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Abstract

The effect of axial flow on the mass transfer through a liquid-liquid interface in a two-layer Taylor—Couette system is
studied. The mass transfer of a passive scalar is driven by the diffusion through the boundary, enhanced by the con-
vective mass transport due to the Taylor—Couette vortical flow, which is in turn affected by the axial pressure gradient.
Numerical modeling shows that the axial flow obviates the symmetry of the distribution of the local Sherwood number,
Sh, in a vortical cell and leads to decrease of its average counterpart. For better physical insight into this effect, sim-
plified kinematic models of the phenomenon were considered. The numerical model shows at Sc = 1 to 10 (Sc being the
Schmidt number) that the mass transfer is enhanced by vortical flow in the regions where the motion is directed towards
the interface. The axial throughflow makes for elongation of the Taylor vortices in the axial direction and reduces the
area of the above regions, thereby increasing the local concentration gradient and reducing the mass transfer rate.
Simplified analytical results for Sc > 1 indicate redistribution of the mass flux over the interface compared with the case
of Sc = 1 to 10. The origin of this phenomenon is explained. It is also demonstrated that Sh scales as Pe'/? for the whole
range of Sc, Pe being the Peclet number of the vortical motion. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The aim of the present work is to study the effect of
axial flow in a two-layer Taylor—Couette apparatus on
the mass transfer rate. The situation considered is rel-
evant in the context of a novel vortex extractor for such
passive scalars as, proteins. The diffusion coefficient of
such admixtures is so small that purely diffusional mass
transfer through liquid-liquid interfaces is too low, and
it is natural to try to enhance it by means of the gradient
expulsion mechanism of steady two-dimensional vor-
tices. Two-liquid Taylor—Couette flow is considered as
one of the possible flow patterns capable of creating
secondary vortices for this purpose. The desired effect
can also be achieved by means of secondary Dean vor-
tices in two-fluid flows in curved or helical pipes, natural
convection in a horizontal annular pipe with two-fluid
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throughflow, and secondary dc streaming vortical flows
generated by standing or propagating waves at liquid—
liquid interfaces.

The present work treats the mass transfer of a passive
scalar through the liquid-liquid interface separating two
immiscible cylindrical liquid layers. The fluid dynamics
of such a system [1,2], as well as the enhancement of the
mass transfer by a system of spatially periodic vortices
[3], were recently studied for the unperturbed case
without axial flow. However, as was shown for a single-
layer case, axial flow strongly affects the Taylor—Couette
vortex system, which necessarily leads to changes in the
mass transfer rate [4]. A similar problem for the two-
layer system is considered here.

The case in question falls under a wider class of
problems of flow-augmented tracer/scalar dispersion.
Both active (vorticity) [S] and passive (molecular ad-
mixtures or tiny particles) [6—13] scalars were considered
under different flow conditions. The conclusions drawn
in these works sound promising for applications in novel
vortex extractors, since they indicate convection-en-
hanced diffusion mechanisms, which are also the aim of
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Nomenclature

a vortex half-length (m)

¢ mass concentration

Ci,C,Cs dimensionless constants in Eqs.
(41), (42) and (47), respectively

d gap between the cylinders, R, — R;
(m)

D diffusion coefficient (m? s~1!)

Ds = D, /Dy dimensionless diffusion coefficient

F dimensionless function in (21)

G axial pressure gradient (N m~>)

h mass transfer coefficient (m s™')

J4 pressure (N m~2), or dimensionless

Pe = QRyd/D, Peclet number

Pey, = Vya/D;  Peclet number in the kinematic
model

r radial coordinate (m)

R, radius of inner cylinder (m)

R, radius of outer cylinder (m)

R; radius of unperturbed liquid-liquid
interface (m)

R, radius of curvature of waviness at
the interface related to the
secondary vortical motion (m)

Re Reynolds number, QRd /v,

Sc Schmidt number, v, /D,

Sh local Sherwood number

Sh average Sherwood number

Shn, Shy normalized local and average
Sherwood numbers

t time (s), or dimensionless

tq diffusion time (s)

u radial velocity (m s7!), or
dimensionless

U dimensionless constant in Eq. (39)

v flow velocity (m s7'), or
dimensionless

v azimuthal velocity (m s~'), or
dimensionless

Uyor characteristic velocity of the

secondary vortices (m s~!)

Vi axial flow velocity (m s7!)

w axial velocity (m s™'), or
dimensionless

Wint dimensional interfacial velocity
(ms™)

Wit drift velocity of a steady-state flow
pattern (m s~'), or dimensionless

X,y Cartesian coordinates of simplified
models (m), or dimensionless

Y position of vortex boundary (m),
or dimensionless

z axial coordinate (m), or
dimensionless

Greeksymbols

y surface tension (kg s72)

n dynamic viscosity (kg m™' s7")

2 dynamic viscosity ratio, 1, /1,

K ratio of diffusion coefficients

v kinematic viscosity (m? s7!)

Vo kinematic viscosity ratio, v, /v,

&n Cartesian coordinates of simplified
model (m)

p density (kg m™)

2% density ratio, p,/p,

¢ polar angle (rad)

v stream function (m? s™'), or
dimensionless

w uniform vorticity inside vortex (s7'),
or dimensionless

Q angular velocity of inner cylinder
™)

Q, angular velocity of outer cylinder
O]

Qy; angular velocity ratio, €,/Q,

Q, vorticity (s71)

Subscripts

1 properties related to inner fluid
layer

2 properties related to outer fluid
layer

the present work. Where particles are involved, however,
caution is called for due to the fact that in many ap-
plications they do not constitute a passive scalar, a fact
which affects their dispersion dramatically (e.g. cf. [14]).

In the present work the problem is solved numerically
for a two-layer system using the finite volume method.
The numerical modeling consists of two steps: (i) cal-
culation of the flow field, and (ii) calculation of the
concentration field and the mass transfer rate on
the basis of the flow pattern established at step (i). The
calculations show that axial flow (which is unavoidable

in the novel extractor mentioned above) makes for re-
duction of the local and average Sherwood numbers.

The mass transfer was studied for: (1) Taylor—Cou-
ette vortical flow without axial throughflow, (2) ditto
with axial throughflow, and (3) flows represented by
simplified analytical kinematic models, treating pairs of
vortices separated by the liquid-liquid interface.

The numerical and model results show that the mass
transfer through the interface (i.e., the local Sherwood
number) is increased by the vortical flow. This agrees
with the gradient expulsion mechanism of steady 2D
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vortices. The axial throughflow imposed on the Taylor—
Couette vortical system causes axial elongation of the
vortices and reduces the overall mass transfer through
the interface. It is also shown that the distribution of the
mass flux over the interface in the case Sc =1 to 10
differs qualitatively from that for Sc > 1.

Section 2 contains the formulation of the problem
and explanation of the numerical technique employed.
The results of the numerical calculations are presented in
Section 3. In Section 4 several simplified kinematic
models are considered. Their predictions are compared
with those of the numerical calculations, with a view to
estimating the ability of the simplified models to predict
the interfacial mass transfer rate.

2. Formulation of the problem and numerical technique

We deal with the problem of fluid flow and mass
transfer through a non-deformable liquid-liquid inter-
face in a two-layer Taylor—Couette system with axial
throughflow. The system is shown schematically in Fig.
1. The inner and outer layers are attached to the cor-
responding cylinders which can rotate independently
with angular velocities Q; and €,, respectively. It is as-
sumed that the mass transfer does not affect the flow.
The overall flow geometry reproduces that of the ex-
periments in [1]. Denoting all variables and constants
related to the inner and outer layers by subscripts 1 and
2, respectively, the flow in each layer is described by the
Navier-Stokes and continuity equations

ov 1
671,‘1+(VI “V)vi :*V(IJI%”Glz)‘FEAVl7 (1)
Vv = 07 (2)
'y Q
z
0L |FEESeTegigagiii i AR >
R, R; R’ r

Fig. 1. Sketch of the two-layer Taylor—Couette system.

vy 1 Va1
§+ (vy- Vv, = o V(py + Giz) +EAV27 3)
V-v, =0, (4)

where v; = (u;, v, w;) is the flow velocity and (p, + Gyz)
is the pressure (k = 1,2), G, and G, are the dimension-
less externally imposed axial pressure gradients which
create the axial flow in each of the layers independently.
Furthermore, p,, = p,/p; and v, = v,/v; are the den-
sity and kinematic viscosity ratios, Re = QR\d/v, is
the Reynolds number. The length, time, velocity and
pressure in (1)—(4) are rendered dimensionless by
d =Ry— R\, d/RQ, QRin, and (QlRl)zpl, respectively.

The problem is considered in the domain R;/d <
r<Ry/d, 0<z<Z/d with no-slip boundary conditions
atr=R,/d and r = Ry/d:

r:Rl/d:
r=Ry/d:

v = 15 (5)
vy = 51 Ry (6)

Uy = wy = 07
Uy = Wy = 07
and periodicity conditions at z =0 and z = Z/d:

Vk(Z = 0) = Vk(Z = Z/d)7

n(z=0)=p(z=2/d), k=12, (7)
where @, = Q,/Q,, and Ry; = R,/R;. At the interface
r = R;/d the usual conditions of impermeability, conti-

nuity of velocities, and balance of tangential stresses are
required

r=R/d: u =uy=0, v = Uy,
N 61]1 o 61]2 an o aWZ (8)
Wy = Wy, o M2 o o M2 o

where 1,; = 1,/n, 1s the dynamic viscosity ratio.

The flow is assumed to be stably centrifugally strat-
ified, and the interface to be non-deformable, the latter
being typically the case in the experiments in question
[2]. This is also supported by the following estimate.
Pressure variation due to a vortex is of order pv2 ,
where vy, is the characteristic velocity of the secondary
vortex motion. It should be compensated by the re-
storing force — surface tension. Denoting the surface
tension coefficient by 7, the radius of curvature of the
interfacial waviness corresponding to the vortices is of
order R, =y/pv?,. Taking the characteristic values
of y =50 x 1072 kg/s?, p = 10* kg/m* and vyo; = 0.6 ¥
102 m/s, we obtain R, = 1.39 m, which is much larger
than either R, or R, — both of which are of order 0.1 m.
Thus the waviness is negligibly small compared to the
mean curvature of the interface.

With the steady-state flow calculated, the mass
transfer problem is considered. Here we assume that the
time needed to reach steady state is much shorter than
the characteristic diffusion time, so that the mass
transfer during the transient stage is negligibly small.
Besides, the effect of the axial throughflow must be taken
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into account. Due to the latter the steady flow pattern
can drift axially with a constant dimensionless drift
velocity Wy [4,9]. Then the mass transfer should be
studied in a frame of reference associated with moving
vortices (which are steady in this frame). The mass
transfer equations in the two fluid layers are

Oc Oc 1
a_tl + (v - V)e, — VVdrifla_ZI = ITeACI’ )
Oc 0, D
a_tz +(v2-V)er VVdrma_Zz = P—zelACL (10)

where ¢;, k = 1,2, are the concentrations of a passive
scalar in the fluid layers, D,; = D,/D; is the diffusion
coefficient ratio, Sc = v /D is the Schmidt number and
Pe = ScRe is the diffusional Peclet number. The con-
centration is rescaled as ¢ = (¢ — ¢min)/(Cmax — Cmin)>
where c¢pax and ¢, are the maximal and concentration
at zero time, at which the inner fluid layer is assumed to
contain a uniformly distributed admixture, which starts
to diffuse into the outer layer. The boundary and initial
conditions for the mass transfer problem are:

0
F:Rl/dOrRz/dl —C:O7 (11)
or
z=0,Z/d: %ZO, (12)
0z
0 0
V=R,-/d: Cc| = Cy, §=D21§7 (13)
t=0: 61:1, ¢ =0. (14)

For characterization of the mass transfer, the local and
average Sherwood numbers are defined as:

— d [0
. osh=2 / e
r=R;/d Z 0 or

The Sherwood number was calculated for the inner
layer. Since we are interested in its change relative to the
no-flow or no-vorticity states, the choice of side is ar-
bitrary.

The problems (1)—(8) and (9)-(14) are solved nu-
merically using the finite volume method with the solver
based on the SIMPLE algorithm with semi-implicit
three-level time integration scheme, used in [15,16] for
swirling flows in a cylindrical container. The steady-state
fluid flow can be calculated with a dimensionless time
step T = 0.1 (usually, several thousands of time steps are
necessary to reach a converged solution). Since the semi-
implicit scheme is unsuitable for the mass transfer
problem (11)-(14) (at large time intervals the time de-
rivative vanishes, and the boundary conditions of the
problem tend to the Neumann type, so that the corre-
sponding set of linear algebraic equations becomes
almost singular, which leads to spurious numerical
errors) we use an explicit two-level scheme for the time
integration. To ensure numerical stability at large Peclet

Oc

dz. (15)

r=R;/d

numbers (Pe ~ O(10%)), the calculations are performed
with a small time step t = 1073 The reported flow and
mass transfer calculations are done on the same stag-
gered grid, compressed near the interface. The interface
passes through the center of the radial velocity cell, and
therefore through the edge of the concentration cell.
This permitted direct implementation of the non-pene-
tration condition. The concentration was considered as a
function distributed over the whole domain, whereby the
concentration continuity condition was implemented.
The jump in the mass transfer coefficient (as well as those
in the density and viscosity) was smoothed over 6 mesh
layers, using the smoothed Heaviside function defined as
the integral of Peskin’s kernel [17]. Then the mass
transfer equation (as well as the Navier—Stokes equation)
was considered as defined over the whole domain. Our
numerical experiments showed no significant changes in
the results (up to the third decimal digit) when we used 4,
6, 8 or 10 mesh layers for the smoothing.

To ensure mesh- and time-step independence of the
results, the calculations for the largest value of the Peclet
number Pe = 10* were repeated on 100 x 100 and
200 x 200 grids with time steps = 1073 and 10~*. No
changes were found. Most of the results reported below
refer to the 100 x 100 grid and t = 1073. The calcula-
tions always started from the Couette flow, since nu-
merical initialization of the Taylor instability (e.g. by
allowing the round-off errors to grow) takes a very long
time. An initial perturbation, which allows for triggering
the onset of Taylor vortices, was proposed in [18]. We
extended it to the two-layer case.

Following [6] we define the turnover, diffusion and
averaging time as 7,=d/QR,, Ty=d*/D; and
T, = TyPe /3, respectively. Using the time scale d/QR),
we obtain the following dimensionless values: T, =1,
Ty = Pe, and T, = Pe'/?. In the calculations described
below the dimensionless time of integration was 300 or
400, so that for Pe = 1000-10,000 the integration time
was always shorter than the diffusion time and longer
than the averaging time.

3. Results of calculations

Our calculations retained the set of parameters re-
ported in [1,2]: R/R, =0.827, Z/d =1, n, = 0.96,
0y = 1.4, Q1 = 0.62, Re = 4490. Regarding the effect of
the axial throughflow, we consider two cases: (i) without
axial flow G; =G, =0, and (ii)) with axial flow
G; = G, =0.0005 and (ii)) ditto, G; = G, =0.001.
Streamlines of the calculated flows are shown in Fig. 2.

According to the linear stability results of [2] and the
experiments [1,2] the Taylor vortices in the two-layer
system have an almost square cross-section. Accord-
ingly, we chose the aspect ratio as 1:1, which accom-
modates two pairs of the Taylor vortices (Fig. 2(a)).
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Fig. 2. Streamlines and isolines of the azimuthal velocity of the two-layer Taylor-Couette flow Re = 4490: (a) G, = G, = 0; fixed
frame. (b) G; = G, = 0.0005; moving frame. (c) G; = G, = 0.001; moving frame.

Periodic boundary conditions were implemented be-
tween the cells, whereby long gaps similar to those in the
experiments were actually modeled.

Without an axial pressure gradient (G; = G, =0),
the flow pattern consists of a pair of counter-rotating
antisymmetric Taylor vortices in each layer (Fig. 2(a)).
This pattern is disrupted by the axial flow, initiated by
instantaneous switch-on of the axial pressure gradient.
As noted above, the steady flow pattern moves axially
with a constant drift velocity, in this case found to be
Waiee = —0.0495 and —0.0513 for G; = G, = 0.0005 and
0.001, respectively. The stream function and isolines of
the azimuthal velocity calculated in the frame moving
axially with the drift velocity, are shown in Fig. 2(b) and
(c). In the case represented by Fig. 2(b), with
| Waiiee| = 0.0495, the maximal radial velocity is 0.00984.
The maximal axial velocity (which comprises the basic
axial flow and the secondary meridional flow) is 0.0730.
Therefore, compared to the radial velocity, the drift
velocity is about five times larger than the maximal
velocity in the vortex. Under the impact of the axial
throughflow, the Taylor vortices become elongated in
the axial direction and retain the opposite direction of
rotation, namely, the flow is directed towards the in-

terface in the upper part of the vortex and away from it
in the lower part. The axial throughflow is directed
downwards and has a Poiseuille-like profile, so that the
axial velocity is maximal near the interface and tends
parabolically to zero near the boundaries in a fixed
frame. Therefore, in a frame moving downwards at the
drift velocity, a vortex pair experiences a downward flow
near the interface, and an upward flow near the
boundaries (Fig. 2(b) and (c)). As the axial pressure
gradient increases the vortices become smaller, as in the
single-layer case [4].

Calculations of the mass transfer were carried out for
a fixed Reynolds number Re = 4490, three fixed Peclet
numbers Pe = 10%, 5 x 10% and 10*, and three fixed dif-
fusion coefficient ratios D,; = 0.5, 1 and 2. Snapshots of
the concentration distribution at several fixed moments
of time are shown in Figs. 3 and 4. These figures illustrate
how the concentrations in both layers equalize in time. It
is also seen that in the inner layer (where the passive
scalar is initially located) the higher concentrations fall in
the regions where the flow velocity is directed towards the
interface (cf. Fig. 2(a) and (b) vs. Figs. 3 and 4, respec-
tively) and the local concentration gradient near the in-
terface is larger. This leads to intensification of the



560 A.L. Yarin et al. | International Journal of Heat and Mass Transfer 45 (2002) 555-570

(@)

(b) t=70

Fig. 3. Concentration contours without throughflow. Re = 4490, Pe = 1000, G = 0: (a) Dy = 1; (b) Dy = 2.

interfacial mass transfer in these regions. This latter effect layer are shown in part (a) of Figs. 5-7, and their
will be discussed below in detail. counterparts for the average Sherwood number S (15)
The time histories of the total volume fraction of the in part (b) of Figs. 5-7. Note that since the Reynolds

passive scalar that passed from the inner to the outer number is fixed throughout, increase of the Peclet
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(a) J——

(b) B =120

t=140

t=140

Fig. 4. Concentration contours with throughflow. Re = 4490, Pe = 1000, G = 0.0005: (a) Dy; = 1; (b) Dy = 2.

number means decrease of the diffusion coefficient D, in
the inner layer. For a fixed Peclet number, in all the
cases considered increase of the diffusion coefficient ratio
Dy, = Dy /D, manifests itself as slightly faster growth of

the volume fraction. In other words, a larger diffusion
coefficient in the initially “empty” layer makes for more
intensive mass transfer. It is obvious that the average
Sherwood number tends to zero as time tends to infinity,



562 A.L. Yarin et al. | International Journal of Heat and Mass Transfer 45 (2002) 555-570
G20 G=0
5
05 .
——8—— D, =0.5, Pe=1000
. o Dyy=05, Peasot0
04 ]
] 5
5] £ 3
R~
503 ]
= 3 ]
K s ]
E 0.2 g 2
o T
S 5]
0.1 !
» Dy)=2, Pe=10,000 :
0-¢ — - - . — 0 — e
100 200 300 0 300
(a) time (b) time
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Fig. 6. (a) Volume fraction vs. time for throughflow corresponding to G = 0.0005. (b) Average Sherwood number vs. time for

throughflow corresponding to G = 0.0005.
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Fig. 7. (a) Volume fraction vs. time for throughflow corresponding to G = 0.001. (b) Average Sherwood number vs. time for
throughflow corresponding to G = 0.001.

and the concentrations in the two layers equalize. This
tendency is clearly seen in part (b) of Figs. 5-7. Com-
parison of part (a) of Figs. 5-7 with part (b) of Figs. 5-7
shows that the average Sherwood number is larger when
the volume fracture is smaller. This is quite apparent,

since a smaller volume fraction means less mixing and
therefore larger concentration gradients near the inter-
face, which in turn, make for larger average Sherwood
numbers. Note that according to [7] the average Sher-
wood number increases as Pe!/? with Pe — oo. This
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trend is clearly seen in part (b) of Figs. 5-7. The scaling
relating Sk with Pe will be dealt with below.

Further information about the axial flow effect on the
mass transfer can be drawn from the profiles of the local
Sherwood numbers. For further comparison with the
analytical results (see Section 4), we introduce the
characteristic values c¢{!) and ¢!?) defined as the maximal
concentration values at a distance of 10 grid layers
(about 9% of the gap width) from the interface in the
first and second layers, respectively. Then we normalize
the Sherwood number by their difference (c{) —c?)),
such that Shn(x) = Sh(x)/(c) —c?) and Shy = Sh/
(c) — ). Both Shy and Shy(x) tend to a constant
(value and function) as time tends to infinity (Figs. 8 and
9(a)—(c)). The latter three figures refer to cases (i) G = 0,
(i) G = 0.0005 and (iii)) G = 0.001, respectively. In case
(i), without axial flow (Fig. 8(a)), the profile of Shx(z) is
symmetric with respect to z = 0.5, and the local Sher-
wood number is maximal at the points where the radial
velocity is directed towards the liquid-liquid interface
and minimal in the opposite situation. In cases (ii) and
(iii) the profile of Sh(z) is asymmetric due to the asym-
metry of the flow, but otherwise its behavior is the same
as in case (i). Comparing the three figures one can see
that at the same values of the Peclet number the maxi-
mal values of Sh are lower in the presence of the axial
flow.

The increase in the average Sherwood number with
the Peclet number can be explained as follows. The mass
transfer through the interface is governed by the
boundary condition (13). Namely, it is determined by
the diffusion coefficient ratio and by the radial com-
ponent of the concentration gradient in the vicinity of
the interface. For a fixed diffusion coefficient ratio the
mass transfer can be increased only by increase of the
radial concentration gradient near the surface. The latter
is provided by the convective transport of the scalar due
to the Taylor vortex flow. The effect is strongest in the

———— Dy=05. Pe=1000
— B Dy~ 05, Pen5000
i D= 05, Pe-10,000

Normalized average Sherwood number

D=2, Pe=10.000

1 1 T T T T
(a) 0 100 2(50 300

Normalized Sherwood number

563

area where flow in the vortices is directed towards the
interface, so that the higher concentration in the inner
layer and lower concentration in the outer layer are
advected towards the interface (see also Figs. 3 and 4).
However, as will be shown below, this is not the only
factor affecting the mass transfer (cf. the end of Section
4).

Fig. 10 illustrates how the time-asymptotic values of
the normalized average Sherwood number vary with
Pe'’?. For Taylor vortex flow unaffected by throughflow
(G = 0) the dependence Shy(Pe'/?) tends to be linear,
starting from Pe = 5000. Axial throughflow suppresses
the vortices (Fig. 2), and therefore larger Peclet numbers
are needed to reach the linear dependence. The latter is
illustrated in Fig. 10(b), where it is still not reached at
Pe = 10000.

It is emphasized that 3D and time-dependent insta-
bilities are not expected in the present range of param-
eters. Indeed, according to the results of [19] co-rotation
stabilizes the flow. Our outer Reynolds number is about
2800, which is far beyond the stability diagram of [19].
Besides, the linear stability results of [2] obtained for the
two-layer case show that all the transitions take place at
significantly larger Reynolds numbers than in the single-
layer case. Moreover, it is well known that the axial
throughflow has a strong stabilizing effect. Since no
azimuthal waves were observed in the experiments [1,2]
used for determining our parameters, we refrain from
looking for 3D and time-dependent instabilities. Where
we are slightly beyond the axisymmetry-3D transition
limit, a small azimuthal modulation of the flow can
hardly have a significant influence on the results.

Note also that the linear stability analysis of [20] for a
single-layer case showed a slow change in the critical
wave number until the axial gradient exceeded a certain
value. Similar behavior of the critical wave number was
observed in [21] for the two-layer case, with counter-
current flow in the axial direction. To the best of our

G=0001
6

3 . —8— D =05 Pesl00
] —&— D =05, Pe=S0H0

1 ] T — T — T T T
(b) [ 100 200 300 400

time

Fig. 8. Normalized average Sherwood number vs. time Re = 4490: (a) without throughflow G = 0; (b) with throughflow corresponding

to G = 0.001.
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knowledge, there is no published linear stability results
for a two-layer case with axial co-flow, like the one
considered in the present work. It is clear that if we set
the aspect ratio of the computational domain according
to the critical wave number (which is not known for the
case considered), the intensity of the vortical flow will
increase and so will its effects on the mass transfer.
However, so long as the spatial period does not differ
significantly from unity, the results will remain quali-
tatively the same. Also, it was shown that for large Peclet
numbers the mass transfer coefficient (the Sherwood
number) is scaled as Pe!/?, which allows one to estimate

the effect for similar vortical flows. One of the purposes
of our study was to compare the effect of Taylor vortices
affected and unaffected by the axial flow on the mass
transfer. To make comparison easier, we used the same
computational domain.

4. Simplified kinematic models
Numerical results (Section 3and [4]) show that with a

significantly weak axial flow in a two-layer Taylor—
Couette apparatus, there appear a system of vortex pairs
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moving in the axial direction relative to the fluid flow,
the vortices in the pairs remaining axisymmetric as in the
case without axial flow. Enhancement of the mass
transfer of a passive scalar from one fluid to another is
related, first of all, to these vortices. In the present sec-
tion we employ first a simple kinematic model mimick-
ing a single pair of vortices in a parallel unbounded flow
and predict its effect on the mass transfer. In the pro-
posed kinematic model (designated 1), we disregard the
effect of cylinder curvature in the apparatus, since it is
expected to be insignificant for gaps much smaller than
the cylinder radius. Accordingly, a planar model is
considered. The flow pattern to be employed was dis-
cussed in [22]. It is sketched in Fig. 11, with the frame of
reference associated with the vortices. Fluids 1 and 2
occupy the domains y < 0 and y > 0, respectively. The
vortex pair is surrounded by a boundary I', to be de-
termined in the course of the solution. Along the x-axis
the vortices span a distance 2a. A parallel flow impinges
on the vortices with velocity V... For the vortices we
assume constant vorticities of magnitude (—®) in fluid 1
and (+w) in fluid 2, respectively, the value of w also to
be found in the course of the solution. This kinematic
model belongs to the class of flows discussed in [5]. Mass
transfer of a passive scalar at the interface —a <x<a,
y=0 1is expected to be enhanced by the vortical

Fig. 11. Sketch of the flow pattern of kinematic model 1.

motion, which propels the admixture rapidly towards
the interface, sustaining there a steep concentration
gradient.

The vortical component of the flow is determined by
the Poisson equation for the vortical stream function v,
namely
Ay, = Q., (16)

where Q. =+ in the vortices as above and Q, =0
outside the domain S bounded by I'.
The solution of the Poisson equation (16) is given by

szi/ /Q,ﬁlnrdfdn7
2n Jg

where r = [(x — &)* + (v — )’]
Cartesian coordinates.

Eq. (17) can be supplemented by a stream function of
the (potential) parallel flow W, = V,y yielding the
stream function i of the flow in Fig. 11

Y=, + .
Therefore, from (17) and (18) we find

l//(xvy) =

(17)

2 and &, n are dummy

(18)

+w
4 4n

></jl df/oym In {g:gz

where Y (&) is the y-coordinate of the boundary I

To find I we should substitute y = ¥(x) and y = 0 in
Eq. (19), which yields the following dimensionless
equation for Y:

o [ e —n)’
v f o] ln[(x_ff (V) +a)

+-n’

dn,
+ @+

(19)

dn=0.

(20)

Here and hereinafter we render the parameters
dimensionless using the following scales: @ — for x, y, &, n,
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and Y;V,/a — for o, and
ponents.

Evaluating the inner integral in (20), we arrive at the
following equation for Y(x) of I':

V., — for the velocity com-

+% /_iF[é,x, Y()]dE=0, —1<x<1, (21)
where
FE,x, Y(x)] = 2Y(x) In [(x — &4 1 (x)} —4Y(x)

xYEx)é }

—[Y(0) = ¥(@))n [(x— &)
+(Y(x) - Y(é))z] +2[Y(x) — Y (&)]
—2(x — ¢)arctan {M}

Y@+ V(@) [(x - &)
+(Y(x) + V()] +20¥ (x) + Y (O)

Y(x) +Y(¢)
x=¢
The velocity components are readily found by differen-

tiating (19). In particular, the interfacial velocity is given
by

W =1-— +Y2(é) d
int(x) = 1 / |: — } ¢ (23)

At the bifurcation points x = +a, y =0 the velocity
should be zero, which yields the following dimensionless
equation for w:

+4(x — &) arctan {

—2(x = ¢)) arctan [ } (22)

2n
{1 r@/E e
Note that [Y(£)/(&+1)7]|.._, tends to [dY/d&]|.__,.

Solving Egs. (21) and (24), we find the vorticity w and
the shape of the boundary I', Y (x). The vorticity equals

w = 6.457 (25)

(24)

and the calculated shape of the boundary I',Y(x), is
shown in Fig. 12.

Knowing Y(x) and o, we calculate the interfacial
velocity wiy(x) from (23). The result is shown in Fig. 13,
where it is seen that to the left of the vortex tip (at
x < —1) wiy > 0, inside the vortex pair (at |x| < 1) wiy <
0), and to the right of the vortex pair (at x > 1) the
interfacial velocity becomes positive once more, as it
should be for the flow as per Fig. 11.

The flow field as a whole is found from (19), rendered
dimensionless. The results are shown in Fig. 14.

0.8

TR R

0.6

R

Fig. 12. The shape of the vortex boundary (kinematic model 1).

Wing

-1

Fig. 13. The interfacial velocity distribution (kinematic
model 1).

Consider now the mass transfer of a passive scalar
through the interface. We assume that the Schmidt
number on both sides is much larger than unity,
Sc¢ > 1 (S¢; = v;/D;), and very thin diffusional boundary
layers appear near the interface on either side. In these
layers the longitudinal velocity component is
w A wiy(x), whereas the transverse one due to the con-
tinuity equation is given by

dWim

N ——. 2
v o Y (26)

Accordingly, the diffusion equation in both fluids reads

) dwyy  0c® 2l
ek yo—-=Di——,
Ox dx ~ Oy 0y?

Wing (X)

(27)
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Fig. 14. The calculated flow field (kinematic model 1).

where ¢ (i = 1,2) is the scalar concentration in layers 1
and 2, respectively, and D; are the corresponding diffu-
sion coefficients.

Eq. (27) is solved subject to the following boundary
conditions:

y=—00, c(l) = 62)7 (28)
y=+400, = cg), (29)
=0, V=c? 30
y ) )
dcth) dc?
yZO, _DIH:_DZa—y7 (31)

where c() and ¢@ are the respective scalar concentra-
tions far from the interface, and the concentration pro-
file and mass flux are continuous at the interface. In this
manner Eq. (27) readily yields an analytical solution (cf.
[13]) which permits calculation of the mass flux through
the interface j|,_,, as well as of the mass transfer coef-
ficient

il
h=——>. 32
RO 2

The corresponding Sherwood number Sk = ha/D; is
given by

K 2

Shx) =1 NG
IS L1111G0] - (’/%”)l/z —1<x<1
[[jl |Wim(é)‘dé]l/2 D1 ’ Ax L
(33)

where

1/2
- (3)

The Sherwood number (33) was calculated under the
assumption that the concentrations c{) and c¢? are
constant. For qualitative comparison of the results of
the numerical calculations of Sections 2 and 3 with those
of Eq. (33), the former should correspond to ¢ << Ty,
where the diffusion time Ty = d*/D;, and Sc > 1. The
result of (33) shows that the mass transfer rate increases
as Pe;éz = (Voca/Dl)l/2 which is characteristic of mass
transfer enhancement in various vortical flows [7-13].

The calculated distribution of the Sherwood number
normalized by [ic/(1 + k)](2/v/7)(Vaa/Dy)'* is shown
in Fig. 15. It is seen that the Sherwood number increases
steeply in the vortex near its tip x = —1, and then
gradually decreases towards the tail of the vortex x = 1.
This result differs significantly from those described in
the preceding section (see Fig. 6), where the local Sher-
wood number increases near the opposite (with respect
to the axial throughflow) tip of the vortex. The difference
will be discussed in detail below.

Since the velocity field of the kinematic model 1 is
unbounded, we begin with the effect of the wall con-
straint on the interfacial mass transfer. To elucidate this
effect, as well as that of the multiplicity of vortex pairs,
we employ another simplified kinematic model. For
example, the one of [23] is applicable after appropriate
modification to our two-layer case. In [23], a flow
mimicking Taylor vortices in a gap filled by a single fluid
was considered. The dimensionless stream function was
introduced as

W= (yz—i>zsin(7rx), (35)

where y being the radial coordinate across the gap, and
x the longitudinal one in it. The gap is assumed to

Sh

Fig. 15. Normalized distribution of the local Sherwood number
in the vortex (kinematic model 1).
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extend over —1/2<y<1/2 and —oo <x < 0. The fact
that y = 0 corresponds to the gap axis means that coor-
dinate is reckoned from the middle of the gap. The stream
function (35) generates a system of vortices similar to
those of a single layer (the left or the right one in Fig. 2(a)).

For a flow field mimicking the present two-layer
system as a whole, we take the following stream function
(kinematic model 2)

b= -1) yonaeo, (36)

which we consider, say, over 0 <x < 1. We assume that

the gap is narrow and the curvature effects are negligible.

The continuity equation can then be reduced to that for

the planar case, which implies
ol Gl

w=—, u=-——

_ay7 _76)67 (37)

where w and u are the axial and radial velocity com-
ponents. Substituting (36) in (37), we obtain

w= |:4y2 (y2 - %) + (y2 - %ﬂ sin(2mx), (38)

u=-2n <y2 - %)zycos@nx). (39)

It is seen that the no-slip conditions at y = £1/2 are
satisfied, as well as u =0 at the interface y = 0. This
means that the kinematic model (36) and (38) and (39)
generates a flow field similar to the two-layer flow of Fig.
2(a) (without axial flow). Also from (38) and (39) we find

|
Wine = W|,_o = 16 sin(27x). (40)

Repeating the calculation scheme which led from (27)—
(33), we obtain in the present case

Sh(x) = C,

Wit (x)]

[ pwin(6)]dE]

where C| is a constant including, in particular, the factor

(41)

Pel/2.
Substituting (40) in (41), we find that
in(2 1
Shx) = ¢y Sn(2m) 0<x< (42)

? [1 — cos(2nx)])'"/?’ 2’

where the constant C, also incorporates the factor Petljéz‘
Note that as x — 0, the Sherwood number Sh — Cyv/2.

The distribution of the Sherwood number (42) re-
sembles that obtained numerically for a similar case in
Fig. 2(a). Expression (42) exhibits the same qualitative
features: the maximal value of the Sherwood number,
C»V/2, is achieved at the end of the vortex cell, x = 0, and
the minimum, 0, in its midpoint at x = 1/2. This is also
qualitatively similar to the results of numerical calcula-
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Normalized local Sherwood number
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Fig. 16. Normalized local Sherwood number for kinematic
model 2 and numerical case (i). | — completely numerical,
Pe=10,000; 2 — kinematic model 2, using Eq. (42) — shifted
horizontally; x replaced by z; 3 — semi-analytic, using Eq. (41)
and the numerical interfacial velocity profile wiy.

tions presented in Fig. 9(a), as the comparison in Fig. 16
demonstrates. We also show the local Sherwood number
calculated from the numerically found interfacial
velocity profile and Eq. (41).

To account for the axial flow, we associate the x-axis
with the vortices moving with a dimensionless velocity
—Waie = —(3U /4 — 1/16) < 0, where U is a constant
larger than 1/12. Then instead of (36) we pose (kinematic
model 3)

1 1\’
l//:_ﬁy+Uy3+(y2—Z> yeos(2my), 0<x<I,
(43)

which mimics the situation shown in Fig. 2(b). From the
stream function (43) we find

_ 1 2 a2 ] ;1Y
w= 16+3Uy + |4y (y 4) + (y 1 cos(2mx),
(44)
1\2
u= —2n<y2 - 4_1) ysin(2mx). (45)

Note that in the moving frame the walls move with
velocity 3U/4 — 1/16 > 0. Also, at the interface y =0
the radial velocity component u = 0. The axial velocity
at the interface according to (44) and (45) is given by

Wine(X) = %[cos(znx) —1]. (46)
Using (41) and (46), we obtain

[1 — cos (27x)]

S = O L )2
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where the constant C; incorporates the factor Pel/2. As
x — 0, the Sherwood number Sk — 0.

The distribution (47) is shown in Fig. 17 with the
constant C; adjusted so that the maximum of (47) co-
incides with that of the numerically calculated Sh(x). It
is clearly seen that both kinematic models 1 and 3 pre-
dict the maximum of the local Sherwood number close
to the front stagnation point, and the numerical result —
the one close to its rear counterpart. Therefore, allow-
ance for the wall constraint in the kinematic model, as
well as for multiplicity of vortices cannot eliminate the
disagreement between model 1 and the numerical re-
sults. Further, we substituted the numerically obtained
interfacial velocity profile in Eq. (41), and the result,
also shown in Fig. 17, again qualitatively disagrees with
the numerically obtained Sh(x). At the same time, sub-
stitution of the velocity defined by Egs. (44) and (45)
into the completely numerical model (9)-(14) yields a
dependence Sh(x) similar to the completely numerical
result.

Analysis of the discrepancy revealed the following.
All numerical results were obtained with Reynolds
number Re = O(10%) and Peclet number 103 < Pe < 104,
which means that the corresponding Schmidt number is
Sc=Pe/Re =1 to 10. (Note that calculations with
Pe > 10* necessitate a very fine grid near the interface
and, as a result, prohibitive time consumption). In such
situations the thin diffusional boundary layer does not
develop, since Sc > 1 is not reached. As a result, the
mass transfer in the numerical calculations occurs over
the whole vortex cell in the y-direction, instead of in the
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Fig. 17. Normalized local Sherwood number for kinematic
model 3 and numerical case (iii). 1 — completely numerical,
Pe=10,000; 2 — kinematic model 3, using Eq. (47) — shifted; x
replaced by z; 3 — kinematic model 1, using Eq. (33) — shifted; x
replaced by z; 4 — semi-analytic, using Eq. (41) and the nu-
merical interfacial velocity profile wyy.

thin diffusional boundary layer alone (at intermediate
times). Then the concentration distribution far from the
interface is not independently fixed and uniform, as
implied by the boundary conditions (28) and (29), but is
directly affected by the interfacial mass transfer and vice
versa. On the other hand, the analytical solution for the
concentration (cf. [12,13]) against the background of the
expressions (41), (42) and (47) for the Sherwood num-
ber, concerns the extremely thin boundary layers (cor-
responding to Sc = O(10%) which is a realistic value for
proteins). Such cases correspond to Pe > 10°, and are
not amenable to the numerical technique used in the
present study. Note also that the better agreement be-
tween the analytical and numerical approach obtained
for the case without throughflow (Fig. 16) refers to the
already obtained boundary layer scaling Sh ~ Pe'/?,
while in the presence of throughflow this scaling was not
reached numerically (cf. Fig. 10(a) and (b)).

It is emphasized that the origin of the discrepancy lies
not in the quality of the kinematic models (which mimic
the real velocity field quite reasonably) but in the fact
that the numerically solved refers to the case of Sc = 1 to
10, and the analytical one to Sc > 1.

It is also emphasized that in any case it is impossible,
within the framework of any kinematic model, to in-
vestigate the Reynolds number dependence (for the axial
flow) of the advection—diffusion effects.

5. Concluding remarks

Two-fluid Taylor—Couette flow develops pairs of
vortical cells. Such a flow is a key element of a novel
extractor described in [1,2]. In this case a passive scalar
(a protein) is initially present in one fluid layer, and is to
be transferred into another. Since the diffusion coef-
ficients of proteins are extremely small (the corre-
sponding Schmidt number is Sc= O(10%)), purely
diffusional interfacial mass transfer is ineffective. In the
present work it is shown that the vortex cells result in
steeper concentration gradients near the interface, which
leads to increase of the Sherwood number S/ with Pe!/?
(Pe being the Peclet number).

It is also shown that axial flow imposed on the two-
layer Taylor—Couette vortex system has a strong effect
on both the flow pattern and the mass transfer through
the liquid-liquid interface. As a result, the distribution
of the local Sherwood number becomes asymmetric and
the average mass transfer coefficient (average Sherwood
number) decreases. At the Schmidt number Sc =1 to 10
maximal local mass transfer is observed at the tip of the
Taylor vortex where the fluid flow is directed towards
the interface. The effect takes place due to convective
mass transport by the Taylor vortices.

In spite of the fact that the scaling Sh ~ Pe'/? is
demonstrated for both Sc=1 to 10 and Sc>> 1
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(numerically, only without throughflow), the distribu-
tion of the Sherwood number along the interface differs
qualitatively in these two cases. The difference is related
to the fact that in the first case the mass transfer occurs
over the whole vortical cell, not only in an extremely
thin diffusional boundary layer near the interface as in
the second case.
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