
J. Fluid Mech. (2001), vol. 438, pp. 363–377. Printed in the United Kingdom

c© 2001 Cambridge University Press

363

Three-dimensional instability of axisymmetric
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The axisymmetry-breaking three-dimensional instability of the axisymmetric flow
between a rotating lid and a stationary cylinder is analysed. The flow is governed by
two parameters – the Reynolds number Re and the aspect ratio γ (=height/radius).
Published experimental results indicate that in different ranges of γ axisymmetric
or non-axisymmetric instabilities can be observed. Previous analyses considered only
axisymmetric instability. The present analysis is devoted to the linear stability of the
basic axisymmetric flow with respect to the non-axisymmetric perturbations. After
the linearization the stability problem separates into a family of quasi-axisymmetric
subproblems for discrete values of the azimuthal wavenumber k. The computations
are done using the global Galerkin method. The stability analysis is carried out at
various densely distributed values of γ in the range 1 < γ < 3.5. It is shown that the
axisymmetric perturbations are dominant in the range 1.63 < γ < 2.76. Outside this
range, for γ < 1.63 and for γ > 2.76, the instability is three-dimensional and sets in with
k = 2 and k = 3 or 4, respectively. The azimuthal periodicity, patterns, characteristic
frequencies and phase velocities of the dominant perturbations are discussed.

1. Introduction
Many flows generated by rotation or natural convection in axisymmetric enclosures

with axisymmetric boundary conditions break into non-axisymmetric patterns above a
certain threshold of the governing parameters. Such axisymmetry-breaking instabilities
are of interest in stability analysis and are of major importance in applications.
Specifically, our attention is focused on cases when the non-axisymmetric patterns
evolve from a non-trivial axisymmetric flow field, rather than from a state of rest. In
such cases the basic flow is not known analytically a priori and must be computed
for each value of the governing parameters. A time-dependent fully three-dimensional
computation of the flow, searching for the appearance of an instability, involves a
considerable computational effort and is not well-suited for a systematic parametric
search for stability limits, in particular in the case of multiple solution branches.

In the present study we apply a global spectral method that consists of a Fourier
expansion of the flow in the azimuthal direction and a Galerkin decomposition in the
meridional plane. The three-dimensional linear stability problem then separates into
a sequence of quasi-two-dimensional problems and allows the detailed evaluation of
the stability thresholds and the multiplicity of the resulting flows. The present paper
is a non-axisymmetric extension of our previous analysis of axisymmetric instabilities
(Gelfgat, Bar-Yoseph & Solan 1996).

Rotating lid–cylinder systems have been studied extensively both numerically and
experimentally, in particular in connection with vortex breakdown. In experiments,
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the observed effects were axisymmetric and non-axisymmetric, steady and unsteady
(Escudier 1984; Spohn, Mory & Hopfinger 1998; Roesner 1990; Stevens, Lopez &
Cantwell 1999). This led to some controversy, but there are no reports of the detailed
structure of the non-axisymmetric modes. Numerical analyses of the phenomenon
were mainly axisymmetric, with studies of the transition from axisymmetric steady to
axisymmetric unsteady oscillatory states, e.g. Daube & Sørensen (1989), Lopez (1990),
Lopez & Perry (1992), Tsitverblit & Kit (1998), and Stevens et al. (1999). Most of
these studies were by direct numerical simulation rather than by a stability analysis.
In our previous paper (Gelfgat et al. 1996) we presented a comprehensive numerical
stability analysis of the axisymmetric case by a spectral Galerkin method. In that
paper the flow in a rotating lid–stationary cylinder enclosure was studied for a range
of aspect ratios (height/radius) 1 6 γ 6 3.5. The critical Reynolds number and the
critical frequency of the perturbations were computed and several individual modes
of axisymmetric instability were identified, in good agreement with the experimental
results of Escudier (1984) in the range 1.86 < γ < 2.9. Below γ = 1.86 no experimental
results were available for comparison, while above γ = 2.9, for 2.9 < γ < 3.5 our
axisymmetric instability did not agree with Escudier’s observation that ‘for γ > 3.1
the first sign of non-steady motion is a precession of the lower breakdown structure’.
Our conclusion there was that in that range of γ non-axisymmetric effects must be
present. In a recent report on an experimental study of flow in a cylinder with rotating
bottom and no-slip or stress-free upper boundary Spohn et al. (1998) observed
non-axisymmetric results even in the range where previous analyses predicted an
axisymmetric instability and they question the validity of such axisymmetric analyses.
To our knowledge, no detailed analysis of non-axisymmetric instability for the swirling
flows in a closed cylinder with rotating top/bottom has been published. It is the
purpose of the present paper to present such a detailed analysis, allowing different
azimuthal wavenumbers k and investigating which value of k is critical, i.e. has the
lowest neutral Reynolds number corresponding to the growth of a particular mode
with the azimuthal wavenumber kcr . In particular, the analysis will show in what
region of γ the axisymmetric instability (kcr = 0) is, indeed, the most critical.

The outline of this paper is as follows: in § 2 the problem is formulated; in § 3
the spectral Galerkin method used is presented; in § 4 test calculations used for
validation are reported; in § 5 we report the detailed results for axisymmetry-breaking
instabilities in a cylinder with a rotating lid; § 6 summarizes the paper.

2. Formulation of the problem
We consider a vertical cylinder filled with an incompressible Newtonian fluid and

covered by a lid, which rotates at a constant angular velocity Ω0. Thus, the geometry
and boundary conditions are steady and axisymmetric and can generate a steady and
axisymmetric flow. The dimensionless momentum and continuity equations are

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∆v, (1)

∇ · v = 0, (2)

where v is the velocity, p the pressure, Re = Ω0R
2/ν the Reynolds number, R the radius

of the cylinder, and ν is the kinematic viscosity. An additional governing parameter
is the aspect ratio γ = H/R, where H is the height of the cylinder. The velocity,
pressure, time and length are scaled by Ω0R, ρ(Ω0R)2, R2/ν and R, respectively (ρ is
the density).
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The boundary conditions are

u = v = w = 0 at z = 0 and at r = 1 (stationary cylinder), (3a)

u = w = 0, v = r at z = γ (rotating lid). (3b)

We denote by V (r, z) = {U(r, z), V (r, z),W (r, z)}, and P (r, z) the basic axisymmetric
steady flow which corresponds to the solution of the axisymmetric part of the system
(1)–(3). Consider infinitely small perturbations ṽ = {ũ, ṽ, w̃} and p̃ of the velocity and
the pressure, respectively, which depend on the three coordinates (r, φ, z) and time t.
The linearized problem for the perturbations is

∂ṽ

∂t
+ (V · ∇)ṽ + (ṽ · ∇)V = −∇p̃+

1

Re
∆ṽ, (4)

∇ · ṽ = 0, (5)

with the homogeneous no-slip boundary conditions

ṽ = 0 on all boundaries. (6)

To complete the formation we add conditions of 2π-periodicity of all the functions

f(φ+ 2π) = f(φ), (7)

where f represents one of the functions ũ, ṽ, w̃ or p̃.
According to linear stability theory, we assume the time dependence of the per-

turbation functions {ũ, ṽ, w̃, p̃} as ∼ exp (λt), where λ is an eigenvalue of the linear
homogeneous problem (4)–(7). The periodicity conditions (7) allow us to represent the
solution of (4)–(7) as Fourier series in the azimuthal direction. Thus, the perturbation
functions can be represented as

{ũ, ṽ, w̃, p̃} = exp (λt)

k=∞∑
k=−∞
{uk(r, z), vk(r, z), wk(r, z), pk(r, z)} exp (ikφ). (8)

The integer number k in (8) is an azimuthal wavenumber. The value k = 0 corre-
sponds to an axisymmetric perturbation. The equations for the Fourier coefficients
{uk, vk, wk, pk} are obtained after substitution of (8) into (4)–(7). The axisymmetric
functions {uk, vk, wk, pk} define the eigenvector of (4)–(7) for each eigenvalue λ(k).

The equations resulting from the last substitution contain terms proportional to
1/r2, which represent a non-integrable singularity at r = 0. This singularity is an
artifact introduced by the use of polar coordinates in the (r, φ)-plane. To see how this
singularity can be eliminated, we bring the equations into the following form, using
the continuity equation to substitute for (2ikuk/r

2) and (2ikvk/r
2):

λuk +U
∂uk

∂r
+W

∂uk

∂z
+ uk

∂U

∂r
+ wk

∂U

∂z
+

ik

r
Vuk − 2Vvk

r

= −∂pk
∂r

+
1

Re

(
∂2uk

∂r2
+

3

r

∂uk

∂r
− k2 − 1

r2
uk +

∂2uk

∂z2
+

2

r

∂wk

∂z

)
, (9)

λvk +U
∂vk

∂r
+W

∂vk

∂z
+ uk

∂V

∂r
+ wk

∂W

∂z
+

ik

r
Vvk − Uvk

r
− Vuk

r

= − ik

r
pk +

1

Re

(
∂2vk

∂r2
+

1

r

∂vk

∂r
+
k2 − 1

r2
vk +

∂2vk

∂z2
− 2ik

r

∂uk

∂r
− 2ik

r

∂wk

∂z

)
, (10)
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λwk +U
∂wk

∂r
+W

∂wk

∂z
+ uk

∂W

∂r
+ wk

∂W

∂z
+

ik

r
Vwk

= −∂pk
∂z

+
1

Re

(
∂2wk

∂r2
+

1

r

∂wk

∂r
− k2

r2
wk +

∂2wk

∂z2

)
. (11)

It is easy to see now that terms proportional to 1/r2 vanish if (Gelfgat et al. 1999)

u0 = 0, v0 = 0, w0 6= 0, u±1 6= 0, v±1 6= 0, w±1 = 0, (12a)

uk = vk = wk = 0 for |k| > 1. (12b)

3. Numerical method
The axisymmetric basic-flow problem together with the three-dimensional linear

stability problem (9)–(11) are solved using the spectral Galerkin method. The axi-
symmetric part of the numerical method and its application to a numerical study
of the swirling flow in a cylinder with rotating lid is described in Gelfgat et al.
(1996). Here we focus only on the three-dimensional part of the numerical method.
The formulation of the method consists of three parts: (a) definitions of the basis
functions, (b) formulae for the calculations of the Galerkin projections of the linear
and nonlinear (bilinear in our case) terms, and (c) the final dynamical system and
computational procedure. Parts (a) and (c) are described below. Part (b), which is
technical and lengthy, is omitted.†

3.1. Basis functions

The system of basis functions of the Galerkin method is split into an axisymmetric and
a non-axisymmetric subsystem. This allows us to extract the axisymmetric problem
for the basic flow as a separate part and then consider the three-dimensional stability
problem. To do this we consider an arbitrary three-dimensional velocity field v =
(u, v, w) and notice that due to continuity (equation (2)) among the three components
u, v and w only two are independent:

u(r, φ, z)

v(r, φ, z)

w(r, φ, z)

 =


u

−r ∫ [∂u
∂r

+
u

r

]
dφ

0

+


0

−r ∫ ∂w
∂z

dφ

w

 . (13)

Obviously, the velocity components u and w consist of the axisymmetric and
non-axisymmetric parts. The axisymmetric part of v can be associated with the
φ-independent ‘constant’ of integration in (13). Let us introduce an additional axi-
symmetric vector A(r, z, t) containing the axisymmetric parts of u, v and w. The
remaining non-axisymmetric parts of the right-hand side of (13) will be denoted as
vectors B(r, φ, z, t) and C(r, φ, z, t). Then (13) can be represented as

v(r, φ, z, t) = A(r, z, t) + B(r, φ, z, t) + C(r, φ, z, t)

=


Ar(r, z, t)

Aφ(r, z, t)

Az(r, z, t)

+


Br(r, φ, z, t)

Bφ(r, φ, z, t)

0

+


0

Cφ(r, φ, z, t)

Cz(r, φ, z, t)

 . (14)

† Details can be obtained from the authors or the JFM Editorial Office, or found at
http://tx.technion.ac.il/∼cml/cml/staff/publicat.htm
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Thus, A(r, z, t) represents the axisymmetric part of the flow, which is a projection
of the three-dimensional flow on the (r, z)-plane. The second and the third terms.
B(r, φ, z, t) and C(r, φ, z, t) can be interpreted as projections of the flow on the (r, φ)-
and (z, φ)-coordinate surfaces respectively. Note that the component Aφ represents
the axisymmetric swirl and, within the axisymmetric model, should be defined as a
separate scalar function. The components Ar and Az must satisfy the continuity equa-
tion (2) and therefore should form an axisymmetric vector which we denote as A(r,z).
Finally, the Galerkin–Fourier expansions for the functions A,B and C can be defined
as

A(r, z, t) = Aφ(r, z, t)eφ + A(r,z)(r, z, t), (15)

Aφ(r, z, t) = Ω(r, z) + r

Nr∑
i=0

Nz∑
j=0

Dij(t)Φij(r, z), (16)

A(r,z)(r, z, t) =

Mr∑
i=1

Mz∑
j=1

Aij(t)U ij(r, z), (17)

B(r, φ, z, t) =

k=+∞∑
k=−∞
k 6=0

Nr∑
i=1

Nz∑
j=1

Bijk(t)V ijk(r, z) exp (ikφ), (18)

C(r, φ, z, t) =

k=+∞∑
k=−∞
k 6=0

Nr∑
i=1

Nz∑
j=1

Cijk(t)W ijk(r, z) exp (ikφ). (19)

Here Aij(t), Bijk(t), Cijk(t), and Dij(t) are unknown time-dependent coefficients, Aφ

is the axisymmetric part of the azimuthal velocity and A(r,z) is the axisymmetric
meridional part of the flow. The scalar components of the vector basis functions
U ij ,V ijk,W ijk , and Φij are defined as linear superpositions of Chebyshev polynomials
(for details see Gelfgat et al. 1999). The function Ω(r, z) is used to exactly satisfy
the non-homogeneous boundary conditions for the azimuthal velocity. Details can be
found in Gelfgat et al. (1996).

The three-dimensional Galerkin–Fourier series defined by (14)–(19) are used here for
the calculation of the three-dimensional linear perturbation equations only. However,
they can be used for the solution of the full nonlinear three-dimensional problems as
well.

3.2. Nonlinear dynamical system and computational procedure

The nonlinear dynamical system for the time-dependent coefficients of the Galerkin
series (15)–(19) has the following form (the summation convention over repeating
indices is assumed):

∂Zi(t)

∂t
= LijZj(t) +NijkZj(t)Zk(t) + Fi, (20)

where the vector Z(t) contains the components of all the coefficients Anm(t), Bnmk(t),
Cnmk(t) and Dnm(t), and the matrices L, N and F contain Galerkin projections of
linear, bilinear and source terms respectively (e.g. the term Ω2/r following from
decomposition (16)). The matrices L, N and F depend on the governing parameters
and the azimuthal wavenumber.
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Suppose that the vector X contains all the coefficients Anm, corresponding to the
steady axisymmetric solution of a problem, i.e. the steady solution of (20) for k = 0,
(Bij0 = Cij0 = 0 for an axisymmetric solution). Assume also, that the vector z contains
all the coefficients Anm, Bijk and Cijk of a three-dimensional perturbation. Then the
linearized stability problem (4) for the steady solution X becomes

λzi = Lijzj + (Nijk +Nikj)Xjzk, (21)

where it is already assumed that for an infinitely small perturbation zi(t) = zi exp (λt).
According to the linear stability theory, the steady solution X is unstable if there
exists at least one eigenvalue of (21) λ, whose real part is positive: Re (λ) > 0.

Investigation of stability requires determining the values of the governing par-
ameters such that the real part of the dominant eigenvalue (eigenvalue with the
largest real part) Λ = Λr + iΛi is zero: Λr = 0. If for some values of the governing
parameters the dominant eigenvalue has zero real part Λr = 0 and ∂Λr/∂Re 6= 0,
then Λi 6= 0 means a bifurcation to a periodic solutions, i.e. a Hopf bifurcation,
and Λi = 0 indicates a bifurcation from one steady solution to another. In the case
Λi 6= 0 the imaginary part Λi of the dominant eigenvalue gives the circular frequency
of the oscillatory solution that branches from the steady state after the onset of the
oscillatory instability. The eigenvector z that corresponds to the dominant eigenvalue
Λ with Λr = 0 defines the most unstable perturbation of system (21). The most
unstable perturbation of the flow can be calculated using the series (14)–(18) with
coefficients Anm, Bnmk, Cnmk and Dnm defined as components of the eigenvector z. In
the same way the limit cycle of the dynamical system (20), which develops as a result
of Hopf bifurcation, defines an approximation of the periodic solution of problem
(1)–(3).

The whole computational procedure, similar to that in our previous paper (Gelfgat
et al. 1996), is as follows. A steady axisymmetric solution of (20) is calculated using
the Newton method. Then the eigenvalue problem (21) is solved for a certain value
of Reynolds number Re0. The eigenvalues and eigenvectors of (21) are calculated by
the QR algorithm. These two steps are repeated for the next value of the Reynolds
number, usually 1.01Re0. Then the real part of the dominant eigenvalue Λr(k, Re)
is considered as a function of the Reynolds number, and the value of the neutral
Reynolds number Ren(k) corresponding to Λr(k, Ren) = 0 is calculated by the secant
method for each azimuthal wavenumber k. The critical Reynolds number of the flow
is defined as Recr = mink Ren(k). The value of k corresponding to the minimum of
Ren(k) is then the critical (the most dangerous) azimuthal wavenumber kcr . Thus, the
calculation of a critical parameter requires a series of calculations for different values
of k. As a rule, the calculations are continued until a minimum on the curve Recr(k)
and the behaviour of Ren(k) for large k are found.

4. Code validation
The validation of the computational procedure was performed in several steps.

First, the Galerkin projections of the linear terms were validated by the solution
of the classical Rayleigh–Bénard problem for convective stability of quiescent fluid
in a vertical cylinder heated from below. The results of Hardin et al. (1990) for a
stationary cylinder, and Jones & Moore (1979) and Goldstein et al. (1993) for a
rotating cylinder were used for the comparison. It was found that the dominant
mode converges already for 10× 10 functions. The details can be found in Gelfgat &
Tanasawa (1993).
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k = 1 k = 2 k = 3 k = 4 k = 5

Ren ωn Ren ωn Ren ωn Ren ωn Ren ωn

10× 10 3554 −0.2878 3948 −0.03369 3187 −0.2967 3021 −0.4188 3185 −0.5487
20× 20 3969 0.07396 4033 −0.03286 2758 −0.2954 2927 −0.4116 3174 −0.5769
30× 30 3973 0.07361 4030 −0.03289 2777 −0.2953 2940 −0.4123 3204 −0.5782
40× 40 3973 0.07349 4030 −0.03289 2765 −0.2953 2934 −0.4123 3203 −0.5781

k = 6 k = 7 k = 8 k = 9 k = 10

Ren ωn Ren ωn Ren ωn Ren ωn Ren ωn

10× 10 3477 −0.6842 3684 −0.8218 4362 −0.9594 4968 −1.0955 5569 −1.230
20× 20 3306 −0.7009 3531 −0.8283 3819 −0.9579 4161 −1.089 4576 −1.222
30× 30 3347 −0.7020 3553 −0.8284 3802 −0.9573 4107 −1.089 4497 −1.223
40× 40 3346 −0.7018 3548 −0.8285 3795 −0.9571 4099 −1.089 4505 −1.223

Table 1. Convergence of the neutral Reynolds number and the neutral frequency of oscillations
for different numbers of basis functions and γ = 3.25. Axisymmetric base flow is calculated with
30× 30 basis functions.

Second, the Galerkin projections of bilinear terms were validated by a check of the
energy conservation of the convective momentum transport

〈(v · ∇)v, v〉 =

∫
V

[(v · ∇)v] · v dV = 0, (22)

which holds for any divergence-free velocity field satisfying no-penetration boundary
conditions. To validate the bilinear terms in (20) the vector V + ṽ was substituted
in (22) instead of v. Obviously, the relation (22) must hold for each basis function
satisfying the continuity equation and the boundary conditions, as well as for any
linear superposition of these functions. The latter was checked by the evaluation of
the corresponding integrals during the computational process.†

Third, we used as a test problem the axisymmetry-breaking bifurcation of steady
non-rotating convective flow in a vertical cylinder heated from below. This was
compared with the numerical results of Neumann (1990) and Wanschura, Kuhlmann
& Rath (1996). The results of the comparison were favourable (the deviation for the
critical Rayleigh number was about 1%), and have already been reported in Gelfgat
et al. (1999). In that paper we also reported a comparison with the experiment
which showed a high-wavenumber axisymmetry splitting in free convection. The
computation and the experiment showed similar results, with difference in detail due
to the fact that the supercriticality of the experiment was relatively high.

Finally, convergence tests with respect to the number of basis functions were
performed for the problem considered here. The convergence of the axisymmetric
steady states has already been studied in Gelfgat et al. (1996) and the results were
compared with solutions obtained by the finite volume method. It was found that
truncation up to 30×30 basis functions in the r- and z-directions, respectively, provides
considerably good accuracy (e.g. 3 correct decimal digits for maximal value of the
stream function and coordinates of the maximum). In the present study we focused
on the convergence of critical parameters corresponding to the three-dimensional
perturbations. Table 1 shows Recr and the neutral frequency of oscillations ωcr

† Technical details can be obtained from the authors or the JFM Editorial Office, or found at
http://tx.technion.ac.il/∼cml/cml/staff/publicat.htm
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Figure 1. Neutral and critical Reynolds numbers Ren(γ, k) and Recr(γ, k).

computed for γ = 3.25 and k = 1–10 using 10 × 10, 20 × 20, 30 × 30, and 40 × 40
basis functions. The basic flow was computed using 30× 30 functions. It is seen that
convergence is satisfactory.

5. Axisymmetry breaking in a cylinder with rotating lid: results
To study the stability of the flow in a cylinder with rotating lid the aspect ratio

γ was fixed at various (densely distributed) values in the range 1 6 γ 6 3.5. In this
range experimental results are available in the literature (Escudier 1984; Spohn et al.
1998). At each γ various integer values of the azimuthal wavenumber k were chosen
in the range 0 6 k 6 5† and the neutral values Ren(γ, k) and ωn(γ, k) were computed
(figures 1 and 2). Thus, at each γ, the most unstable mode can be recognized as that
corresponding to the lowest Ren, i.e. Recr(γ) = mink Ren(γ, k).

The curves Ren(γ, k) consist of several continuous branches. Each continuous branch
corresponds to a certain pattern of the three-dimensional perturbation (figures 3–5).
Different perturbation patterns (eigenvectors of the linearized problem) correspond
to different eigenvalues of (21). Therefore, the breaks of the neutral curves Ren(γ, k)
are accompanied by abrupt changes in ωn(γ, k). A similar result with several separate
branches (for different regions of γ) was obtained for the axisymmetric case by Gelfgat
et al. (1996).

The perturbation f(r, z, φ; k) of each axisymmetric scalar function F(r, z) can be
represented as

f(r, z, φ, t; k) = a{fk(r, z) exp [i(kcrφ+ ωcrt)] + f−k(r, z) exp [i(−kcrφ− ωcrt)]}. (23)

Here a is an undetermined perturbation amplitude and the imaginary pairs ±(ikcr, iωcr)
correspond to the complex eigenpair of (4). Considering the complex conjugate of

† Our test calculations showed that Ren increases with k for 5 6 k 6 10. Therefore we carried
out a detailed parametric study only for 0 6 k 6 5.
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Figure 2. Frequency ωn(γ, k).

the perturbation equations (9)–(11) it can be shown that fk = −f̄−k (overbar denotes
the complex conjugate), which makes the expression (23) real. Therefore, it suffices to
calculate the critical values for positive k only.

For ωcr 6= 0, the instability sets in as an azimuthal travelling wave. The sign of ωcr
shows the azimuthal direction of wave propagation with respect to the direction of
the lid rotation. We always assume that Ω0 > 0, which corresponds to the counter-
clockwise rotation of the lid. Therefore, the azimuthal wave propagates in the direction
of the lid rotation when ωcr > 0, and in the opposite direction when ωcr < 0. Thus, in
the case of three-dimensional axisymmetry-breaking instability the critical frequency
represents not only the time-dependence, but also the direction and the angular phase
velocity of the azimuthal travelling wave defined as c = ωcr/k (k 6= 0).

Consider figure 1, which shows Ren(γ, k) for 1 6 γ 6 3.5 and 0 6 k 6 5 together
with the experimental results of Escudier (1984). Note the crossovers of the stability
curves for different k, which indicate that in different ranges of the aspect ratio γ
different values of the wavenumber k are the most dangerous (lowest Ren). Consider
also figure 2, where for almost all parameter values ωn 6= 0, which for all k 6= 0
indicates an azimuthally travelling wave. Finally, note that the experimental results
are available only in the range 1.86 6 γ 6 3.5.

In the range 1.63 6 γ 6 2.76 our calculations predict that the dominant perturbation
mode is axisymmetric (k = 0), in agreement with the experimental observations of
Escudier (1984) and with our previous analysis (Gelfgat et al. 1996) in which only
axisymmetric perturbations were allowed. This result also answers the question raised
by Spohn et al. (1998) regarding the symmetry properties of the instability that they
observed near γ = 1.75 and Re = 1850 – our present results re-validate the existence
of an axisymmetric instability near that point (see further discussion below).

Outside the range 1.63 6 γ 6 2.76 the instability is non-axisymmetric. This con-
clusion is supported by recent three-dimensional calculations of Blackburn & Lopez
(2000) who found that at γ = 2.5 the primary oscillatory instability sets in at Re ≈ 2700
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and leads to the development of oscillatory axisymmetric flow. Our result for this
case (Gelfgat et al. 1996) is Recr = 2706.

Unfortunately, there are no independent experimental or three-dimensional numeri-
cal data regarding the onset of instability at γ 6 1.63. Above γ = 2.76 our results
disagree with the experimental data of Escudier (1984). Escudier observed transition
from steady axisymmetric to non-axisymmetric oscillatory states for γ > 3.0, while the
present results give the slightly lower value γ ≈ 2.76. Another difference is the value
of the critical Reynolds numbers for γ > 3 (see figure 1). Furthermore, there is no
agreement in the pattern of the supercritical axisymmetric oscillatory state: Escudier
observed the lower flow structure precessing around the axis, which could correspond
to a perturbation with k = 1. Our results predict k = 3 or 4. However, at γ = 3.1 and
Re > 3000, where Escudier observed the rotating structure, the parameters are above
the stability limits for k = 3 and 4. Possibly, the experimental observation corresponds
to a nonlinear interaction of these modes which includes, among other combinations,
the mode k = 1(4− 3 = 1) through nonlinear interaction.

Below γ ∼ 1.63 our calculations predict that the k = 2 mode is the most critical.
Escudier’s results do not refer to this range of γ. The time-integration of the full three-
dimensional problem, performed by J. M. Lopez (2000, personal communication),
shows that at γ = 1.4 and 1.65 the critical non-axisymmetric mode is k = 2, while
at γ > 2.9 the critical modes are k = 3 or 4. The time-integration of the linearized
and full three-dimensional problems, performed recently by O. Daube (2000, personal
communication) for γ = 1 also showed that the critical mode is k = 2. The critical
Reynolds numbers, obtained in the above studies, also agree with the present results.
This adds more confidence in the results described.

To illustrate the details of the flow at the critical points, three representative cases,
which lead to different wavenumbers, namely k = 2, 3, and 4, were chosen (figures
3–5). For each case we show the streamlines and isolines of the azimuthal velocity
of the unperturbed axisymmetric basic flow and patterns of the non-axisymmetric
perturbation velocity. The perturbation is represented in terms of the vector potential
Ψ which is defined as

v = rotΨ, u =
1

r

∂Ψz

∂φ
− ∂Ψφ

∂z
, v =

∂Ψr

∂z
− ∂Ψz

∂r
, w =

1

r

(
∂rΨφ

∂r
− ∂Ψr

∂φ

)
. (24)

The component Ψφ represents the axisymmetric part of the flow. In purely axi-
symmetric flow Ψφ is the streamfunction. The components Ψr and Ψz represent the
non-axisymmetric part of the flow and are defined by the basis function V ijk and W ijk

respectively. Thus, the non-axisymmetric perturbation of the velocity can be described
by the two components of the vector potential, instead of three components of the
velocity. To illustrate the region of high fluctuation, we plot the moduli of the functions
|Ψr| and |Ψz|, which are independent of φ (figures 3b–5b). By comparison with the
streamlines and isolines of the azimuthal velocity of the basic flow (figures 3a–5a)
one can see that the instability always appears in the lower part of the cylinder where
the rotation is weak and the meridional flow is directed from the sidewall towards
the axis. The amplitudes of the perturbation of Ψr are strongest near the lower
part of the sidewall. It is interesting that the axisymmetric perturbations reported

Figure 3. Flow patterns at the critical point. γ = 1, kcr = 2 (Recr = 2471, ωcr = 0.0766): (a) stream-
lines and isolines of azimuthal velocity of basic flow, (b) isolines of |Ψr| and |Ψz | (amplitudes of
perturbation vector potential), (c) perturbation velocity components at z = γ/4.



374 A. Yu. Gelfgat, P. Z. Bar-Yoseph and A. Solan

3

2

1

0 1

z

Streamlines

3

2

1

0 1

Isolines of
azimuthal velocity

3

2

1

0 1

Isolines of |¾r|

3

2

1

0 1

(a) (b)

z

Isolines of |¾z|

z

y
x¾r

0.15
–0.15 0.40

–0.40

(c)

Perturbation of
azimuthal velocity

Perturbation of
radial velocity

Perturbation of axial velocity

(d )

¾z

r r r r

Figure 4. For caption see facing page.



Instability of axisymmetric flow in a rotating lid–cylinder 375

3

2

1

0 1

z

Streamlines
Isolines of

azimuthal velocity Isolines of |¾r|

(a) (b)
Isolines of |¾z|

Perturbation of azimuthal velocity Perturbation of radial velocity

Perturbation of axial velocity

(c)

3

2

1

0 1

3

2

1

0 1

z

3

2

1

0 1
r r r r

Figure 5. As figure 3, γ = 3, kcr = 4 (Recr = 2839, ωcr = −0.4386).

Figure 4. Flow patterns at the critical point. γ = 3.5, kcr = 3 (Recr = 2132, ωcr = −0.2970):
(a) streamlines and isolines of azimuthal velocity of basic flow, (b) isolines of |Ψr| and |Ψz |
(amplitudes of perturbation vector potential), (c) isosurfaces of Ψr and Ψz in sector of angle 2π/k,
(d) perturbation velocity components at z = γ/4.
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by Gelfgat et al. (1996) had similar features. To illustrate the travelling waves we
show perturbations of the velocity components plotted at the cross-sections z = γ/4
(figures 3c, 4d, 5c). The direction of the azimuthal travelling wave is counter-clockwise
in figure 3 (ωcr > 0) and clockwise in figures 3, 4 and 5 (ωcr < 0).

The present three-dimensional analysis confirms, as did our previous result (Gelfgat
et al. 1996), that the onset of the instability is not connected with the vortex breakdown
that can occur in this system. Furthermore, for γ > 3 the observed three-dimensional
instability sets in before the vortex breakdown occurs.

6. Conclusions
The method and results presented here show that the problem of axisymmetry

breaking of a numerically calculated axisymmetric confined flow admits a complete
and exact analysis by a combination of Fourier decomposition in the azimuthal
direction and Galerkin decomposition in the azimuthal plane. The total analytical
and numerical effort allows a systematic study of the neutral curves. The application of
the method to the flow in a rotating lid–cylinder enclosure yields the critical Reynolds
number as a function of the aspect ratio, as well as the critical modes. These results
show that there exists a rather large variety of possible modes, with intricate crossovers
and possible nonlinear interactions. These results may be of practical importance in
the design of apparatus when such instabilities are to be avoided. The method may
be further extended to other problem with similar symmetries, including heat/mass
transfer, the MHD effect, more complicated rotation, etc. Comparison with the limited
experimental data available shows agreement in certain cases and some disagreement
in others, which may call for further experiments.
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