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Three-dimensional instability of a two-layer Dean flow
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Stability of a two-layer Dean flow in a cylindrical annulus with respect to three-dimensional
perturbations is studied by a global Galerkin method. It is shown that for large inner radius of the
annulus(i) the instability becomes three-dimensional if one of the fluid layers is thinits onset

is not affected by possible small deformations of the interface (@ndnultiple three-dimensional

flow states are expected in a slightly supercritical flow regime. Stability diagrams and patterns of the
three-dimensional perturbations are reported. It is concluded that even when the axisymmetric
perturbation is the most dangerous, the resulting supercritical flow is expected to be
three-dimensional. Possible multiplicity of supercritical three-dimensional states is predicted. The
basis functions of the global Galerkin method are constructed so as to satisfy analytically the
boundary conditions on no-slip walls and at the liquid—liquid interface. A modification of the
numerical approach, accounting for small deformations of the interface which is subject to the
action of the capillary force, is proposed. The results are of potential importance for development of
novel bioseparators employing Dean vortices for enhancement of mass transfer of a passive scalar
(say, a proteipthrough the interface. The developed numerical approach can be used for stability
analysis in other two-fluid systems. @001 American Institute of Physics.

[DOI: 10.1063/1.1409967

I. INTRODUCTION present work we describe how the Galerkin basis can be

) , constructed for a two-fluid case such that not only no-slip
, The cla_ssmal Deaq probllem _con5|ders th? flow of aMconditions, but also those of continuity and the balance of
incompressible Newtonian fluid driven by an azimuthal PreSyiscous stresses at the liquid—liquid interface are satisfied

zurelgre;dﬁnt N at.cylm]ijncal a:ln r(ljullgs. The Itr']ésfgts)lgltﬁ-ﬂf this analytically. Then we show how the balance of the capillary
ow feads to creation ot so-catied Dean VOrticesStablity g hormal viscous stresses can be included in the numerical
analysis of this problem explains this effect in Poiseuille- . . .

model assuming small deformations of the interface. The

type flows in curved pipes and chann&lat present the - . .
. . o Proposed approach can be used for stability analysis of vari-
Dean vortices are known as a means for intensification o i 11 .
ous two-fluid system&! e.g., for two-layer Rayleigh—

heaP and mas% transfer in single-phase liquids. Recently, _; 5
certain attempts were made to intensify mass transfer of genardl or T‘?‘Y'Or‘cou‘?“g flows. .
The stability analysis in the present work, which ac-

passive scalar through a boundary separating two immiscible for th di ional bati df ibl
liquids by creating spatially periodic vortical flows inside counts for three-dimensional perturbations and for possible

both liquid phases, using a two-fluid Taylor—Couettesma” dgformation_s of th_e quuid—_liquid_ _interface, Iea_ds to
apparatug:® Obviously, Dean flow is another possible origi- two main conclusions. First, the mstqblllty opserved in the
nator of vortical flow inside a two-fluid system, and a poten-SYStém corresponds to onset of vortical motion and is not
tial candidate as a new element in novel bioseparators iqffected by deformations of the interface. Second, the insta-
protein extraction. bility is axisymmetric when the depths of both layers do not
In the present work we study the onset of Dean vorticediffer significantly, i.e., the value ob/d is close to 0.5.
in the two-fluid Dean problentFig. 1). Namely, stability of a When one of the layers is thine., b is close to zero or to the
flow driven by a constant azimuthal pressure gradient in &ap thicknessl), the instability is caused by a nonaxisym-
cylindrical annulus filled with two immiscible liquid layers is metric three-dimensional perturbation characterized by a
considered. The liquid—liquid interface can ki¢ nonde- relatively high azimuthal wave number. Location of the in-
formable or(ii) deformable and subject to capillary forces. In terface(the value ofb) corresponding to the switch between
the latter case small perturbations of the interface are inthe axisymmetric and three-dimensional instabilities depends
cluded in the formulation of the stability problem. The grav- on other governing parameters. In particular, a strong depen-
ity effect is disregarded. dence on the ratio of viscosities of two fluids is found. On
The stability problem is solved using an extension of thethe basis of the calculated stability diagrams, we predict ex-
global Galerkin approach?® for stability analysis of viscous istence of multiple three-dimensional supercritical flow
single-phase flows in confined domains. This approach usestates, which appear as spiraling waves that rotate about the
linear superpositions of Chebyshev polynomials to satisfyaxis and propagate along it. Spatial patterns of the nonaxi-
analytically no-slip or stress-free boundary conditions. In thesymmetric perturbations are illustrated.
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where Re=p,dvgy/7n,=(d/7)VGp, is the Reynolds number,

and pqi=p;/p1, n1;=niln,. For convenience of compari-
son with the previous studi&g' we introduce the Dean num-

berDe= Re/\/‘gwhich accountialso for the radius of curva-
ture of the cylindrical annulusa(=a/d).

lll. BASIC FLOW

The velocity of the basic flow is represented by the azi-
FIG. 1. Sketch of the problem. muthal component only, which depends on the radial coordi-
nate, i.e.,V={0V(r),0} and P=p(r). The problem for
V(r) follows from (2) and (3):

The paper is organized as follows. Formulation of the 1 gy BV,

problem is discussed in Sec. Il. The basic flow is considered —= R—l' —2' (43
in Sec. lll. Stability problems for nondeformable and de- r eor

formable_ interfac_es are considered in Sec. IV. The numericgl Vy(@)=V,(a+1)=0, (4b)
method is described in Sec. V. The results are reported in

Sec. VI. Conclusions are drawn in Sec. VII. V,(@a+b)=V,(a+b), (40)

nv] v, .
Il. FORMULATION OF THE PROBLEM o | o =i T o (4d)
r=a r=a

Consider a cylindrical annulus, whose radius varies i
the intervala<r<a-+d, filled with two immiscible Newton-

ian incompressible liquids 1 and 2 which, in the unperturbeJnenSIonless coordinate=r —a and assume that>1 ..,
state, occupy cylindrical layera<r<a-+b and a+b=r the inner radius is large as compared to the)gabis allows

<a+d, respectively(see Fig. 1 It is assumed that the flow ©ne to replace= a+x by a and reduces4) to the following
is driven by a constant azimuthal pressure gradigne  form:

"Whereb=b/d. Following Dear we introduce the new di-

=G=const. The velocity and pressure fields in each liquid 4 i 92V,
satisfy the Navier—Stokes equations: ==
isfy vi quati == TRe "’ (5a)
av;
P{&_tl"_(vi'v)vi =~ 7 & VPt 7dy, (13 V1(0)=V,(1)=0, (5b)
V-v=0, (1b) Vi(b)=Vy(b), (50
wherev;={U,,V; ,W} is the flow velocity,P; the pressure vy NV,
additional to the component responsible for the azimuthal X T | — (5d)
pressure gradieng; the density andy; the dynamic viscos- = x=b
ity of liquid i. U;, V;, andW, denoting the radial, azimuthal, The solution of(5) reads
and axial velocities, respectively, and the subsdripferring
to liquids 1 and 2. The no-slip boundary conditions are im- Re , 71 Re?(plzlnlz— 1)—p1o/ 171
posed at the boundaries of the annulus Vi=—X+ ———— X, (63
2a P1228  b(miplp—1)+1
at r=a: v;=0, (2a)
at r=a+d: v,=0. (2b) Vv P12 ReX2+ Re b?(p1o/ 715~ 1)_P12/7712X
2= — p—
At the interface we impose the conditions of continuity of Mm228 28 b(ny,lpp-1)+1
the velocity vector and shear stress, as well as a jump of the
normal stress due to the surface tension. Re b(1=p1al 712+ b*(p12/ 112 — 1) (6b)
For nondimensionalization of the problem we use the o B9,/ 1)+1
velocity scalevy=(G/p;)Y2 As the length, pressure and h2lP1z
time scales we usd, ple, andd/vg, respectively. which is an extension of the basic flow of Dédor a two-
The dimensionless governing equations read fluid system.

Downloaded 17 Oct 2001 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 11, November 2001

IV. STABILITY PROBLEM

Consider the linear stability problem for the basic state

described by6a and(6b). Let u=(u,v,w) andp be infini-

tesimally small perturbations of the velocity and additional

pressure, respectively. Using ther-periodicity in the azi-
muthal é-direction and assuming amZk-periodicity in the
axial z direction, the perturbations can be represented; as
=(u;(x),v;(X),w;(x)) exdinf+ikz+At], p;=p;(x) exdind
+ikz+A\t], wheren is integer and real, both of them dimen-
sionless. Using3) and(6) we arrive at the following linear-
ized equations:

in 2
it s Vil gy Viv
_ 1.dp d2ui+ 1 duy n?+1
pp dx  dE Tarx dx (arx)2Y
) 2in
-k Ui—mvi ) (73
dv, in
)\Uﬁ‘UiWﬁ‘mVivi-i‘mviui
_ in 4R dzvi+ 1 dUi
T a0 PN TR x dx
n2+1 5 2in
T2t Kt gzt (7b)
in
)\er‘mvlwl
L R dzwi+ 1 dw, n2 2
T PN Tarx dx (@rx2 Vi Wi
(70
dui U; in W =0 7
ax Tarx T arx it ikwi=0, (79

whereR;= 7,;/(Repy). o
Now we r_ecaII the assumptic® 1. Thus, we reﬂace in
(7) a+x by a and drop all terms proportional toal/and

1/a2. However, assuming that the Reynolds number can b{e

large, we do not drop the terms proportional to &ehd
therefore retain those proportional to the basic fivithose

proportional toV/a~Re/a were dropped in Ref.)3 More-
over, the basic flow/(x) has at least one maximum in the

intervala<x<<a+1, wheredV;/dx=0. Near this point the
last two terms on the left-hand side @) are not negligible
relative tou;dV;/dx. The simplified governing equations
thus read

Vio;= L
a e p1i dx

dX2 kzui

., (83

in
AU+ :Viui_
a

3D instability of a two-layer Dean flow 3187
dv; i 1
)\Ui+ui_+ —V|Ui+:V|U|
dx a
LI 8b
- pligpi i dX2 Vil ( )
in ik dw;
}\Wi + ?Viwi = — Epl + Ri W_ k il (8C)
U ikw,—0 8
W IKW; = 0. ( d)

Solving (8d) for w; and(8¢) for p;, the following eigenvalue
problem foru; andv; is obtained:

, in indV; du, 2k?
ADUi=RiD"ui = =ViDuj— = = == — Vivi,
(9a)
in duy; dv; in n; 1 d
)‘[”‘_a?ﬁZR‘D”i_W“i_E?E%&D“i
n?Vv, du; inV, V;
@ ax ® U gu ©b

whereD = d?/dx?—k?.

In the case of a nondeformable liquid—liquid interface
the necessary boundary conditions for the perturbations take
the form(note that—ikw;=du;/dx)

du,
at x=0: ulzvlzazo, (109
du,
at x=1: uzzvzzazo, (10b)
at x="b: u;=u,=0, (109
UV1=Up, (100)
du; du,
ax ax’ (108
dUl dUz
ax - Mgy (10f)
d?u d?u
1 2 (109)

dx2 ~ MZgxe:

t is emphasized that the boundary conditi@fe reflects, in
act, the continuity of the velocity component The bound-
ary conditiong10f) and(10g) express continuity of the shear
stresses at the interface.

If the liquid—liquid interface is deformable, the boundary
conditions(100) should be replaced by

at x="b: u;=uy(#0), (11

whereas (10d and (10e do not change. An additional
boundary condition needed at the liquid—liquid interface
=D follows from the balance of the normal stresses account-
ing for the surface tension effect. Using the dimensional vari-
ables, we present the position of the perturbed interface as
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r=b+&(0,zt), &(6,zt)=dexpAt+ind+ikz), critical Dean number is defined aDey(ab,We)

1 =min,d De,(ab,WenKk). The valuesi=n, andk=k, cor-
where é§ is an infinitesimally small perturbation amplitude. responding to the minimum dde,,, together with the cor-
The capillary pressure, in the linear approximation is responding eigenfunction dB), define the most dangerous
given by perturbation. At each marginal point the imaginary parh of

defines the temporal behavior of the marginally unstable per-
1 1 PE\ FPE . ) : o
i _2( —|-=/, (13 turbation. For Im{)=0 a steady bifurcatioftransition from
b b a0 Iz the base state to another steady flosw expected. For
where o is the surface tension coefficient. Usifi?) and Im(\)#0 oscillatory instability sets in and the supercritical

(13) we arrive at the following linearized dimensionless bal-10W iS anticipated to become oscillatory. In the latter case
ance of the normal stressesxat b: we definew,,=Im(\) as the marginal frequency of oscilla-

P=0

tions.
du, duy;
N piz—————
dx dx V. NUMERICAL METHOD
S5 1 [dD g A. Nondeformable interface
= —(,o12 1)V2+ — d——zd— (m12Up—U4) The numerical approach is based on the global Galerkin
X X method with the basis functions satisfying all boundary con-
. q k2 1—n? ditions on the no-slip walls and at the liquid—liquid interface.
_pIZEV:L_(PlZUZ_Ul)_ KNI el Zebib** and Gelfgat and TanasaWaroposed use of linear
a “dx We| p2 superpositions of Chebyshev polynomials to satisfy homoge-

(149  neous linear boundary conditions for the flow region. This
Hered= s/d andWe=Gd/o is the Weber number. The lin. @PProach is described in detail in Gelffeand was used for

17
earized dimensionless balance of the tangent stresses, whigi2ty analysis of confined flows in rectangdld’and
replaces that of10g atx—b. reads cylindricaft®1® geometries. Now it should be extended so as

to include the conditions at the interface in the basis func-
d?u, tions defined over the whole flow region.
rra —— +KU =715 (15 To formulate the global Galerkin method, we approxi-

mate the solution by series defined over the whole interval
To complete the formulation of the boundary conditions atp<x<1

the perturbed interface, we note that the linearized kinematic

d?u,
dZ+ku2

N N
boundary condition here reads _
v=2 Cg¥), U= 2 dfi(x (18)
43 Vi 9¢
—=Uu-=—, (16)  The basis functionsp,(x) and g (x) comprise different
at b 70 superpositions of  Chebyshev polynomials Tn(x)

and yields the following dimensionless kinematic condition=cognarccosk)]) in the subintervals &x<b and b<x

at x=D- <1, defined as
r 2 X
1 _
No=u;— gvlg (17 Z’o a&')TkH(ﬁ) , 0<x<b
b e(X)= 2 — ' (19)
We have formulated two distinct stability problems. The S @27 ;b bex<1
first deals with the nondeformable interface and is posed by (So Kk iy S
Egs. (9)—-(10). The second accounts for small perturbations .
of the liquid—liquid interface and is posed by E¢), (103, (2 @ X o
(10b), (10d—(10f), (11), (14), (15), and(17). We shall refer ;o B Tes1| = 0=x<b
to them as | and Il, respectively. Ih(X)= b 20)
Note that the requirement,(b)=u,(b)=0, which is « 4 , x—b| '
equivalent to6=0, reduces problem Il to problem I. Note 20 ﬁf<|)Tk+| 1—5 v b=x=1

also that problem Il should be considered only for0, \
since axisymmetricr{=0) deformation of the boundary is However, the coefficientg, and d, remain the same for
incompatible with the mass conservation requirement in théhe whole flow region. The coefficien (il) are determined
incompressible liquids we are dealing with. after substitution 0f19) in the boundary condition&10a),

For solution of problems | and I, the marginal Dean (10b), (10d and the Coeff|c|ent5/g(') after substitution
numberDey, has to be calculated for eacrandk, for which  of (20) in (109-(10¢ and (108—(10g). We use computer
the real part of the growth rate changes from negative to algebra to derive analytical expressions for these coeffi-
positive values. Then for given parametarsh, andWethe  cients (the corresponding expressions can be found at
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TABLE I. Convergence of the critical Dean number.

Single-fluid case, Two-fluid case, Two-fluid case, Two-fluid case, Two-fluid case,
b=0.5, nondeformable interfacedeformable interfacg, deformable interfacg, deformable interfacg,
N k=3.889,n=0 b=0.5,k=7.2,n=0 b=0.5k=7.7,n=1 b=0.2,k=28.4,n=12 b=0.9,k=39.0,n=7

4 37.5349 99.313 99.3258 821.233 358.940
8 37.5287 99.277 99.2845 664.210 350.737
12 37.5287 99.273 99.2811 716.300 351.005
16 99.2735 99.2804 715.067 351.186
20 99.2726 99.2800 712.541 351.306
30 99.2724 99.2800 711.253 351.470
40 710.518 351.549
50 710.147 351.591
60 No change No change No change 709.961 351.611
70 709.858 351.614
80 709.813 351.613
90 709.802 351.614
100 709.803 351.614

aResult for nondeformable interface differs in the fourth or fifth decimal digit only.

http://tx.technion.ac.it-cml/cml/staff/publicat.ht;in ~ Note 4 X
that the basis functiond9) and(20) satisfy all the boundary > YT (:) , 0=x<b
conditions(10) analytically. 1=0 b

The inner product is defined as an integral over the ®(X)= — ; (24)
whole interval 6=x<1 and is calculated as the sum of the > y(ﬁ)TJH(X;E) . b=x=1
integrals in the subintervalsOx<b andb=x<1 1=0 -

1 such that the coeﬁicient$5i|) are used to satisfy Eq$103),
(f,g>=J f(x)g(x)dx (10b), (10d), (108, (11), and(15) subject to the normaliza-
0 tion conditioné(b) = 1. The value of subscrigtis fixed and
b 1 its choice is arbitrary to within the regularity restriction on
:Jo f(x)g(x)dx+ fgf(x)g(x)dx. 2D matrix A in the generalized eigenvalue proble@@2) (the
coefficientsy!}) also can be found at http:/tx.technion.ac.il/

heref h h , lobal. with hof th ~cml/cml/staff/publicat.htm N
Therefore, the method remains global, with each of the equa- With the normalization conditiorp(b)=1 applied, the

tions (9) treated separately in the corresponding subinterval,

After the Galerkin projections have been applied, E@s. coeffl_mentdo manifests |t§elf as the amplltudg pf the radial
. T velocity at the deformed interface. This coefficient, and the
reduce to the generalized algebraic eigenvalue problem

interface amplitudes, are defined by the two remaining
boundary conditiong14) and (17). Thus, the Galerkin pro-
NAy =By, (22 jections of Eqs(9) together with Egs(14) and (17) form a
closed algebraic system for calculation of the coefficients
whereA andB are matrices and the vectgrcontains all the anddy (k=1,2,..), as well as of the two additional param-
coefficientsc, and di. The matrixA is nonsingular, such etersd, and 5. As mentioned above, the latter manifest
that(22) can be transformed into the classic eigenvalue probthemselves as the amplitudes of the normal velocity of the
lemAy=A"'By, which is solved numerically using the QR- interface and the corresponding perturbation of its position,

decomposition algorithm. respectively. The resulting generalized eigenvalue problem is
written in the form(22), with the two additional components
B. Deformable interface of the vectory equal tod, ands.
To account for the deformable interface, we represent the
solution as C. Test calculations

Table | illustrates the results of the convergence study,
N N which was carried out for the three versions of the Dean
v= E Ckor(X), u=dyd(x)+ E dy i (X). (23 problem—the classical, the two-fluid with nondeformable in-
k=1 k=1 terface and the two-fluid with deformable interface. In all
three cases the most dangerous valudsafdn were taken.
The baseg(x) and,(x) remain unchanged. An additional Other parameters weee= 10, p1,= 71,=1.1, andWe=1. It
function ¢(x) is introduced to satisfy the boundary condi- is seen that the convergence differs for the lowiez., n
tions of stability problem II. The functiorb(x) is defined as =0, 1) and higher §>5) azimuthal modes. The conver-
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FIG. 2. Stability diagram forpq,= 7,,=1.1, a=10, andb=0.5. Nonde- . _
formable interface. FIG. 3. Stability diagram forp;,= 7,,=1.1, a=10, andb=0.2. Nonde-

formable interface. Marginal Dean numbers corresponding to the modes

<10 andn>15 are above the valuge=900.
gence ofDe,, corresponding tm=0, 1 is rather fast, so that
truncation of the serie€l8) and(23) up to N=40-50 terms
yields the convergence up to 5—6 decimal digits. For t
higher azimuthal harmonics the convergence is significantl
slower, but withN=40-50 terms 3—4 correct digits are still ;
obtainable. possible. . ) )

The results described below were obtained Witk 40 As the relative dep_th of the inner layer increases or de-
and some of them were revalidated with=60. Note that creases from the value=0.5, the marginal Dean numbers
the critical Dean number for the single-fluid casecalcu- corresponding.to the higher azimuthal modes tend to those
lated according to the present definitions is approximatelyor =0 and finally one of these modes becomes the most
37.13, which is in good agreement with the present resultdangerous. This makes the instability three-dimensional. Fig-
37.53. Note also that the fast convergence obtained for theres 3 and 4 illustrate this fds=0.2 andb=0.9, respec-
single-fluid case is similar to that obtained for the classicafively. The most dangerous modes beimg 12 in the first
Rayleigh—Beard problem by the same global Galerkin case anth=7 in the second. Here also several different azi-

heneously, which can lead to a three-dimensional flow. Besides
his, already at small supercriticalities multiple supercritical
low states(both axisymmetric and three-dimensionare

approacH? muthal modes have marginal Dean numbers close to the
critical, which can lead to multiple three-dimensional super-
VI. RESULTS critical states.

To follow the change of the critical Dean number with

Stability diagrams were calculated for a fixed inner ra-yariation of the relative depth of the inner layer, the depen-
dius of the channeh=10 and fixed viscosity and density

ratiosp,,= 71,=1.1. Attention was first focused on variation

of the stability domain of the flow with the relative depth of 3
the inner layeib. To study how the stability results depend

on the fluid properties, the parametess, and 7., were

mainly varied between 0.5 and 2. Additional calculations
were carried out for 0% p;,<10, 0.0k 7,,<10, anda s70dh
=100, but no significant changes in the already obtained
results were found. s

A. Nondeformable interface, case p,=n,=1.1 N

The calculations show that for the nondeformable
boundary the axisymmetric mode=0 remains the most 1
dangerous at 0.24b<<0.87. A characteristic stability dia-
gram forb=0.5 is shown in Fig. 2. It is seen that while the w50 —
marginal curveDey,(k) of moden=0 always remains the = a4 s &
lowest, modesi=1 and 2 are very close to it. The minimal k
valu_es of _m_im\Dem(k) forn=0 and_ 1 differ only in the fourth FIG. 4. Stability diagram forp;,= 7,,=1.1, a=10, andb=0.9. Nonde-
decimal digit(see also Table)l This means that even at Very formable interface. Marginal Dean numbers corresponding to the modes
small supercriticalities these modes will develop simulta-<4 andn>9 are above the valube=380.
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dencesDe,,(b) for n=0, 7, and 12 are shown in Fig(&. 1 _
The behavior of the marginal values is nonmonotonic, as ®oundary conditiong10f) and (10g). To study a possible

result of switches between perturbation modédiferent
eigenmodes of the stability proble®)] corresponding to
the same azimuthal wave numberas well as to different
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symmetric instability i=0) is always steady, while three-
dimensional instability §1>0) is always oscillatory. In the
latter case the most dangerous perturbation is proportional to
exfi(wqt+n,0+kyz)], and therefore, is a spiraling wave
which rotates about the axis with the angular veloaity/n,
and propagates axially with the traveling velociby, /K, .
Note also that the wave rotates codirectionally with
the main flow whenw,>0, and in the opposite direction
when w,<0.

Patterns of the spiraling most dangerous three-

dimensional perturbations far=7, b=0.9, andn=12, b
=0.2 are illustrated in Figs. 6 and 7, respectively. The levels
of the isolines are equally distanced between the maximal
and minimal perturbation values. As noted, the perturbation
is defined to within multiplication by a constant. For better
representation of the three-dimensional functions, the radial
coordinate inside the annulus is zoomed by a factor of 20.
The axial coordinate is varied between zero and, .

B. Nondeformable interface: Effect of the variation of
p1z and 7,

Decrease of the viscosity ratig,, leads to the stabiliza-
tion of all three-dimensional modes. As a result, the primary
axisymmetric instability is restored. Thus, pi,=1.1, a
=10, andb=0.9 the axisymmetric steady perturbation is
dominant for#,,<<0.86. This is illustrated in Fig. 8 where
the dependencie®e,(k,n) are shown for»n;,=0.8 and
11,=0.9. Note that the marginal Dean numbers correspond-
ing to higher azimuthal modes&6) are almost the same
for »,,=0.8 and 0.9, while those of the lower modes in-
crease significantly when the viscosity ratip, changes
from 0.8 to 0.9. As a result, the lowest critical Dean number
of Fig. 8@ corresponds to the axisymmetric perturbation
with n,=0 (which means that the instability sets in due to
it), whereas that of Fig.(8)—to the nonaxisymmetric one
with n,=6.

The stability analysis for the single-layer case assuming
the stress-free boundary conditions at the outer boundary of
the layer yields the following result: The instability is axi-
symmetric f,=0), with De,=23.23,k,=2.07, andw¢,
=0. This indicates a possible similarity between the instabil-
ity in a single-layer case with a stress-free outer boundary
and a two-layer case with a less viscous outer fluid layer.
However, the present formulation is not well-suited for the
study of the limiting casey;,— 0, because the basic flow in
the outer layel6b) tends to infinity under these conditions.
Besides this, too many basis functiofis9) and (20) are
needed to describe the discontinuity of the derivatives in the

similarity it is necessary to compare the perturbation patterns
for the single-layer and two-layer cases. Figure 9 shows the
perturbationu(x) for these cases. Calculations for the two-

wave numbers. A switch between perturbation modes is follayer case were done far=0.9, p;,=1.1, and the viscosity
lowed by an abrupt change of the marginal axial wave numsatios 7,,=0.1 and 0.01. Note that the perturbation is a real
berk,, and, in the case of the oscillatory instability, an abruptfunction in the cases.=0. The perturbation patterns in the

change of the marginal frequenay,,. The latter is illus-

trated in Figs. B) and 5c).
Note that according to the present calculations, the axiever, the maximal value of the perturbation in the outer layer

single layer and in the inner layer {&<0.9) are different
at 7,,=0.1 and show some similarity aj;,=0.01. How-
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FIG. 7. As Fig. 6 forb=0.2, De,,=710.5,n,= 12, ko= 28.2, we,=1.31.

FIG. 6. Perturbation of the velocity components for0.9, De,=351.5, < ; _
Ng=7, k=39, w,=0.576. The radial coordinate in the intenakr<a (0.9<x . 1) grows with the decrease O_flz- At. 712=0.01

= . . o . the maximal values of the perturbation in the inner and outer
+b is zoomed by the factor of 20. The axial coordinate varies in the interval . .
0=<z=<2ml/k. (a) Perturbation of the radial velocitih) perturbation of the layers become almost equaf. Fig. 9)_- Ther_e_fore, It cannot )
azimuthal velocity,c) perturbation of the axial velocity. be concluded that the onset of the instability takes place in
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3D instability of a two-layer Dean flow 3193
3200
2800 —e—— =0
] ) - —v— — a=4
] ——0—-=- n=6
2400 ) \W ——t—em =11
2000 ]
] I
S ] #fv 4 ’v\\
& 1600 F—4—1-
1/ | ‘Y
1 & | |
1200 T &‘
P L ¢
1 Al \
800 WYY
] N ;A
4004 B N ez
1 RN g
] T e e e oo g TR e -2
01— " e e
0.2 0.4 — 06 08
(a) B

FIG. 10. Change of the marginal values with variation of relative depth of
the inner layerp;,=1.1, 7,,=2. (@) Dey(b), (b) ky(b).

the inner layer only. Besides this, the critical azimuthal
wavelengths are&k.=10.5 andk.,=6.3 for 7,,=0.1 and
0.01, respectively, which is distinct froik,=2.07 for the
single-layer case. It can be concluded that even when viscos-
ity of the outer layer is much smaller than that of the inner
one, the onset of the instability takes place in both layers
simultaneously, so that there is no direct similarity with the
single-layer case.

Increase of the viscosity ratio makes for more three-
dimensional modes to become dominant. This is illustrated
in Fig. 10 for »1,=2. In this case three three-dimensional
modesn=4, 6, and 11(instead of two modes=7 and 12 at
n1,=1.1, Fig. 5 together with the axisymmetric onen (
=0) replace each dsvaries. Note also that the switch from
the axisymmetric to three-dimensional instability takes place
atbh<0.325 andb>0.84, so that the range of the valueshof
corresponding to the axisymmetric instability is smaller than
that for y,=1.1 (0.24<b<0.87).

Dependence of the marginal Dean numbers and the mar-
ginal axial wavelength on the density rafig, is shown in
Fig. 11 for »1,=1.1 and the three cases having different
critical azimuthal wave numbers in Fig. 5. The common ten-
dency for smalp,,is an increase of the marginal Dean num-
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bers as the density ratio decreases. At large valugs.ahe 1600 I

marginal parameter® e, andk,,) slowly decrease with the 1 - \
growth of the density ratio, tending to certain limit values as 1~ b=05n=0,=11
p1o—. At moderate values gb,, the dependences can be 120 = === bh=09n=Tn,=11
monotonic(as forb=0.5,n=0 andb=0.9, n=7) or non- | R R b=02n=12m, =11
monotonic(as forb=0.2,n=12). Note that the three modes .

shown in Fig. 11 do not remain critical for the whole range & sw <
of pq, considered. One can conclude that the critical param- ] N
eters are strongly dependent on the fluids properties, as we ] ~
as on the geometric parameters, so that each particular ca: 4, N
should be considered separately. 1 S~

C. Deformable interface

To estimate the Weber number, we note thate (a) P
=Gd/o=Ré& 72/(dop,). Following experiment$, we esti- — —
mate 5;~7.5x10 3kg/m-s, p;~1500kg/mi, d~10 ?m, T--- —em T T T -
and o~5x10 2kg/$. This yieldsWe~10 *Re’. Accord- ] Tl B 0Sa—m — L1
ing to the results obtained for the nondeformable interface - -t . 5;0'9’,1;7’2”;1'_1 i
the critical Reynolds number is of order:01(%, hence the ] .. E e 02n T 11
estimate of the Weber number\ige~1—1GF. However, the ] DO el
calculations show that accounting for a deformable surface ] 72 S
has a negligible effect on the instability of the flow consid- ~ ] NS
ered. We tried to generate unstable modes, which arc | 1 //" / Tal
strongly affected by the interface deformation, by introduc- T - S~
ing a vanishing surface tension, and increased the Webe . P
number up toVe=10°. We also varied the density and vis- 10+
cosity ratios between 0.1 and 10 and made calculations fo
a=100. Still, in all calculations the critical Dean numbers 1
corresponding to the cases of a deformable and a nondeforn  ¢T————— 1 T — T,
able interface differed only in the fourth or fifth decimal ®) ! Pz v ¥
digit. For hlgh. aZImIUthal m,OdeSf‘(? 10) this difference ap- FIG. 11. Change of the marginal values with variation of the density ratio.
peared sometimes in the third digit. It was concluded that they) pe, (p,,), (b) kn(p12).
instability is related to the appearance of the Dean vortices,
and is virtually unaffected by deformation of the liquid—
liquid interface. The smallness of the effect of the latter mayfiuid layers. For a fixed inner radius of the annuli& (
be due to the fact that the considered model accounts only: 10) and fixed viscosity and density ratiop§= 71»
for a large inner radius of the annulas making the initial =1 1) it was shown that the instability is axisymmetric when
curvature of the interface negligibly small. Note also that thethe relative depth of the inner layer lies in the range 0.24
effect of gravity is neglected. However, the deformation -1, 97, and three-dimensional otherwise. At the same

should be accounted for in supgrcritical regimes, as was dorﬁeme' onset of the instabilityaxisymmetric, as well as three-
for the two-layer Couette flow in Ref. 13. dimensional is also characterized by development of several
three-dimensional modes, which become unstable already at
VIl. CONCLUSION very small supercriticalities. Therefore, the result_ing super-
critical state should be expected to be three-dimensional.
An extension of the global Galerkin approach to stability Moreover, multiplicity of stable supercritical states seems to
analysis of flows in a two-fluid system is presented. Thebe possible.
proposed numerical technique allows one to implement all  Variation of the viscosity and density ratipg, and 74,
the boundary conditiongincluding those imposed on the do not change the above qualitative conclusions. However,
liquid—liquid interface into Galerkin basis functions. This the dependence of the critical Dean number and critical axial
reduces the hydrodynamic stability problem to a generalizedvavenumber on other governing parametghsids proper-
algebraic eigenvalue problem without additional algebraidies and geometry of the systeis found to be strong. Simi-
constraints. A special numerical treatment of small deformalarly to the previously studied stability problert®s?® the
tions of the liquid—liquid interface, including capillary ef- critical parameters must be calculated for each particular
fects, is proposed. case separately. Note also that the physics of the instability
The numerical approach developed was applied to théound for the two-layer systems is the same as in the classi-
two-fluid Dean problem. The onset of the instability, which cal Dean problem. The instability is caused by the disbalance
manifests itself in appearance of axisymmetric or threebetween the centrifugal and viscous forces. However, in the
dimensional vortices, was studied for different widths of thetwo-layer case the instability is affected by the interaction of
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the perturbations located in each layer, which changes théa. yu. Gelfgat and I. Tanasawa, “Numerical analysis of oscillatory insta-
critical wave numbers and can lead to three-dimensional in- bility of buoyancy convection with the Galerkin spectral method,” Numer.

stabilities.
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