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Stability and slightly supercritical oscillatory regimes of
natural convection in a 8:1 cavity: solution of the benchmark

problem by a global Galerkin method

Alexander Yu. Gelfgat∗;†

Department of Fluid Mechanics and Heat Transfer; Faculty of Engineering; Tel-Aviv University; Ramat Aviv;
Tel-Aviv 69978; Israel

SUMMARY

The global Galerkin method is applied to the benchmark problem that considers an oscillatory regime
of convection of air in a tall two-dimensional rectangular cavity. The three most unstable modes of
the linearized system of the Boussinesq equations are studied. The converged values of the critical
Rayleigh numbers together with the corresponding oscillation frequencies are calculated for each mode.
The oscillatory �ow regimes corresponding to each of the three modes are approximated asymptotically.
No direct time integration is applied. Good agreement with the previously published results obtained
by solution of the time-dependent Boussinesq equations is reported. Copyright ? 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

This note is motivated by recently published benchmark results [1] on the calculation of a
supercritical oscillatory convective �ow. Convection of air (Pr=0:71) in a tall two-dimensional
vertical cavity of the aspect ratio height/width= 8 was considered. The purpose of the bench-
mark, as stated in Reference [1] was three-fold: (i) to determine the most accurate estimate
of the critical Rayleigh number above which the �ow is unsteady, (ii) to identify the correct,
i.e. best time-dependent benchmark solution for the 8:1 di�erentially heated cavity and (iii)
to identify those methods that can reliably provide those results.
In this note, we report results obtained using a version of the global Galerkin method [2, 3],

which was primarily developed for the purpose of linear stability analysis of numerically

∗Correspondence to: A. Yu. Gelfgat, Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering,
Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel.

†E-mail: gelfgat@eng.tau.ac.il

Contract/grant sponsor: Gordon Center for the Energy Studies

Received 5 March 2003
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 30 June 2003



136 A. Y. GELFGAT

calculated �ows. This version of the Galerkin method uses non-orthogonal globally de�ned
basis functions, which satisfy all the boundary conditions and the continuity equation. The
pressure is excluded by the orthogonal projection of the momentum equation on the
divergence-free basis, and the problem reduces to a set of bilinear ODEs, whose steady
solutions and linear stability is further studied. The main advantage of this numerical tech-
nique is a signi�cant reduction of the number of degrees of freedom of the numerical method,
which allows a direct implementation of Newton iteration and QR eigensolver (further details
are given in Reference [3]). It is shown that this method accurately reproduces three critical
Rayleigh numbers corresponding to the three most unstable perturbation modes computed in
the benchmark solution [4]. Among all the results reported (see Reference [1]) the critical
Rayleigh number was calculated directly only in References [4, 5], and were estimated in
Reference [6]. Here we revalidate these linear stability results.
In the case of the Hopf bifurcation a slightly supercritical oscillatory solution can be asymp-

totically approximated by the projection on the corresponding central manifold [7]. Such
asymptotic approximation was combined with the global Galerkin method in Reference [8],
and then was used in References [9, 10] for oscillatory low Prandtl number convection �ows
in rectangular cavities. The asymptotic approximations were validated against numerical �nite-
volume solutions of the full time-dependent equations for swirling [8] and convective [3, 9]
�ows. Moreover, the asymptotic solution computed in Reference [10] yielded a good agree-
ment with experimental results. Here we apply this approach to approximate asymptotically the
limit cycles (oscillatory �ows) corresponding to the three most unstable perturbation modes.
The asymptotic solutions, obtained without any time integration, are in a good agreement
with the reported benchmark results [1]. Since the present calculations are carried out without
time integration and the global Galerkin method needs no discretization of the �ow region,
the obtained results provide a signi�cant additional validation of the benchmark results. It
is stressed, however, that the present numerical approach should be considered as an addi-
tion to other methods, and cannot serve as a substitute for the time-dependent calculations
unavoidable at large supercriticalities.
Pseudo-spectral approaches were developed recently [11, 12] for the same basis functions as

those used in References [2, 3] and here. Using these pseudo-spectral techniques the stability
analysis and weakly non-linear approximations can be followed by time-dependent calculations
within the same Galerkin approximation.

2. FORMULATION OF THE PROBLEM

Natural convection in a rectangular cavity of width W and height H is considered. The vertical
walls of the cavity are maintained at di�erent constant temperatures Thot and Tcold, while the
horizontal walls are perfectly thermally insulated. The �ow is described by the momentum,
energy and continuity equations in the Boussinesq approximation. Following Reference [1],
we introduce the length scale W , the velocity scale U =

√
g�W (Thot −Tcold), and the scales

W=U and �U 2 for the time and the pressure, respectively. Here g is the acceleration due
to gravity, � is the thermal expansion coe�cient, and � is the density of the �uid. The
temperature is rendered dimensionless as in Reference [1] by �=(T −Tr)=(Thot −Tcold), where
Tr = (Thot + Tcold)=2. The equations and the boundary conditions, de�ned in the rectangle
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06x61; 06y6A, read

@v
@t
+ (v · ∇)v=−∇p+

√
Pr
Ra
�v+ �j (1)

∇ · v=0 (2)

@�
@t
+ (v · ∇)�= 1√

RaPr
�� (3)

at x=0: v= 0; �= − 0:5 (4)

at x=1: v= 0; �=0:5 (5)

at y=0; A: v= 0;
@�
@y
=0 (6)

Here A=H=W is the aspect ratio, Pr= �=� is the Prandtl number, Ra= g�(Thot −Tcold)W 3=�2 is
the Rayleigh number; � is the kinematic viscosity and � is the thermal di�usivity.
The problem is considered for the �xed values A=8 and Pr=0:71 with varying Rayleigh
number Ra.

3. NUMERICAL METHOD

The global Galerkin method used here was introduced in Reference [2] and is described in
more detail in Reference [3]. Here we recall only several steps of the computational procedure
focusing on the benchmark problem considered.
The solution of (1)–(6) is approximated as

v≈
Nx∑
i=0

Ny∑
j=0

cij(t)uij(x; y); �=(x − 0:5) +
Mx∑
i=0

My∑
j=0

dij(t)qij(x; y) (7)

where cij(t) and dij(t) are time-dependent coe�cients to be found, Nx; Ny; Mx; My are num-
bers of basis functions used for the approximation in the x- and y-directions, respectively;
uij(x; y) and qij(x; y) are vector and scalar basis functions. The �rst term in the representation
of � satis�es the non-homogeneous thermal boundary conditions (4) and (5) along with the
homogeneous conditions (6), so that all boundary conditions for qij(x; y) become homoge-
neous. The components of the vector basis functions uij(x; y) and the scalar basis functions
qij(x; y) are linear superpositions of the Chebyshev polynomials of the �rst and second kind.
The coe�cients of these linear superpositions are chosen such that the basis functions sat-
isfy all the homogeneous boundary conditions and the velocity basis is divergence free, i.e.
∇ · uij(x; y)=0. Further details and the basis functions for the boundary conditions (4)–(6)
can be found in References [2, 3].
The system of ODEs for calculation of the time-dependent coe�cients cij(t) and dij(t) is

obtained by the Galerkin projections of Equations (1) and (3) on the basis functions uij(x; y)
and qij(x; y). Note that all the boundary conditions (4)–(6) and the continuity equation (2) are
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satis�ed before the Galerkin process starts. The orthogonal projection of the pressure gradient
on the divergence free basis (∇ · uij=0) satisfying the no-penetration boundary conditions
(uij · n=0 at the boundary) gives zero analytically. This can be seen by application of the
Gauss integral theorem to
∫
�
∇p · uij d�=

∫
�
[∇ · (puij)− p∇ · uij] d�=

∫
�
∇ · (puij) d�=

∫
@�

puij · n d(@�)=0 (8)

where � is the �ow region and @� is its boundary. Therefore, the resulting system of ODEs
does not contain any algebraic constraint and can be written in the following form (the
summation rule over repeating indices is applied)

Ẋ i=
dXi(t)
dt

=Fi(X(t); Ra; Pr; A)=LijXj + Nijk XjXk +Qi (9)

Here i; j; k=1; 2; : : : ; (Nx + 1)(Ny + 1) + (Mx + 1)(My + 1)
and

Xi(My+1)+j+1 = dij; 06i6Mx; 06j6My

X(Mx+1)(My+1)+i(Ny+1)+j+1 = cij; 06i6Nx; 06j6Ny

(10)

Matrices Lij; Nijk ; Qi contain coe�cients of all linear, bilinear and free terms of the equations,
respectively, and depend on the governing parameters of the problem.
The steady solutions of the ODE system (9) are calculated by the Newton method. The

convergence studies and the validation for convective and swirling �ows can be found in
References [2, 8–13]. The linear stability analysis of a calculated steady state X0 reduces to
the calculation of the eigenvalues of the Jacobian matrix Jmk of the linearized equations (9),
which can be expressed as

Jmk =
@Ẋm

@Xk
=Lmk + (Nmkn + Nmnk)X 0

n (11)

The eigenvalues are calculated, as a rule, using the QR decomposition algorithm. This algo-
rithm does not depend on the matrix condition number and yields the whole spectrum of the
Jacobian matrix. When the dominant eigenvalue is already localized or in cases when a cer-
tain single mode is needed (like in the results reported below) the inverse iteration algorithm
is applied. The critical Rayleigh number Ra cr corresponds to the change of the sign of the
real part of the leading eigenvalue � of the Jacobian matrix from negative to positive. It is
calculated as a root of the equation Real[�(Ra cr)]= 0, which is solved by the secant method.
Several studies on stability of the calculated convective and rotating �ows together with the
validations against independent experimental and numerical data are reported in References
[2, 3, 8–13].
The last step of the numerical procedure is the non-linear analysis of the calculated bifur-

cation points. The explicit form of (9) allows one to calculate the projection of the system
on the central manifold, which reduces the problem for a slightly supercritical �ow to a
low-order ODE system (normal form). The solution of this system yields the asymptotic
approximation of slightly supercritical solutions. At the moment we have experience carrying
out this procedure for Hopf bifurcations, which is the case of the benchmark considered.
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In case of the Hopf bifurcation the slightly supercritical oscillatory solution of (9) is
approximated asymptotically as [7]

Ra= Ra cr + �� 2 +O(�4) (12a)

T (Ra) =
2�
! cr

[1 + 	� 2 +O(�4)] (12b)

X(t;Ra) =X0(Ra cr) + � Re
[
V exp

(
2�i
T

t
)]
+O(� 2) (12c)

Here (Ra−Ra cr) is the supercriticality, ! cr is the imaginary part of the leading eigenvalue (the
critical frequency), T is the period of oscillations, V is the eigenvector and X is the asymptotic
solution of the ODEs system (9) for the Rayleigh number de�ned in (12a). The asymptotic
expansion (12) is de�ned by two parameters � and 	, which can be calculated after the linear
stability analysis is completed and the critical parameters Ra cr and ! cr are obtained. The
parameters � and 	 are calculated using the algorithm developed in Reference [7]. Details of
the application of this algorithm to the ODE system (9) are described in References [3, 8]. The
application of Equation (12) proceeds as follows. For a slightly supercritical Rayleigh number
Ra the small parameter � is de�ned from (12a) as �=

√
(Ra−Ra cr)=� (the terms O(�4) in

Equations (12a ,b) and the term O(� 2) in Equation (12c) are neglected). Then the period of
oscillations and the oscillatory solutions are obtained from (12b) and (12c), respectively. Note,
that the sign of the parameter � de�nes whether the Hopf bifurcation is sub- or supercritical.
The asymptotic solutions (12) were validated against time-dependent solutions of the full

Navier–Stokes and Boussinesq equations in References [8, 9] and was compared with the
experimental observations in Reference [10]. The test calculations performed in Reference
[8] showed that the residual of the Navier–Stokes equations remains of the order � 2 if the
supercriticality does not exceed 10%.
The calculations reported below were performed on the ORIGIN 2000 computer using 64

CPUs of type RS10000. A characteristic run that contains all three steps, i.e. calculation of
the steady states, linear stability analysis and weakly non-linear analysis of Hopf bifurcation,
consumes about 0:375 CPU h/processor for the 20× 60 basis functions. With the increase of
the number of the basis functions the time increases and is about 0:625 CPU h/processor for
40× 100 basis functions.

4. RESULTS

The critical Rayleigh numbers and the critical frequencies calculated at three di�erent trun-
cations of the Galerkin series (7) are shown in Tables I and II. The ‘critical frequency’ ! cr

is the imaginary part of the eigenvalue whose real part crosses zero. This value corresponds
to the oscillation frequency in the bifurcation point where the amplitude starts to diverge
from zero. It is seen that with the use of 20× 80 basis functions in the x- and y-directions,
respectively, it is possible to obtain three correct decimal digits of the critical parameters.
Furthermore, there is no change in the sixth decimal digits of the critical parameters when
the number of basis functions is varied from 30× 90 to 40× 100. The calculation of the
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Table I. Critical Rayleigh number corresponding to the three most unstable perturbation modes.

20× 80 30× 90 40× 100 Results of
basis functions basis functions basis functions Reference [4]

First eigenvalue 306379 306192 306192 306191.6
(mode 1)

Second eigenvalue 311314 311234 311234 311169.8
(mode 2)

Third eigenvalue 334136 333900 333900 333899.6
(mode 3)

Table II. Critical circular frequency corresponding to the three most unstable perturbation modes.

20× 80 30× 90 40× 100 Results of
basis functions basis functions basis functions Reference [4]

First eigenvalue 1.70956 1.70908 1.70908 1.7090841
(mode 1)

Second eigenvalue 1.83485 1.83473 1.83473 1.8349204
(mode 2)

Third eigenvalue 1.95798 1.95813 1.95813 1.9661282
(mode 3)

bifurcation point was assumed to be converged after the �rst six digits of the critical Rayleigh
number remained unchanged. Therefore, we do not report further decimal digits. Comparison
with the benchmark results of Reference [4] shows that at least four decimal digits of both
solutions coincide, except the frequency of the third mode which was calculated in Reference
[4] on a coarser collocation grid.
The fast convergence observed here seems to be common for the spectral methods us-

ing the polynomial basis functions. In particular, it was reported for the benchmark problem
[1] in References [4, 12, 14]. The divergence-free basis satisfying all the boundary conditions
used here and in Reference [12] yields also the conservative properties of the discretized
models. It can be shown [3] that for any truncation number the numerical solution satis-
�es analytically the relations 〈(v·) v; v〉=0 and 〈(v·) �; �〉=0, where angle brackets repre-
sent the inner product with unity weight. It can be shown also that the Galerkin projections
of the Laplacian operators result in the negative-de�nite symmetric matrices. In our opin-
ion, these properties of the discretized model play the decisive role in the fast convergence
observed.
Patterns of the �ows and the perturbations at the critical values of the Rayleigh number

corresponding to modes 1–3 are shown in Figures. 1–3. The patterns of the real and imaginary
parts of the temperature perturbations are similar to those reported in Reference [4]. As is
pointed out in Reference [4] the real and imaginary parts of modes 1, 2 and 3 consist of
10, 11 and 12 wave structures, respectively. The structures are located near the upper side
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stream function

(a) (b) (c) (d)

temperature

Figure 1. Patterns of the �ow and the perturbation at the critical point for mode 1. All isolines are
equally spaced: (a) streamlines ( max = 0:135) and isotherms; (b) real part of the perturbation; (c)

imaginary part of the perturbation; (d) modulus of the perturbation.

of the hot wall and the lower side of the cold one. The perturbation patterns of the stream
function contain the same amount of wavy structures located in the same �ow regions. The
patterns showed in Figure 1 do not coincide completely with those of Reference [4] because
the eigenfunctions are de�ned to within a phase shift (to within multiplication of the complex
perturbation vector V by a complex constant). The phase-independent property, which can be
used for comparison of di�erent numerical results, is the modulus of the perturbation. This
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stream function

(a) (b) (c) (d)

temperature

Figure 2. As Figure 1,  max = 0:134.

is also included in Figures 1–3. The isolines of the modulus show also that the characteristic
width of the temperature perturbation is thinner than that of the velocity.
The parameters � and 	 that de�ne the asymptotic approximation (12) for the supercritical

limit cycle were calculated for all three leading perturbation modes. In all three cases the
parameter � was positive, which means that all three limit cycles are supercritical.
We start the description of the asymptotic solutions from the following example. The period

of oscillations at Ra=3:3× 105, developing due to mode 1, is calculated in Reference [4] to
be T =3:42. According to the linear stability results the period of oscillations at the critical
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stream function

(a) (b) (c) (d)

temperature

Figure 3. As Figure 1,  max = 0:131.

point Ra cr ≈ 3:062× 105 is T cr = 2�=! cr = 3:676. Applying the weakly non-linear analysis and
calculating the correction to the oscillation period from (12b) we obtain the value T =3:417,
which is in a very good agreement with the mentioned result of Reference [4].
The benchmark exercise [1] required to report several characteristic properties of the

supercritical oscillatory �ow at Ra=3:4×105. According to the results of [4, 15] the skew non-
symmetric oscillatory �ow that develops due to the �rst instability mode at Ra cr ≈ 3:062×105
is unstable at Ra=3:4×105 and the �ow switches to the skew symmetric oscillatory regime
caused by the growth of mode 2. Since the application of the weakly non-linear analysis does
not depend on the stability of a supercritical �ow, we calculated the asymptotic approximations
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Table III. Characteristic quantities of the oscillatory �ow at Ra=3:4× 105.
Present result Independent results

Quantity Average Amplitude Average Amplitude Reference

First mode

u1 0.05720 0.04659

v1 0.4535 0.06876

�1 0.2689 0.03891

 1 0.07070 0.005997

!1 −2:2562 0.9718

Nu0 4.4633 0.01070

Period 3.6480

Second mode

u1 0.056492 0.052867 0.056345 0.054768 [4]
0.05634 0.05467 [12]

v1 0.45498 0.074112 0.46188 0.077125 [4]
0.46190 0.07700

�1 0.26836 0.043230 0.26548 0.042690 [4]
0.26552 0.04261 [12]

 1 0.07137 0.0066754 −0:07371 0.00700 [12]
−0:0737 0.0061 [14]

!1 −2:3022 1.05534 −2:37171 1.07555 [12]
−2:375 0.951 [14]

Nu0 4.4809 0.007109 4.57946 0.0070921 [4]
4.57946 0.00708 [12]

Period 3.4113 3.4115 [4]
3.4012 [12]

Third mode

u1 0.05342 0.02778

v1 0.4608 0.03866

�1 0.2660 0.02200

 1 0.074290 0.003489

!1 −2:5040 0.5141

Nu0 4.5585 0.003834

Period 3.2060
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Table IV. Parameters � and 	 for the second perturbation mode and di�erent number of basis functions.

Nx ×Ny 20× 60 20× 80 30× 90 40× 100
�=‖V‖2× 107 1.29047 1.29660 1.29705 1.29724

	=�× 109 −2:37739 −2:37205 −2:37301 −2:37316

of three distinct oscillatory solutions corresponding to the three leading instability modes. The
characteristic parameters of these three asymptotic solutions at Ra=3:4× 105 are reported in
Table III. The parameters include the period of oscillations, the mean value and the amplitude
of the Nusselt number Nu0 calculated at the cold wall, and the mean values and the ampli-
tudes of the velocities u1; v1, temperature �1, stream function  1 and vorticity !1 calculated
in the point x1 = 0:181, y1 = 7:37. The table contains also the comparison with the solutions
of the full time-dependent problem [4, 15].
Obviously, the agreement between the asymptotic and the complete solutions is not as good

as that for the critical values (Table III). The main interest is focused on the oscillatory state
developing due to mode 2, which is, seemingly, the only one stable at Ra=3:4× 105 [4, 15].
For this solution the present results di�er by less than 4% from the results of Reference [4]
and less than 10% from the results of References [12, 15]. Moreover, our asymptotic solutions
are within the deviation of other fully non-linear results reported in Reference [1].
Table IV illustrates the convergence of the parameters � and 	 in the asymptotic expansion

(12). Note that the values of the parameters depend on the norm of the eigenvector. To
eliminate this dependence the parameter � is scaled by the squared norm of the eigenvector
V. Consequently, we report the convergence of the ratio 	=� rather than the convergence
of the parameter 	 itself. It is seen that the convergence of these two parameters is slower
than that of the critical values. A similar slow down of the convergence was observed also
in Reference [8]. The calculation of � and 	 requires calculation of the derivative of the
corresponding eigenvalue [8, 13] with respect to the control parameter (the Rayleigh number
in the present case), which is carried out by the �nite di�erencing and is the main source of
additional numerical error.

5. CONCLUSIONS

The numerical solution of the benchmark problem [1] using the global Galerkin method [3]
allowed us to validate the values of the critical Rayleigh numbers and critical frequencies re-
ported in Reference [4]. Application of the weakly non-linear analysis to the calculated Hopf
bifurcation yielded additional comparisons with the numerical data obtained by the solution
of full time-dependent non-linear problem, thus validating additionally the benchmark results
reported in Reference [1]. It should be mentioned that the asymptotic weakly non-linear ap-
proximation (12) can be useful not only for comparison purposes. First of all, it gives the
pattern of a slightly supercritical oscillatory �ow without any time integration of the govern-
ing equations [8, 9]. As a rule, the calculation of the parameters � and 	 in (12) takes less
CPU time than is needed to complete the linear stability analysis. Besides that, the sign of �
shows whether the bifurcation is sub- or supercritical, which is a very di�cult task for any
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time-dependent calculation. Finally, a rather good asymptotic approximation of the oscillatory
�ows may make it possible to perform the Floquet analysis of stability of supercritical oscil-
latory �ows using the asymptotic expansion (12) as a basic state. In this way, for example,
the instability of the oscillatory �ow developing due to mode 1 can be studied.
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