not exce&bN) value.

5. Preliminary Results

An extensive validation study was performed witlthbePCD and multigrid algorithms for two-
and three-dimensional geometries. Our two-dimemgicgsults and comparison with the previous
benchmark studies5[68,21,34] are presented iAppendix D[70]. It should be noted that the
FPCD algorithm is extremely memory demanding foe¢hdimensional calculations, and as for
now is restricted only to 40grid resolution, which is insufficient for obtaij quantitatively
reliable results34]. This chapter presents only the multigrid aildpon validation results obtained
for the three-dimensional geometry and1§8d resolution.

5.1 Differentially heated cubic cavity.
Table 1 presents the comparison between the indepérsolutions of the present study and the
benchmark solutions obtained by Wakashima and IS§l#6)] for differentially heated cavity with
adiabatic horizontal walls and 12¢rid resolution. Here the Rayleigh number Ra isaétp

Ra=GrxP (21)
and an average Nusselt number determining the didlonv rate trough the plane with a normal in
y direction is :

11
06
Nu, = [ [| Prv/GNVO-2Z |dxdz 22
/ ”[ | (22)
The obtained results are in very good agreemertt thié corresponding benchmark solutions
reported in 16]. Note that the maximum deviation between thsults does not exceed 1.3

percents. Equal Nunumbers obtained for both isothermal vertical wauies validate the heat
balance inside the cavity.
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Ra=10 Ra=10 Ra=16
[16] | Present Dev | [16] | Present, Dev 16] Present| Dev
(%) (%) (%)
Uy max(2) 0.1984 | 0.197 | 0.7 | 0.1416| 0.1434 | 1.26 | 0.0811 | 0.0802 | 1.1
(x=0.5,y=0.5) | (0.825) | (0.825) (0.85) | (0.85) (0.8603) | (0.8605)
U, max(x) 0.2216 | 0.2202 | 0.6 | 0.2464 | (0.068) 0 0.2583 | 0.2575 | 0.3
(x=0.5.y=0.5)| (0.177) | (0.12) 0.2464 (0.0323) | (0.0337)
NUhot 2.0624 | 2.0547 | 0.37 | 4.3665 | 4.3349 | 0.72 | 8.6973 8.7584 | 0.05
NUcolg | - 2.0547 | oo | coeeee- 43349 | - | eeeeeeee- 87584 | ----

Table 1. Summary of the present and the benchmarkotutions for the differentially heated cavity with adiabatic

horizontal walls.

5.2 Lid-driven cubic cavity.
Figure 6 shows a comparison between velocity aedspire fields obtained by Albensoeder and
Kuhlmann B5] for the cubic cavity with 96grid resolution and the corresponding resultshef t
present study. It is seen that a very good agreemests between the velocity distributions (see
Fig. 6-a) along the whole centerline for both regdnd stretched grids. Regarding the pressure
distribution (see Fig. 6-b), the stretched gridnseeo provide more accurate results at the vicinity
of the cavity boundaries and does not improve presigeld accuracy far from them.
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Figure 6. A comparison between Albensoeder and Kukian [55] and the present solutions for: (a) velocity

distribution along centerline in z direction (x=0.5y=0.5); (b) pressure distribution along centerlinen z direction
(x=0.5y=0.5) .

6. Time Schedule for the Research
The detailed time schedule of the future researclefailed in table 2.

Time schedule 2008 2009 2010
Planned activity 6-9 | 10-12| 1-4| 5-8| 9-12 1-3 4-6 7-8
Code parallelization and validation X X
Semi-implicit representation of the X X
convective terms
Time marching numerical simulations X X
Statistical post-processing X
Steady solver development (optional) X X X
Stability analysis (optional) X X
Final Ph.D. thesis writing X X X

Table 2. Time schedule for the research
The final report is expected to be ready at therseédalf of 2010.
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