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Three-dimensional instability of a two-layer Dean flow
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Technion-Israel Institute of Technology, Haifa 32000, Israel
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Stability of a two-layer Dean flow in a cylindrical annulus with respect to three-dimensional
perturbations is studied by a global Galerkin method. It is shown that for large inner radius of the
annulus~i! the instability becomes three-dimensional if one of the fluid layers is thin,~ii ! its onset
is not affected by possible small deformations of the interface, and~iii ! multiple three-dimensional
flow states are expected in a slightly supercritical flow regime. Stability diagrams and patterns of the
three-dimensional perturbations are reported. It is concluded that even when the axisymmetric
perturbation is the most dangerous, the resulting supercritical flow is expected to be
three-dimensional. Possible multiplicity of supercritical three-dimensional states is predicted. The
basis functions of the global Galerkin method are constructed so as to satisfy analytically the
boundary conditions on no-slip walls and at the liquid–liquid interface. A modification of the
numerical approach, accounting for small deformations of the interface which is subject to the
action of the capillary force, is proposed. The results are of potential importance for development of
novel bioseparators employing Dean vortices for enhancement of mass transfer of a passive scalar
~say, a protein! through the interface. The developed numerical approach can be used for stability
analysis in other two-fluid systems. ©2001 American Institute of Physics.
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I. INTRODUCTION

The classical Dean problem considers the flow of
incompressible Newtonian fluid driven by an azimuthal pr
sure gradient in a cylindrical annulus. The instability of th
flow leads to creation of so-called Dean vortices.1–3 Stability
analysis of this problem explains this effect in Poiseuil
type flows in curved pipes and channels.4 At present the
Dean vortices are known as a means for intensification
heat5 and mass6 transfer in single-phase liquids. Recent
certain attempts were made to intensify mass transfer
passive scalar through a boundary separating two immisc
liquids by creating spatially periodic vortical flows insid
both liquid phases, using a two-fluid Taylor–Coue
apparatus.7,8 Obviously, Dean flow is another possible orig
nator of vortical flow inside a two-fluid system, and a pote
tial candidate as a new element in novel bioseparators
protein extraction.

In the present work we study the onset of Dean vorti
in the two-fluid Dean problem~Fig. 1!. Namely, stability of a
flow driven by a constant azimuthal pressure gradient i
cylindrical annulus filled with two immiscible liquid layers i
considered. The liquid–liquid interface can be~i! nonde-
formable or~ii ! deformable and subject to capillary forces.
the latter case small perturbations of the interface are
cluded in the formulation of the stability problem. The gra
ity effect is disregarded.

The stability problem is solved using an extension of
global Galerkin approach9,10 for stability analysis of viscous
single-phase flows in confined domains. This approach u
linear superpositions of Chebyshev polynomials to sat
analytically no-slip or stress-free boundary conditions. In
3181070-6631/2001/13(11)/3185/11/$18.00
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present work we describe how the Galerkin basis can
constructed for a two-fluid case such that not only no-s
conditions, but also those of continuity and the balance
viscous stresses at the liquid–liquid interface are satis
analytically. Then we show how the balance of the capilla
and normal viscous stresses can be included in the nume
model assuming small deformations of the interface. T
proposed approach can be used for stability analysis of v
ous two-fluid systems,10,11 e.g., for two-layer Rayleigh–
Bénard12 or Taylor–Couette13 flows.

The stability analysis in the present work, which a
counts for three-dimensional perturbations and for poss
small deformations of the liquid–liquid interface, leads
two main conclusions. First, the instability observed in t
system corresponds to onset of vortical motion and is
affected by deformations of the interface. Second, the in
bility is axisymmetric when the depths of both layers do n
differ significantly, i.e., the value ofb/d is close to 0.5.
When one of the layers is thin~i.e.,b is close to zero or to the
gap thicknessd!, the instability is caused by a nonaxisym
metric three-dimensional perturbation characterized by
relatively high azimuthal wave number. Location of the i
terface~the value ofb! corresponding to the switch betwee
the axisymmetric and three-dimensional instabilities depe
on other governing parameters. In particular, a strong dep
dence on the ratio of viscosities of two fluids is found. O
the basis of the calculated stability diagrams, we predict
istence of multiple three-dimensional supercritical flo
states, which appear as spiraling waves that rotate abou
axis and propagate along it. Spatial patterns of the non
symmetric perturbations are illustrated.
5 © 2001 American Institute of Physics
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The paper is organized as follows. Formulation of t
problem is discussed in Sec. II. The basic flow is conside
in Sec. III. Stability problems for nondeformable and d
formable interfaces are considered in Sec. IV. The numer
method is described in Sec. V. The results are reporte
Sec. VI. Conclusions are drawn in Sec. VII.

II. FORMULATION OF THE PROBLEM

Consider a cylindrical annulus, whose radius varies
the intervala<r<a1d, filled with two immiscible Newton-
ian incompressible liquids 1 and 2 which, in the unperturb
state, occupy cylindrical layersa<r<a1b and a1b<r
<a1d, respectively~see Fig. 1!. It is assumed that the flow
is driven by a constant azimuthal pressure gradient]p/]u
5G5const. The velocity and pressure fields in each liq
satisfy the Navier–Stokes equations:

r iF]vi

]t
1~vi•“ !vi G52

G

r
eu2¹Pi1h iDvi , ~1a!

¹•vi50, ~1b!

wherevi5$Ui ,Vi ,Wi% is the flow velocity,Pi the pressure
additional to the component responsible for the azimut
pressure gradient,r i the density andh i the dynamic viscos-
ity of liquid i. Ui , Vi , andWi denoting the radial, azimutha
and axial velocities, respectively, and the subscripti referring
to liquids 1 and 2. The no-slip boundary conditions are i
posed at the boundaries of the annulus

at r 5a: v150, ~2a!

at r 5a1d: v250. ~2b!

At the interface we impose the conditions of continuity
the velocity vector and shear stress, as well as a jump of
normal stress due to the surface tension.

For nondimensionalization of the problem we use
velocity scalev05(G/r1)1/2. As the length, pressure an
time scales we used, r1v0

2, andd/v0 , respectively.
The dimensionless governing equations read

FIG. 1. Sketch of the problem.
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1~vi•¹!vi52

1

r1i

1

r
eu2

1

r1i
¹Pi1

h1i

r1i

1

Re
Dvi ,

~3a!

¹•vi50, ~3b!

where Re5r1dv0 /h15(d/h1)AGr1 is the Reynolds number
andr1i5r i /r1 , h1i5h i /h1 . For convenience of compari
son with the previous studies1–4 we introduce the Dean num

berDe5Re/Aā which accounts also for the radius of curv
ture of the cylindrical annulus (ā5a/d).

III. BASIC FLOW

The velocity of the basic flow is represented by the a
muthal component only, which depends on the radial coo
nate, i.e.,V5$0,V(r ),0% and P5p(r ). The problem for
V(r ) follows from ~2! and ~3!:

1

r
5

h1i

Re

]2Vi

]r 2 , ~4a!

V1~ ā!5V2~ ā11!50, ~4b!

V1~ ā1b̄!5V2~ ā1b̄!, ~4c!

F]V1

]r G
r 5ā1b̄

5h1iF]V2

]r G
r 5ā1b̄

~4d!

where b̄5b/d. Following Dean1 we introduce the new di-
mensionless coordinatex5r 2ā and assume thatā@1 ~i.e.,
the inner radius is large as compared to the gap!. This allows
one to replacer 5ā1x by ā and reduces~4! to the following
form:

1

ā
5

h1i

Re

]2V1

]x2 , ~5a!

V1~0!5V2~1!50, ~5b!

V1~ b̄!5V2~ b̄!, ~5c!

F]V1

]x G
x5b̄

5h1iF]V2

]x G
x5b̄

. ~5d!

The solution of~5! reads

V15
Re

2ā
x21

h12

r12

Re

2ā

b̄2~r12/h1221!2r12/h12

b̄~h12/r1221!11
x, ~6a!

V25
r12

h12

Re

2ā
x21

Re

2ā

b̄2~r12/h1221!2r12/h12

b̄~h12/r1221!11
x

2
Re

2ā

b̄~12r12/h12!1b̄2~r12/h12!21)

b̄~h12/r1221!11
, ~6b!

which is an extension of the basic flow of Dean1 for a two-
fluid system.
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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IV. STABILITY PROBLEM

Consider the linear stability problem for the basic st
described by~6a! and ~6b!. Let u5(u,v,w) andp be infini-
tesimally small perturbations of the velocity and addition
pressure, respectively. Using the 2p-periodicity in the azi-
muthal u-direction and assuming a 2p/k-periodicity in the
axial z direction, the perturbations can be represented aui

5(ui(x),v i(x),wi(x)) exp@inu1ikz1lt#, pi5pi(x) exp@inu
1ikz1lt#, wheren is integer andk real, both of them dimen-
sionless. Using~3! and~6! we arrive at the following linear-
ized equations:

lui1
in

ā1x
Viui2

2

ā1x
Viv i

52
1

r1i

dpi

dx
1RiFd2ui

dx2 1
1

ā1x

dui

dx
2

n211

~ ā1x!2 ui

2k2ui2
2in

~ ā1x!2 v i G , ~7a!

lv i1ui

dVi

dx
1

in

ā1x
Viv i1

1

ā1x
Viui

52
in

r1i~ ā1x!
pi1RiFd2v i

dx2 1
1

ā1x

dv i

dx

2
n211

~ ā1x!2 v i2k2v i1
2in

~ ā1x!2 ui G , ~7b!

lwi1
in

ā1x
Viwi

52
ik

r1i
pi1RiFd2wi

dx2 1
1

ā1x

dwi

dx
2

n2

~ ā1x!2 wi2k2wi G ,
~7c!

dui

dx
1

ui

ā1x
1

in

ā1x
v i1 ikwi50, ~7d!

whereRi5h1i /(Rer1i).
Now we recall the assumptionā@1. Thus, we replace in

~7! ā1x by ā and drop all terms proportional to 1/ā and
1/ā2. However, assuming that the Reynolds number can
large, we do not drop the terms proportional to Re/ā and
therefore retain those proportional to the basic flowV ~those
proportional toV/ā;Re/ā were dropped in Ref. 3!. More-
over, the basic flowV(x) has at least one maximum in th
interval ā,x,ā11, wheredVi /dx50. Near this point the
last two terms on the left-hand side of~7b! are not negligible
relative to uidVi /dx. The simplified governing equation
thus read

lui1
in

ā
Viui2

2

ā
Viv i52

1

r1i

dpi

dx
1RiFd2ui

dx2 2k2ui G , ~8a!
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dVi

dx
1

in

ā
Viv i1

1

ā
Viui

52
in

r1i ā
pi1RiFd2v i

dx2 2k2v i G , ~8b!

lwi1
in

ā
Viwi52

ik

r1i
pi1RiFd2wi

dx2 2k2wi G , ~8c!

dui

dx
1 ikwi50. ~8d!

Solving~8d! for wi and~8c! for pi , the following eigenvalue
problem forui andv i is obtained:

lDui5RiD
2ui2

in

ā
ViDui2

in

ā

dVi

dx

dui

dx
2

2k2

ā
Viv i ,

~9a!

lFv i2
in

āk2

dui

dx G5RiDv i2
dVi

dx
ui2

in

āk2

h1i

r1i

1

Re

d

dx
Dui

2
n2Vi

ā2k2

dui

dx
2

inVi

ā
v i2

Vi

ā
ui , ~9b!

whereD5d2/dx22k2.
In the case of a nondeformable liquid–liquid interfa

the necessary boundary conditions for the perturbations
the form ~note that2 ikwi5dui /dx!

at x50: u15v15
du1

dx
50, ~10a!

at x51: u25v25
du2

dx
50, ~10b!

at x5b̄: u15u250, ~10c!

v15v2 , ~10d!

du1

dx
5

du2

dx
, ~10e!

dv1

dx
5h12

dv2

dx
, ~10f!

d2u1

dx2 5h12

d2u2

dx2 . ~10g!

It is emphasized that the boundary condition~10e! reflects, in
fact, the continuity of the velocity componentw. The bound-
ary conditions~10f! and~10g! express continuity of the shea
stresses at the interface.

If the liquid–liquid interface is deformable, the bounda
conditions~10c! should be replaced by

at x5b̄: u15u2~Þ0!, ~11!

whereas ~10d! and ~10e! do not change. An additiona
boundary condition needed at the liquid–liquid interfacex

5b̄ follows from the balance of the normal stresses accou
ing for the surface tension effect. Using the dimensional va
ables, we present the position of the perturbed interface
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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r 5b1j~u,z,t !, j~u,z,t !5d exp~lt1 inu1 ikz!,
~12!

where d is an infinitesimally small perturbation amplitud
The capillary pressureps in the linear approximation is
given by

ps5sF1

b
2

1

b2 S j1
]2j

]u2D2
]2j

]z2G , ~13!

where s is the surface tension coefficient. Using~12! and
~13! we arrive at the following linearized dimensionless b
ance of the normal stresses atx5b̄:

lFr12

du2

dx
2

du1

dx
G

5
d̄k2

ā
~r1221!V1

21
1

Re
FdD

dx
22

d

dx
G ~h12u22u1!

2r12

in

ā
V1

d

dx
~r12u22u1!2

d̄k2

WeF12n2

b̄2
2k2G .

~14!

Here d̄5d/d andWe5Gd/s is the Weber number. The lin
earized dimensionless balance of the tangent stresses, w
replaces that of~10g! at x5b̄, reads

d2u1

dx2 1k2u15h12Fd2u2

dx2 1k2u2G . ~15!

To complete the formulation of the boundary conditions
the perturbed interface, we note that the linearized kinem
boundary condition here reads

]j

]t
5ui2

Vi

b̄

]j

]u
, ~16!

and yields the following dimensionless kinematic conditi
at x5b̄:

ld̄5u12
in

b̄
V1d̄. ~17!

We have formulated two distinct stability problems. T
first deals with the nondeformable interface and is posed
Eqs. ~9!–~10!. The second accounts for small perturbatio
of the liquid–liquid interface and is posed by Eqs.~9!, ~10a!,
~10b!, ~10d!–~10f!, ~11!, ~14!, ~15!, and~17!. We shall refer
to them as I and II, respectively.

Note that the requirementu1(b̄)5u2(b̄)50, which is
equivalent tod̄50, reduces problem II to problem I. Not
also that problem II should be considered only forn.0,
since axisymmetric (n50) deformation of the boundary i
incompatible with the mass conservation requirement in
incompressible liquids we are dealing with.

For solution of problems I and II, the marginal Dea
numberDem has to be calculated for eachn andk, for which
the real part of the growth ratel changes from negative t
positive values. Then for given parametersā, b̄, andWe the
Downloaded 17 Oct 2001 to 132.68.1.29. Redistribution subject to AIP
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critical Dean number is defined asDecr(ā,b̄,We)
5minn,kd Dem(ā,b̄,We,n,k). The valuesn5ncr andk5kcr cor-
responding to the minimum ofDem , together with the cor-
responding eigenfunction of~9!, define the most dangerou
perturbation. At each marginal point the imaginary part ol
defines the temporal behavior of the marginally unstable p
turbation. For Im(l)50 a steady bifurcation~transition from
the base state to another steady flow! is expected. For
Im(l)Þ0 oscillatory instability sets in and the supercritic
flow is anticipated to become oscillatory. In the latter ca
we definevm5Im(l) as the marginal frequency of oscilla
tions.

V. NUMERICAL METHOD

A. Nondeformable interface

The numerical approach is based on the global Gale
method with the basis functions satisfying all boundary co
ditions on the no-slip walls and at the liquid–liquid interfac
Zebib14 and Gelfgat and Tanasawa9 proposed use of linea
superpositions of Chebyshev polynomials to satisfy homo
neous linear boundary conditions for the flow region. Th
approach is described in detail in Gelfgat10 and was used for
stability analysis of confined flows in rectangular9,15–17 and
cylindrical18,19 geometries. Now it should be extended so
to include the conditions at the interface in the basis fu
tions defined over the whole flow region.

To formulate the global Galerkin method, we approx
mate the solution by series defined over the whole inter
0<x<1

v5 (
k51

N

ckwk~x!, u5 (
k51

N

dkck~x!. ~18!

The basis functionswk(x) and ck(x) comprise different
superpositions of Chebyshev polynomials (Tn(x)
5cos@narccos(x)#) in the subintervals 0<x<b̄ and b̄<x
<1, defined as

wk~x!55 (
l 50

2

akl
~1!Tk1 lS x

b̄
D , 0<x<b̄

(
l 50

2

akl
~2!Tk1 lS x2b̄

12b̄
D , b̄<x<1

, ~19!

ck~x!55 (
l 50

4

bkl
~1!Tk1 lS x

b̄
D , 0<x<b̄

(
l 50

4

bkl
~2!Tk1 lS x2b̄

12b̄
D , b̄<x<1

. ~20!

However, the coefficientsck and dk remain the same for
the whole flow region. The coefficientsakl

( i ) are determined
after substitution of~19! in the boundary conditions~10a!,
~10b!, ~10d! and the coefficientsbkl

( i ) after substitution
of ~20! in ~10a!–~10c! and ~10e!–~10g!. We use computer
algebra to derive analytical expressions for these coe
cients ~the corresponding expressions can be found
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3189Phys. Fluids, Vol. 13, No. 11, November 2001 3D instability of a two-layer Dean flow

Downloaded 17
TABLE I. Convergence of the critical Dean number.

N

Single-fluid case,

b̄50.5,
k53.889,n50

Two-fluid case,
nondeformable interface,

b̄50.5, k57.2, n50

Two-fluid case,
deformable interface,a

b̄50.5, k57.7, n51

Two-fluid case,
deformable interface,a

b̄50.2, k528.4,n512

Two-flui
deformable

b̄50.9, k5

4 37.5349 99.313 99.3258 821.233 3
8 37.5287 99.277 99.2845 664.210 3

12 37.5287 99.273 99.2811 716.300 3
16 99.2735 99.2804 715.067 35
20 99.2726 99.2800 712.541 35
30 99.2724 99.2800 711.253 35
40 710.518 351
50 710.147 351
60 No change No change No change 709.961
70 709.858 351
80 709.813 351
90 709.802 351

100 709.803 351

aResult for nondeformable interface differs in the fourth or fifth decimal digit only.
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http://tx.technion.ac.il/;cml/cml/staff/publicat.htm!. Note
that the basis functions~19! and~20! satisfy all the boundary
conditions~10! analytically.

The inner product is defined as an integral over
whole interval 0<x<1 and is calculated as the sum of th
integrals in the subintervals 0<x<b̄ and b̄<x<1

^ f ,g&5E
0

1

f ~x!g~x!dx

5E
0

b̄
f ~x!g~x!dx1E

b̄

1

f ~x!g~x!dx. ~21!

Therefore, the method remains global, with each of the eq
tions ~9! treated separately in the corresponding subinter
After the Galerkin projections have been applied, Eqs.~9!
reduce to the generalized algebraic eigenvalue problem

lAy5By, ~22!

whereA andB are matrices and the vectory contains all the
coefficientsck and dk . The matrixA is nonsingular, such
that~22! can be transformed into the classic eigenvalue pr
lem ly5A21By, which is solved numerically using the QR
decomposition algorithm.

B. Deformable interface

To account for the deformable interface, we represent
solution as

v5 (
k51

N

ckwk~x!, u5d0f~x!1 (
k51

N

dkck~x!. ~23!

The baseswk(x) andck(x) remain unchanged. An additiona
function f(x) is introduced to satisfy the boundary cond
tions of stability problem II. The functionf(x) is defined as
 Oct 2001 to 132.68.1.29. Redistribution subject to AIP
e

a-
l.

-

e

f~x!55 (
l 50

4

gJl
~1!TJ1 lS x

b̄
D , 0<x<b̄

(
l 50

4

gJl
~2!TJ1 lS x2b̄

12b̄
D , b̄<x<1

, ~24!

such that the coefficientsgJl
( i ) are used to satisfy Eqs.~10a!,

~10b!, ~10d!, ~10e!, ~11!, and ~15! subject to the normaliza
tion conditionf(b̄)51. The value of subscriptJ is fixed and
its choice is arbitrary to within the regularity restriction o
matrix A in the generalized eigenvalue problem~22! ~the
coefficientsgJl

( i ) also can be found at http://tx.technion.ac.
;cml/cml/staff/publicat.htm!.

With the normalization conditionf(b̄)51 applied, the
coefficientd0 manifests itself as the amplitude of the rad
velocity at the deformed interface. This coefficient, and
interface amplituded̄, are defined by the two remainin
boundary conditions~14! and ~17!. Thus, the Galerkin pro-
jections of Eqs.~9! together with Eqs.~14! and ~17! form a
closed algebraic system for calculation of the coefficientsck

and dk ~k51,2,...!, as well as of the two additional param
eters d0 and d̄. As mentioned above, the latter manife
themselves as the amplitudes of the normal velocity of
interface and the corresponding perturbation of its positi
respectively. The resulting generalized eigenvalue problem
written in the form~22!, with the two additional component
of the vectory equal tod0 and d̄.

C. Test calculations

Table I illustrates the results of the convergence stu
which was carried out for the three versions of the De
problem—the classical, the two-fluid with nondeformable
terface and the two-fluid with deformable interface. In
three cases the most dangerous values ofk andn were taken.
Other parameters wereā510, r125h1251.1, andWe51. It
is seen that the convergence differs for the lower~i.e., n
50, 1! and higher (n.5) azimuthal modes. The conve
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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gence ofDem corresponding ton50, 1 is rather fast, so tha
truncation of the series~18! and~23! up toN540– 50 terms
yields the convergence up to 5 – 6 decimal digits. For
higher azimuthal harmonics the convergence is significa
slower, but withN540– 50 terms 3 – 4 correct digits are st
obtainable.

The results described below were obtained withN540
and some of them were revalidated withN560. Note that
the critical Dean number for the single-fluid case2 recalcu-
lated according to the present definitions is approxima
37.13, which is in good agreement with the present res
37.53. Note also that the fast convergence obtained for
single-fluid case is similar to that obtained for the classi
Rayleigh–Be´nard problem by the same global Galerk
approach.15

VI. RESULTS

Stability diagrams were calculated for a fixed inner
dius of the channelā510 and fixed viscosity and densit
ratiosr125h1251.1. Attention was first focused on variatio
of the stability domain of the flow with the relative depth
the inner layerb̄. To study how the stability results depen
on the fluid properties, the parametersr12 and h12 were
mainly varied between 0.5 and 2. Additional calculatio
were carried out for 0.1<r12<10, 0.01<h12<10, and ā
5100, but no significant changes in the already obtain
results were found.

A. Nondeformable interface, case r12Äh12Ä1.1

The calculations show that for the nondeformab
boundary the axisymmetric moden50 remains the mos
dangerous at 0.24,b̄,0.87. A characteristic stability dia
gram for b̄50.5 is shown in Fig. 2. It is seen that while th
marginal curveDem(k) of moden50 always remains the
lowest, modesn51 and 2 are very close to it. The minima
values of minkDem(k) for n50 and 1 differ only in the fourth
decimal digit~see also Table I!. This means that even at ver
small supercriticalities these modes will develop simul

FIG. 2. Stability diagram forr125h1251.1, ā510, andb̄50.5. Nonde-
formable interface.
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neously, which can lead to a three-dimensional flow. Besi
this, already at small supercriticalities multiple supercritic
flow states~both axisymmetric and three-dimensional! are
possible.

As the relative depth of the inner layer increases or
creases from the valueb̄50.5, the marginal Dean number
corresponding to the higher azimuthal modes tend to th
for n50 and finally one of these modes becomes the m
dangerous. This makes the instability three-dimensional. F
ures 3 and 4 illustrate this forb̄50.2 andb̄50.9, respec-
tively. The most dangerous modes beingn512 in the first
case andn57 in the second. Here also several different a
muthal modes have marginal Dean numbers close to
critical, which can lead to multiple three-dimensional sup
critical states.

To follow the change of the critical Dean number wi
variation of the relative depth of the inner layer, the depe

FIG. 3. Stability diagram forr125h1251.1, ā510, andb̄50.2. Nonde-
formable interface. Marginal Dean numbers corresponding to the modn
,10 andn.15 are above the valueDe5900.

FIG. 4. Stability diagram forr125h1251.1, ā510, andb̄50.9. Nonde-
formable interface. Marginal Dean numbers corresponding to the modn
,4 andn.9 are above the valueDe5380.
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dencesDem(b̄) for n50, 7, and 12 are shown in Fig. 5~a!.
The behavior of the marginal values is nonmonotonic, a
result of switches between perturbation modes@different
eigenmodes of the stability problem~9!# corresponding to
the same azimuthal wave numbern, as well as to different
wave numbers. A switch between perturbation modes is
lowed by an abrupt change of the marginal axial wave nu
berkm and, in the case of the oscillatory instability, an abru
change of the marginal frequencyvm . The latter is illus-
trated in Figs. 5~b! and 5~c!.

Note that according to the present calculations, the a

FIG. 5. Change of the marginal values with variation of relative depth of

inner layer,r125h1251.1. ~a! Dem(b̄), ~b! km(b̄), ~c! vm(b̄).
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symmetric instability (n50) is always steady, while three
dimensional instability (n.0) is always oscillatory. In the
latter case the most dangerous perturbation is proportion
exp@i(vcrt1ncru1kcrz)#, and therefore, is a spiraling wav
which rotates about the axis with the angular velocityvcr /ncr

and propagates axially with the traveling velocityvcr /kcr .
Note also that the wave rotates codirectionally w
the main flow whenvcr.0 , and in the opposite direction
whenvcr,0.

Patterns of the spiraling most dangerous thr

dimensional perturbations forn57, b̄50.9, andn512, b̄
50.2 are illustrated in Figs. 6 and 7, respectively. The lev
of the isolines are equally distanced between the maxi
and minimal perturbation values. As noted, the perturbat
is defined to within multiplication by a constant. For bett
representation of the three-dimensional functions, the ra
coordinate inside the annulus is zoomed by a factor of
The axial coordinate is varied between zero and 2p/kcr .

B. Nondeformable interface: Effect of the variation of
r12 and h12

Decrease of the viscosity ratioh12 leads to the stabiliza-
tion of all three-dimensional modes. As a result, the prim
axisymmetric instability is restored. Thus, atr1251.1, ā

510, and b̄50.9 the axisymmetric steady perturbation
dominant forh12,0.86. This is illustrated in Fig. 8 where
the dependenciesDem(k,n) are shown forh1250.8 and
h1250.9. Note that the marginal Dean numbers correspo
ing to higher azimuthal modes (n<6) are almost the sam
for h1250.8 and 0.9, while those of the lower modes i
crease significantly when the viscosity ratioh12 changes
from 0.8 to 0.9. As a result, the lowest critical Dean numb
of Fig. 8~a! corresponds to the axisymmetric perturbati
with ncr50 ~which means that the instability sets in due
it!, whereas that of Fig. 8~b!—to the nonaxisymmetric one
with ncr56.

The stability analysis for the single-layer case assum
the stress-free boundary conditions at the outer boundar
the layer yields the following result: The instability is ax
symmetric (ncr50), with Decr523.23, kcr52.07, andvcr

50. This indicates a possible similarity between the insta
ity in a single-layer case with a stress-free outer bound
and a two-layer case with a less viscous outer fluid lay
However, the present formulation is not well-suited for t
study of the limiting caseh12→0, because the basic flow i
the outer layer~6b! tends to infinity under these condition
Besides this, too many basis functions~19! and ~20! are
needed to describe the discontinuity of the derivatives in
boundary conditions~10f! and ~10g!. To study a possible
similarity it is necessary to compare the perturbation patte
for the single-layer and two-layer cases. Figure 9 shows
perturbationu(x) for these cases. Calculations for the tw
layer case were done forb̄50.9, r1251.1, and the viscosity
ratiosh1250.1 and 0.01. Note that the perturbation is a re
function in the casevcr50. The perturbation patterns in th
single layer and in the inner layer (0,x,0.9) are different
at h1250.1 and show some similarity ath1250.01. How-
ever, the maximal value of the perturbation in the outer la

e
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FIG. 6. Perturbation of the velocity components forb̄50.9, Decr5351.5,
ncr57, kcr539, vcr50.576. The radial coordinate in the intervalā<r<ā

1b̄ is zoomed by the factor of 20. The axial coordinate varies in the inte
0<z<2p/kcr . ~a! Perturbation of the radial velocity,~b! perturbation of the
azimuthal velocity,~c! perturbation of the axial velocity.
Downloaded 17 Oct 2001 to 132.68.1.29. Redistribution subject to AIP
(0.9,x,1) grows with the decrease ofh12. At h1250.01
the maximal values of the perturbation in the inner and ou
layers become almost equal~cf. Fig. 9!. Therefore, it cannot
be concluded that the onset of the instability takes place

l

FIG. 7. As Fig. 6 forb̄50.2, Decr5710.5,ncr512, kcr528.2,vcr51.31.
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3193Phys. Fluids, Vol. 13, No. 11, November 2001 3D instability of a two-layer Dean flow
FIG. 8. Stability diagram forr1251.1, ā510, andb̄50.9. Nondeformable
interface.~a! h1250.8, ~b! h1250.9.

FIG. 9. Comparison of the perturbationu(x) for the single layer and two-
layer cases with a small viscosity ratio.
Downloaded 17 Oct 2001 to 132.68.1.29. Redistribution subject to AIP
the inner layer only. Besides this, the critical azimuth
wavelengths arekcr510.5 andkcr56.3 for h1250.1 and
0.01, respectively, which is distinct fromkcr52.07 for the
single-layer case. It can be concluded that even when vis
ity of the outer layer is much smaller than that of the inn
one, the onset of the instability takes place in both lay
simultaneously, so that there is no direct similarity with t
single-layer case.

Increase of the viscosity ratio makes for more thre
dimensional modes to become dominant. This is illustra
in Fig. 10 for h1252. In this case three three-dimension
modesn54, 6, and 11~instead of two modesn57 and 12 at
h1251.1, Fig. 5! together with the axisymmetric one (n

50) replace each asb̄ varies. Note also that the switch from
the axisymmetric to three-dimensional instability takes pla
at b̄,0.325 andb̄.0.84, so that the range of the values ofb̄
corresponding to the axisymmetric instability is smaller th
that for h1251.1 (0.24,b̄,0.87).

Dependence of the marginal Dean numbers and the m
ginal axial wavelength on the density ratior12 is shown in
Fig. 11 for h1251.1 and the three cases having differe
critical azimuthal wave numbers in Fig. 5. The common te
dency for smallr12 is an increase of the marginal Dean num

FIG. 10. Change of the marginal values with variation of relative depth

the inner layer,r1251.1, h1252. ~a! Dem(b̄), ~b! km(b̄).
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bers as the density ratio decreases. At large values ofr12 the
marginal parameters~Dem andkm! slowly decrease with the
growth of the density ratio, tending to certain limit values
r12→`. At moderate values ofr12 the dependences can b
monotonic~as for b̄50.5, n50 and b̄50.9, n57! or non-
monotonic~as forb̄50.2,n512!. Note that the three mode
shown in Fig. 11 do not remain critical for the whole ran
of r12 considered. One can conclude that the critical para
eters are strongly dependent on the fluids properties, as
as on the geometric parameters, so that each particular
should be considered separately.

C. Deformable interface

To estimate the Weber number, we note thatWe
5Gd/s5Re2 h1

2/(dsr1). Following experiments,7 we esti-
mate h1;7.531023 kg/m•s, r1;1500 kg/m3, d;1022 m,
ands;531022 kg/s2. This yieldsWe;1024 Re2. Accord-
ing to the results obtained for the nondeformable interfa
the critical Reynolds number is of order 102– 103, hence the
estimate of the Weber number isWe;1 – 102. However, the
calculations show that accounting for a deformable surf
has a negligible effect on the instability of the flow cons
ered. We tried to generate unstable modes, which
strongly affected by the interface deformation, by introdu
ing a vanishing surface tension, and increased the We
number up toWe5106. We also varied the density and vis
cosity ratios between 0.1 and 10 and made calculations
ā5100. Still, in all calculations the critical Dean numbe
corresponding to the cases of a deformable and a nondef
able interface differed only in the fourth or fifth decim
digit. For high azimuthal modes (n.10) this difference ap-
peared sometimes in the third digit. It was concluded that
instability is related to the appearance of the Dean vortic
and is virtually unaffected by deformation of the liquid
liquid interface. The smallness of the effect of the latter m
be due to the fact that the considered model accounts
for a large inner radius of the annulusā, making the initial
curvature of the interface negligibly small. Note also that
effect of gravity is neglected. However, the deformati
should be accounted for in supercritical regimes, as was d
for the two-layer Couette flow in Ref. 13.

VII. CONCLUSION

An extension of the global Galerkin approach to stabil
analysis of flows in a two-fluid system is presented. T
proposed numerical technique allows one to implement
the boundary conditions~including those imposed on th
liquid–liquid interface! into Galerkin basis functions. Thi
reduces the hydrodynamic stability problem to a generali
algebraic eigenvalue problem without additional algebr
constraints. A special numerical treatment of small deform
tions of the liquid–liquid interface, including capillary e
fects, is proposed.

The numerical approach developed was applied to
two-fluid Dean problem. The onset of the instability, whi
manifests itself in appearance of axisymmetric or thr
dimensional vortices, was studied for different widths of t
Downloaded 17 Oct 2001 to 132.68.1.29. Redistribution subject to AIP
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fluid layers. For a fixed inner radius of the annulusā
510) and fixed viscosity and density ratios (r125h12

51.1) it was shown that the instability is axisymmetric wh
the relative depth of the inner layer lies in the range 0
,b̄,0.97, and three-dimensional otherwise. At the sa
time, onset of the instability~axisymmetric, as well as three
dimensional! is also characterized by development of seve
three-dimensional modes, which become unstable alread
very small supercriticalities. Therefore, the resulting sup
critical state should be expected to be three-dimensio
Moreover, multiplicity of stable supercritical states seems
be possible.

Variation of the viscosity and density ratiosr12 andh12

do not change the above qualitative conclusions. Howe
the dependence of the critical Dean number and critical a
wavenumber on other governing parameters~fluids proper-
ties and geometry of the system! is found to be strong. Simi-
larly to the previously studied stability problems,15–19 the
critical parameters must be calculated for each particu
case separately. Note also that the physics of the instab
found for the two-layer systems is the same as in the cla
cal Dean problem. The instability is caused by the disbala
between the centrifugal and viscous forces. However, in
two-layer case the instability is affected by the interaction

FIG. 11. Change of the marginal values with variation of the density ra
~a! Dem(r12), ~b! km(r12).
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the perturbations located in each layer, which changes
critical wave numbers and can lead to three-dimensiona
stabilities.
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