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Abstract Our recent results on stability and multiplicity of ¯ow states for con®ned ¯ows of an
incompressible Newtonian ¯uid are surveyed. The considered laminar ¯ows are caused by either
thermal, mechanical, or electromagnetic effects and beyond the stability limit exhibit multiplicity of
stable, steady or oscillatory, asymptotic states. Stability diagrams as well as examples of multiple
¯ow states are given. It is concluded that beyond the critical value of the characteristic
non-dimensional parameter, and below the threshold to stochastic or turbulent state, multiple
stable asymptotic ¯ow states can be expected. This means that at such ¯ow regimes, any
computational (experimental) result may be strongly dependent on its initial condition and/or
computational (experimental) path. Uncertainties of experimental and numerical modeling, which
follow from this conclusion, are discussed. The global spectral Galerkin method using divergence
free basis functions has been employed for the spatial approximation of the velocity and
temperature ®elds. Several numerical experiments were performed comparing the present and
other formulations, each of which con®rmed the computational ef®ciency of the present approach
over other classical numerical methods.

1. Introduction
Fluid ¯ow is extremely important in a wide variety of materials processing
because it determines the quality and characteristics of the ®nal product and
allows control and optimization of the system. For example, ¯ow patterns that
arise in the molten material in crystal growing strongly affect the quality of the
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crystal and thus, of the semiconductors fabricated from that crystal ( Jaluria,
2001). Transport phenomena in these processes are quite complex due to free,
forced and Marangoni convection mechanisms which are coupled with
radiation, melt-crystal interface dynamics, turbulence and free surface
modeling, impurities and dopant distributions, and so on.

This review paper is mainly concerned with ¯ow multiplicity and instability
which may strongly in¯uence the quality and structure of the ®nal product in
material processing. Interest lies mainly in the basic ¯uid phenomena, rather
than in the complexities of the different processes. It has been clearly shown that
despite the simplicity in the domain geometry and the assumption that the ¯ow
remains laminar, complicated, multiple ¯ow patterns are revealed in all cases
we have experienced. The complexity of laminar ¯ow patterns is observed with
the increase of the characteristic parameters, where the ¯ow undergoes different
bifurcations, among which the most typical are Hopf bifurcations, turning
points and breaking of symmetries (re¯ectional, rotational, axial).

Nowadays, high performance computing units allow simulating realistic
unsteady ¯ow problems such as ¯ows with turbulence modeling, chemical
reactions, and surface tension within complicated geometric domains through
employing various time marching algorithms. Yet, reliable stability and/or
bifurcation analysis for such problems is not feasible due to the large
dimension of the corresponding eigen problem.

Our main objectives in analyzing the stability and multiplicity of ¯ow states
are three fold.

(1) To verify our computational approach against other independent
solutions and to test its accuracy and computational ef®ciency.

(2) To reveal the richness of some basic laminar ¯ow states (con®ned in
simple geometric domains) via a thorough computational study.

(3) To obtain a better insight about the development of stability and
multiplicity of ¯ow states. This can serve to stimulate innovations as
well as may lead to improvements in the performance, reliability and
costs of many practical ¯ow problems (e.g. crystal growth processes,
rotating machines).

There are a signi®cant number of experimental and numerical studies
reporting on multiple stable laminar states, which are observed for the same
values of characteristic parameters. Multiple steady states of rotating ¯ows
were reported in Albensoeder et al. (2001), Bartels (1982), Bar-Yoseph (1994,
1995), Bar-Yoseph et al. (1990, 1992), Blackburn and Lopez (2000), Cliffe and
Mullin (1985), Coles (1965), Lopez et al. (2001a), Nore et al. (2003), Schrauf (1986)
and Wimmer (1976). For example, Wimmer’s experimental results for ¯uid ¯ow
between the concentric rotating spheres clearly show that the ®nal state of the
¯ow ®eld depends on the initial conditions and acceleration of the inner sphere
(three steady axisymmetric and two unsteady non-symmetric ¯ow modes were
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found). For ¯ow in a wider spherical gap with thermal effects, our results
(Bar-Yoseph et al., 1992) show that ®ve different ¯ow states can be obtained,
depending on the computational path in the Re-Ra plane. Multiple states in a
two-sided lid-driven cavity were described by Albensoeder et al. (2001) and
Blohm and Kuhlmann (2002), and multiple convective patterns were found by
Crespo del Arco et al. (1989) and Pallares et al. (1999, 2001) (clearly, the list of
examples is incomplete). Hence, it is clear that in cases of multiple stable ¯ow
states the ®nal ¯ow mode depends on either the initial condition and/or the
computational (experimental) path. The set of all possible initial states can be
divided into several regimes, each being attracted to a certain distinct
asymptotic state (Wimmer, 1976). At small values of the characteristic
parameter, the Navier-Stokes equation has a unique solution (Serrin, 1959).
Therefore, it follows that the appearance of multiplicity of ¯ow states can only
take place at relatively large values of the characteristic parameter (at the
critical value which might be below the threshold to chaos or turbulence) via
¯ow instability.

The importance of computational modeling of bifurcation and multiplicity of
¯uid ¯ows is widely understood nowadays, and special computational
procedures have been extensively developed for revealing all possible
bifurcations of a given solution, as well as following the corresponding
branches of that solution (Cliffe et al., 2000; Gadoin et al., 2001; Sanchez et al.,
2002). Yet, the computation of all possible multiple ¯ow states, as well as the
stability analysis of these computed multiple solutions, remain a challenge. To
the best of our knowledge, none of the commercial CFD codes are suitable for
analyzing stability and bifurcation problems. For such ¯ow problems, the
spectral method becomes very attractive because the correct pattern of the ¯ow
can be obtained with relatively few basis functions. Among the spectral
methods, our approach used in the works surveyed here is the most appealing
one because, unlike the other mixed methods, the present approximation of
velocity ®eld is divergence free, which yields a numerical scheme that is
inherently stable (Gelfgat, 1999, 2001; Gelfgat and Tanasawa 1993, 1994;
Gelfgat et al., 2001c; Grants and Gerbeth, 2001; Yahata, 1999).

The present review is focused on stability and multiplicity of con®ned ¯ow
states caused by thermal, mechanical and electromagnetic effects, and were
analyzed by our research team (Erenburg et al., 2003; Gelfgat, 1999, 2001;
Gelfgat and Bar-Yoseph, 2001; Gelfgat and Tanasawa 1993, 1994; Gelfgat et al.,
1996a-c, 1997, 1999a-c, 2000, 2001a-c). The considered problems were motivated
by crystal growth (Erenburg et al., 2003; Gelfgat and Bar-Yoseph, 2001; Gelfgat
et al., 1997, 1999a-c, 2000, 2001b), rotating machinery (Gelfgat et al., 1996a-c,
2001a) and bioseparation (Gelfgat et al., 2001c) applications. All results are
based on the same global spectral Galerkin method (Gelfgat, 1999, 2001;
Gelfgat and Tanasawa, 1993, 1994; Gelfgat et al., 2001c). According to this
approach, a specially constructed set of non-orthogonal basis functions, a priori
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satisfying the continuity equation and the (linear continuous) boundary
conditions, reduces the problem to the analysis of an ODEs system. The
pressure is eliminated by the projection of the Navier-Stokes equations on the
divergent-free basis. This enables a straightforward application of classical
numerical algorithms such as the Newton iteration, arc-length continuation and
standard eigenvalue solvers. The spectral, sometimes exponential, rate of
convergence allows us to perform detailed parametric studies. In the following
we describe the considered problems, the convergence study for some of them
and the comparison with other independent studies.

As mentioned earlier, multiple ¯ow states were observed experimentally and
numerically in many other studies (Albensoeder et al., 2001; Bartels, 1982;
Bar-Yoseph, 1994, 1995; Bar-Yoseph et al., 1990, 1992; Blackburn and Lopez,
2000; Blohm and Kuhlmann, 2002; Cliffe and Mullin, 1985; Coles, 1965; Crespo
del Arco et al., 1989; Lopez et al., 2001a; Nore et al., 2003; Pallares et al., 1999,
2001; Schrauf, 1986; Wimmer, 1976). It is re-emphasized that the transition to
multiplicity of solutions takes place below any threshold to chaos or
turbulence. This was clearly observed in all the problems we encountered.
Multiplicity has to be considered whenever comparison of independent results
is made, so that the states belonging to the same solution branch are compared.

2. De®nitions of the considered problems
We consider laminar ¯ows of incompressible or Boussinesq, Newtonian ¯uids.
The governing equations are the Navier-Stokes and energy equations. Thus, in
the problem descriptions we de®ne only the related boundary conditions and
non-dimensional characteristic parameters.

2.1 Convection in a laterally-heated rectangular cavity
This problem was ®rst studied by Batchelor (1954) and, at that time, was
considered as a purely theoretical model until experiments connecting the
instability of a low Prandtl ¯uid convection with the irregular structure of
semiconductor monocrystals were reported (Hurle, 1966). In our study we
focused on stability and multiplicity of steady ¯ow states of convection in a
rectangular cavity with differentially and uniformly heated vertical walls
(Figure 1). The choice of the characteristic parameters was motivated by the
benchmark problems de®ned by de Vahl Davis and Jones (1983) for convection
of air in a square cavity, and by Roux (1990) for oscillatory instability of a low
Prandtl number ¯uid convection in a cavity with aspect ratio (length/height)
equal to four.

The vertical boundaries of the cavity are considered to be no-slip and
isothermal, the left boundary is hot and the right one is cold. The horizontal
boundaries can be considered as no-slip and perfectly thermally-insulated. The
¯ow can be affected by an externally imposed homogeneous magnetic ®eld B
of arbitrary magnitude B0 and forming an arbitrary angle a with the horizontal
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axis. Results for other boundary conditions imposed on the horizontal
boundaries (perfectly conducting boundaries, stress-free upper boundary) can
be found in Gelfgat and Tanasawa (1994) and Gelfgat et al. (1997).

The ¯ow is de®ned by the following characteristic parameters: the aspect
ratio A = L H the Prandtl number Pr = n x the Grashof number Gr =
gb(yhot 2 ycold)H 3 n2 and the Hartmann number Ha = B0H

�����������
s rn

p
. Here, L

is the length and H the height of the cavity, n the kinematic viscosity, x the heat
diffusivity, g the gravity acceleration, b the thermal expansion coef®cient, s
the electric conductivity, and r the density.

2.2 Rayleigh-BeÂnard instability in a three-dimensional box heated from below
This benchmark problem was formulated by Dijkstra (1998) and Gelfgat (1999),
and considered as the classical Rayleigh-BeÂnard instability (transition from
conduction to convection) in ®nite three-dimensional boxes with some speci®c
boundary conditions taken from the experiments described by Koschmieder
(1993). The benchmark problem was proposed for the validation of different
computational methods implementing stability analysis and different
continuation techniques.

A rectangular box of height H, length L, and width W is considered
(Figure 2). It is assumed that all the boundaries are no-slip, except the upper
one, which is stress-free. The lower boundary is uniformly heated. The vertical
boundaries are thermally insulated. A convective cooling condition
characterized by the Biot number Bi is imposed on the upper boundary. The
other characteristic parameters are: the aspect ratios in x- and y- directions
Ax = L H and Ay = W H the Prandtl number Pr = n x and the Rayleigh
number Ra = gb(yhot 2 ycold)H 3 nx Ra = Gr Pr. Note that all notations are
the same as de®ned in Section 2.1.

Figure 1.
Buoyancy convection in

a rectangular cavity:
sketch of the problem

geometry
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The objective here is to study the dependence of the critical Rayleigh number,
corresponding to the onset of convection, on both aspect ratios. Additionally,
we study the patterns of the most dangerous perturbations, which qualitatively
describe the supercritical convective states.

2.3 Convection in a cavity with partially heated sidewalls
The study of this problem was motivated by instabilities observed in the
semiconductor melts during various crystal growth processes The problem
considered represents a simpli®ed model of a case where the size of a heater is
smaller than the size of the melt zone. The geometry considered relates to the
¯oating zone and Bridgman growth techniques. It happens that this difference
in sizes leads to different instability mechanisms, whose interaction creates a
very complex multiplicity of possible ¯ow states.

A natural convection ¯ow in a cavity, whose vertical walls are uniformly
heated in their central parts and are insulated above and below, is considered
(Figure 3). All boundaries are assumed to be no-slip, and horizontal boundaries
are maintained at a cold temperature. The problem is governed by the following
characteristic parameters: the aspect ratio of the cavity AL = H L the Prandtl
number Pr = n x the Grashof number GrL = gb(yhot 2 ycold)L3 n2 and the
two additional geometric parameters a1 = h1 L and a2 = h2 L describing the
location of the heated parts of the vertical walls. Note that here we use the length

Figure 2.
Rayleigh-BeÂnard
instability in a 3D box:
sketch of the problem
geometry
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of the cavity as a characteristic length, and denote the aspect ratio and the
Grashof number by a subscript L to distinguish them from those de®ned in
Section 2.1. Other notations are exactly the same as in Section 2.1.

The values of the characteristic parameters, Pr = 0.021 a1 = AL 2 2 1 4
a2 = AL 2 + 1 4 1 # AL # 6 were taken from the experiments of Selver et al.
(1998). It was unexpectedly found that such a simple con®guration exhibits
panoply of distinct stable and unstable, steady and oscillatory states (Erenburg
et al., 2003). Therefore, this problem represents a simple example, where a
study of the stability and multiplicity of possible ¯ow states cannot be
completed without a computational tool speci®cally tailored for such a kind of
analysis.

2.4 Swirling ¯ow in a cylinder with independently rotating top and bottom
Vortex breakdown in a closed circular cylinder with a rotating lid was ®rst
observed by Vogel (1975) and since that time it has been a subject of intensive
experimental and theoretical investigations (Delery, 1994; Escudier, 1984). The
importance of the vortex breakdown of swirling ¯ows (Delery, 1994) led to wide
interest in this particular problem, which can be investigated relatively easily
both experimentally and computationally.

A swirling ¯ow in a cylinder of height H and radius R, whose top and
bottom can rotate independently, is considered (Figure 4(a)). The characteristic
parameters are the aspect ratio of the cylinder g = H R the Reynolds number
de®ned by the angular velocity of the top cover Re = O topR 2 n and the
rotation ratio x = Otop Obottom .

Figure 3.
Natural convection in a
two-dimensional cavity

with partially heated
vertical walls: sketch of

the problem geometry
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The vortex breakdown phenomenon is schematically shown in Figure 4(b). At
a certain value of the Reynolds number and for x = 0 the main meridional
vortex splits into two and a weak recirculation zone appears near the cylinder
axis. Then it was shown that the vortex breakdown in this system is not
caused by the instability of the ¯ow (Gelfgat et al., 1996a-c), the attention was
focused on the onset of the oscillatory instability of this ¯ow. We discuss here
the convergence of the critical Reynolds numbers corresponding to
axisymmetric and three-dimensional perturbations. We also discuss how
the ¯ow pattern changes with the variation of the rotation ratio x, and the
possibility of multiple oscillatory states in supercritical ¯ow regimes. Some of
the results reported here are in excellent agreement with the results of
Blackburn and Lopez (2000), Lopez et al. (2001a, b), Marques and Lopez
(2001)) and Nore et al. (2003), so they can be considered as the results of
benchmark quality.

2.5 Swirling ¯ow enclosed in a cylinder and driven by a rotating magnetic ®eld
A rotating magnetic ®eld (RMF) can be used to control the ¯ow pattern and its
stability in different crystal growth processes (Dold and Benz, 1999) Besides
that, this problem is directly related to con®ned swirling ¯ows described in the
previous section and being intensively studied nowadays.

The ¯ow of electrically conducting ¯uid in a cylinder driven by a rotating
magnetic ®eld is considered (Figure 5). The ¯ow is governed by three
characteristic parameters: the aspect ratio of the cylinder, g = H R the
magnetic Taylor number Tam = B2

0R
4s! 2rn2 and the rotational magnetic

Reynolds number Re! = !R 2 n. Here B0 is the magnitude and ! is the
circular frequency of rotation of the magnetic ®eld. The other characteristic
parameters are de®ned earlier. For details, refer Grants and Gerbeth (2001) and

Figure 4.
Swirling ¯ow in a
cylinder: sketch of the
problem geometry and
¯ow patterns
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references therein. Note that the direction of the meridional ¯ow in Figure 5 is
opposite to the one depicted in Figure 4(a).

2.6 Two-¯uid Dean ¯ow in a cylindrical annulus
Consideration of the following problem was motivated by a search for the most
effective vortical enhancement of protein diffusion through an immiscible
liquid-liquid interface. Among other models we intend to consider a two-¯uid
¯ow in a helical pipe, where Dean vortices appear due to the pipe curvature
(Berger and Talbot, 1983).

To obtain a better understanding of the appearance of the Dean vortices in a
two-¯uid system, we extended the classical Dean problem (Dean, 1928),
modeling the ¯ow in a curved channel, to the case of two immiscible ¯uids
®lling two adjacent cylindrical layers (Figure 6).

Consider a cylindrical annulus, whose radius varies in the interval a # r #
a + d ®lled with two immiscible Newtonian incompressible liquids 1 and 2
which, in the unperturbed state, occupy cylindrical layers a # r # a + b and
a + b # r # a + d respectively (Figure 6). It is assumed that the ¯ow is driven
by a constant azimuthal pressure gradient, i.e. ­ p ­ y = G = const.

The characteristic parameters are the relative radius of curvature of the layer
a = a d the relative depth of the inner layer b = b d the Dean number
De = (d Z1)

�������������
Gr1 a

p
and the ratios of the densities and the dynamic viscosities

of the two ¯uidsr21 = r2 r1 and Z21 = Z2 Z1 respectively. Accounting for the
capillary forces on the liquid-liquid interface, the Weber number We = Gd a
is also introduced. Here a is the radius of the inner cylinder, d the annulus width,
a the surface tension coef®cient, and G the azimuthal pressure gradient.

The objective of this study is to carry out a three-dimensional linear stability
analysis of the basic azimuthal ¯ow. It appears, that conversely to the

Figure 5.
Swirling ¯ow enclosed in
a cylinder and driven by
a rotating magnetic ®eld:

sketch of the problem
geometry and ¯ow

patterns
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single-¯uid case, where the instability is always two-dimensional (Dean, 1928),
the instability of the two-¯uid case can be two- or three-dimensional depending
on the characteristic parameters. The extension of the global Galerkin method
for small perturbations of the liquid-liquid interface is described in Gelfgat et al.
(2001c).

2.7 Three-dimensional instability of axisymmetric convection ¯ows
As another example of the transition from steady axisymmetric to
three-dimensional (steady or oscillatory) ¯ow we consider the
three-dimensional instability of an axisymmetric convective ¯ow within a
cylinder. The problem is also motivated by the crystal growth applications,
where melt ¯ows may become three-dimensional (which is undesirable) in spite
of perfectly axisymmetric forcing, geometry and boundary conditions.

It is assumed that certain axisymmetric thermal boundary conditions are
de®ned on the cylinder boundaries, so that the base convective ¯ow is
axisymmetric (Figure 7).

The ¯ow is de®ned by the aspect ratio g = H R Prandtl number Pr = n x
and the Grashof number Gr = gb(yhot 2 ycold)R 3 n2. The hot and cold
temperatures should be de®ned according to certain heating conditions, which
may require additional characteristic parameters. The main purpose of this

Figure 6.
Two-¯uid Dean ¯ow in a
cylindrical annulus:
sketch of the problem
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study is to ®nd the critical values of Gr corresponding to the transition from an
axisymmetric to a three-dimensional ¯ow state.

2.8 Three-dimensional instability of Taylor-Couette ¯ow with axial through-¯ow
This is a classical Taylor-Couette con®guration of rotating ¯ow between the
two independently rotating cylinders with an axial through-¯ow imposed on it
(Figure 8). The problem is de®ned by the Taylor number Ta = RiO id n

Figure 7.
Axisymmetric natural

convection ¯ow in a
cylinder: sketch of the

problem

Figure 8.
Taylor-Couette system

with axial through-¯ow
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rotation ratio x = O i O0 the Reynolds number of the axial ¯ow Re = Wd n
and the radii ratio Z = Ri Ro. Here Ri and Ro are the radii of the inner and outer
cylinders, O i and Oo are the angular velocities of the inner and outer cylinders,
respectively; d = Ro 2 Ri is the gap between the cylinders, n is the kinematic
viscosity, and W is the mean velocity of the axial ¯ow. The ¯ow is assumed to
be periodic in the axial direction.

Multiple three-dimensional states of the ¯ow were experimentally observed
in this system (Lueptow et al., 1992). We used this con®guration to validate the
fully three-dimensional ®nite volume code.

3. Computational method
As mentioned earlier, the main computational method used for studying the
problems de®ned earlier is the global Galerkin method The divergence-free
velocity basis functions satisfying all homogeneous linear boundary conditions
for two-dimensional ¯ows in Cartesian coordinates were proposed and
validated by Gelfgat and Tanasawa (1994). Three-dimensional bases for
Cartesian coordinates were introduced and veri®ed by Gelfgat (1999).
Axisymmetric and three-dimensional bases for cylindrical coordinates were
introduced in Gelfgat and Tanasawa (1993) and then were validated in Gelfgat
et al. (1996a, 1999c) (for details, refer Gelfgat (2001)). Different ways to handle
discontinuous boundary conditions were proposed by Erenburg et al. (2003)
and Gelfgat et al. (1996a, 1999c). The bases for a two-¯uid case including the
perturbations of a capillary liquid-liquid interface are described by Gelfgat et al.
(2001c). Here the numerical approach is brie¯y described.

The unknown velocity and temperature ®elds, v and y, are approximated as

v( t r) = W(r) +
XN

i= 1

X i(t)u i(r) y(t r) = Q(r) +
XM

i=1

X i+ N (t)gi(r) (1)

Here ui and gi are the bases of the velocity and temperature, respectively. Xi(t)
are unknown time-dependent coef®cients to be found. W and Q are auxiliary
functions used to satisfy inhomogeneous boundary conditions, so that all linear
boundary conditions for the basis functions ui and gi are homogeneous. The
basis functions satisfy all the linear homogeneous boundary conditions. The
velocity basis functions are divergence-free. For more details and examples of
the basis functions, refer Gelfgat (2001).

Due to the orthogonality of the subspace of potential functions to the
subspace of divergence-free functions, projection of the residuals on the basis
eliminates the pressure from the Navier-Stokes equations. The resulting
dynamical system can be written in the form

dX i(t)

dt
= LijX j(t) + N ijkX j(t)X k(t) + F i (2)
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where the indices i, j and k vary from one to N + M and summation over
repeating indices is assumed. The matrices L, N and F contain projections of
all the linear, bilinear and source terms of the Navier-Stokes (or Boussinesq)
equations, respectively, and depend on all the characteristic parameters of a
given problem.

After calculation of the Galerkin projections is completed, the ODEs system
(2) becomes the main object of the computational procedure. Steady state
solutions of equation (2) are computed by the Newton iteration. The arc-length
continuation is applied where necessary.

The linear stability of the computed steady solution is de®ned by the
spectrum of the Jacobian matrix of the ODEs system (2): the solution is
unstable if at least one eigenvalue l with a positive real part exists. The critical
characteristic parameters correspond to the appearance of the ®rst eigenvalue
changing the sign of its real part from negative to positive. After the critical
value is computed, it is sometimes possible to approximate asymptotically
weak supercritical states. The corresponding algorithm for the Hopf
bifurcation (transition from steady to oscillatory state) can be found in
Gelfgat (2001) and Gelfgat et al. (1996a).

The method is validated by comparison with the published numerical and
experimental data, or with our own results obtained by the time-dependent
®nite volume code.

4. Results and discussion
4.1 Convection in a laterally heated cavity
Some typical results for problem 2.1 and for different Prandtl numbers and
aspect ratios are reported by Gelfgat (2001), Gelfgat and Bar-Yoseph (2001),
Gelfgat and Tanasawa (1994) and Gelfgat et al. (1997, 1999a, b). Convergence
studies and comparison with other independent computations for low Prandtl
number ¯uids were reported by Gelfgat et al. (1997, 1999a, b). It was shown that
the computation of the critical Grashof number up to the third or fourth decimal
digit is yielded by the use of 30 basis functions in the short dimension and 60
functions in the long dimension. As expected, the convergence rate for
convective ¯ows with larger Prandtl numbers can deteriorate signi®cantly in
cases where the resolution of thin thermal boundary layers is insuf®cient.

Here, we focus on the multiplicity of the steady ¯ow states which are found
in long horizontal cavities with the no-slip and thermally insulated horizontal
boundaries. As an example, we choose the case with Pr = 0 which means that
the effect of heat convection is neglected (and is also easier for interpretation).
Results for cases having non-zero Prandtl numbers can be found in Gelfgat et al.
(1997, 1999a, b).

Three distinct steady states computed for the same set of the characteristic
parameters are shown in Figure 9(a). These states were ®rst obtained by the
global Galerkin method and then were recalculated by the ®nite volume
method. Note that all the three states are stable.
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For the considered boundary conditions the ¯ow patterns are symmetric with
respect to the rotation of the cavity around its center, which is the consequence
of the symmetric boundary conditions (e.g. patterns shown in Figure 9(a). This
symmetry, however, can be broken through a steady pitchfork bifurcation
leading to the non-symmetric patterns. These are shown in Figure 9(b).
Therefore, we observe here

Figure 9.
Multiple steady states of
natural convection in
long horizontal cavities.
(a) three distinct steady
states at A = 7, Pr = 0,
Gr = 8.8 £104; and
(b) non-symmetric steady
states
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(1) distinct centrally symmetric patterns characterized by different number
of convective rolls (Figure 9(a)); and

(2) non-symmetric patterns branching from the symmetric ones
(Figure 9(b)).

Clearly, to describe which ¯ow patterns are physically reachable (i.e. exists and
stable) one has to investigate where a pattern exists and is it stable. This has to
be done separately for each pattern. The completed study is presented as a
stability diagram in Figure 10. Each symmetric pattern is stable below and
inside the corresponding neutral curve. The non-symmetric states are stable
inside the shaded regions. The regions where several stable steady states exist
simultaneously can be easily found in Figure 10. Furthermore, above the
critical curves oscillatory steady states with different number of oscillating
convective rolls exist. Therefore, the ®nal asymptotic state of the ¯ow depends
on the particular initial conditions. Based on that argument one can propose an
explanation for the experimental observations of Pratte and Hart (1990)
(See Gelfgat et al., 1999b). In Gelfgat et al. (1999a) we described how each steady
pattern can be reached numerically.

4.2 Rayleigh-BeÂnard instability in a rectangular box
Results for problem 2.2 are reported in Gelfgat (1999). The corresponding
convergence study showed that the critical Rayleigh number corresponding to
the primary Rayleigh-BeÂnard instability can be computed to within three to
four correct decimal digits already with the use of six basis functions in the
shorter dimension and 12 functions in the longer dimension. It was revealed

Figure 10.
Stability diagram for

Pr = 0 and 2 , A , 10
(Gelfgat et al., 1999a).

Symmetric ¯ow patterns
are stable below and

inside the corresponding
curves. Non-symmetric

patterns are stable in the
shaded regions
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that there are several different patterns of Rayleigh-BeÂnard rolls, which can be
distributed along the different horizontal directions, or to be of torus-like shape
with the ¯uid ascending near the boundaries and descending near the center.
An illustration is shown in Figure 11, where two most dangerous modes
replacing each other with the variation of the aspect ratio Ay are shown
(Gelfgat, 1999). The modes switch at Ay = 1.28.

At moderate supercriticalities, several Rayleigh-BeÂnard modes compete, so
that the ®nal asymptotic state depends on the particular initial conditions.
Seven distinct states were predicted numerically (Pallares et al., 1999) and
observed experimentally (Pallares et al., 2001) for a supercritical
Rayleigh-BeÂnard convection in a cubic cavity.

4.3 Convection in a cavity with partially heated sidewalls
The ¯ow in the symmetrically heated cavity is initially symmetric as shown in
Figure 3. The primary instability breaks the symmetry, which takes place via
steady pitchfork or Hopf bifurcation depending on the aspect ratio AL. The
supercritical steady states undergo a series of turning point bifurcations. There
are intervals of the Grashof number where the existence of several steady and
oscillatory states is possible. This is shown in Figure 12 for AL = 6.

To illustrate the developing non-symmetry ¯ow, we plot the difference of the
Nusselt numbers calculated at the heated parts of the left and right boundaries,
NuL and NuR, respectively, versus the Grashof number (Figure 12). With the
increase of the Grashof number up to Gr = 1.07 £105 (point S) the ¯ow
remains symmetric (between Gr = 0 and point S). The steady
symmetry-breaking bifurcation takes place at Gr = 1.07 £105 (point S). As a
result, a non-symmetric ¯ow pattern develops, which is indicated by a non-zero
difference of NuL 2 NuR. With a further increase in the Grashof number, the
non-symmetric ¯ow pattern continuously transforms into one, having the most
intensive vortex in the upper part of the cavity. These ¯ows remain stable
until the Hopf bifurcation (oscillatory instability) sets in at Gr = 4.69 £104

(point H). The stable branches of symmetric and non-symmetric steady states
are indicated by bold lines. At larger Grashof numbers, beyond the Hopf

Figure 11.
Streaklines of
perturbation of velocity
(Gelfgat, 1999). (a)
Ax = 4, Bi = 1, Ay = 1,
Racr = 2,645, and
(b) Ax = 4, Bi = 1,
Ay = 1.5, Racr = 2,043
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bifurcaton, all steady states are oscillatory unstable. However, following the
development of unstable steady states with the increase of Gr, one can ®nd a
rather complicated behavior for Gr . 1.2 £106 (Figure 12). Thus, the unstable
steady state branch undergoes three turning point bifurcations (at point T), so
that seven distinct steady states exist in the interval 1.17 £106 # Gr #
1.89 £106 and nine states in the interval 1.91 £106 # Gr # 1.95 £106. As
mentioned, all the steady states are oscillatory unstable. Thus, around each
unstable steady branch, a stable or unstable limit cycle exists, which means the
multiplicity of oscillatory ¯ow states.

4.4 Swirling ¯ow in a cylinder with independently rotating top and bottom
Linear stability analysis for an axisymmetric ¯ow in a cylinder with rotating top
and stationary bottom was reported for the ®rst time in Gelfgat et al. (1996a). In
that study, the dependence of the critical Reynolds number Recr on the aspect
ratio for axisymmetric perturbations was presented. In particular, it was shown
that the appearance and disappearance of the vortex breakdown are not
connected with the stability of the ¯ow, and that the instability onset is not
connected with the vortex breakdown phenomenon. A similar study for a
cylinder with independently rotating top and bottom was carried out by Gelfgat
et al. (1996b). In that work, changes in steady ¯ow patterns that occur with a
variation of the rotation ratio x, and the dependence Recr(x) for g = 1.5 were
presented. A stability diagram for x = 1 was reported by Gelfgat et al. (1996c).

An example of the change of the ¯ow pattern with the variation of the
rotation ratio x is shown in Figure 13. Following the above examples one may

Figure 12.
Bifurcation diagram for

AL = 6

Multiple
solutions and
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assume that the patterns corresponding to x = 0 and 1 belong to different
solution branches. However, from Figure 13 we see that, with the variation of x,
the ¯ow continuously transforms from one ¯ow state to another, and therefore
no multiplicity of solutions is observed. Similar changes of the ¯ow pattern can
be observed also for other aspect ratios (Gelfgat et al., 1996b). Does Figure 13
provide a counter example to the multiplicity of the convective ¯ow discussed
earlier? Not exactly, since the multiplicity of stable asymptotic states for this
swirling ¯ow is observed in the axisymmetric oscillatory regime (Lopez et al.,
2001a, b) beyond the steady-oscillatory transition studied by Gelfgat et al.
(1996a-c, 2001a).

A fully three-dimensional linear stability analysis was performed by Gelfgat
et al. (2001a) for x = 0. It was shown that the instability is three-dimensional
for g , 1.63 and g . 2.76 but remains axisymmetric in the interval 1.63 ,
g , 2.76. Here, we show a few examples obtained by Gelfgat et al. (1996a-c,
2001a) and compare the computed critical Reynolds numbers with those
reported later by other authors.

The possibility of having multiple three-dimensional oscillatory states
follows also from the results of our three-dimensional stability analysis. To
illustrate this, we show a fragment of the stability diagram for 2.5 , g , 3.5

Figure 13.
Cylinder with co-rotating
top and bottom:
streamlines of the
axisymmetric meridional
¯ow. Re = 1,000, g = 1.5
(the left vertical
boundary coincides with
the axis of symmetry)
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in Figure 14. Using the 2p -periodicity in the azimuthal direction y the
three-dimensional perturbation is approximated via the Fourier series
expansion, so that the linear stability problem separates for each kth Fourier
mode. The latter is expressed as A(r z)exp( iky + lt) (Gelfgat, 2001; Gelfgat
and Tanasawa, 1993; Gelfgat et al., 2001a). Multiple states can be expected in
the region of hysteresis, which is observed for 3.3 , g , 3.4 and k = 3. Also
for large supercriticalities, say for Re . 3 500 several unstable modes can
develop and interact, thus leading to multiple oscillatory supercritical states.
For example, such two distinct three-dimensional oscillatory states were
observed by Blackburn and Lopez (2000) for g = 2.5 and k = 5 and 6, while the
most unstable Fourier mode at this aspect ratio is axisymmetric. Multiple
three-dimensional oscillatory solutions were calculated also in the cylinder with
g = 1 and co-rotating top and bottom (x = 1) (Nore et al., 2003). Secondary
bifurcations caused by an interaction of different three-dimensional modes
were found in Blackburn and Lopez (2000), Lopez et al. (2002) and Nore et al.
(2003). To summarize, we conclude that beyond a certain supercritical value of
the Reynolds number, the considered swirling ¯ow exhibits a multiplicity of
axisymmetric and three-dimensional oscillatory states. As for the problems
described earlier, the ®nal asymptotic state depends on the particular initial
conditions.

Table I compares the critical Reynolds number calculated by our numerical
approach with several independent calculations. It is seen that our results,
obtained with 30 £30 to 40 £40 basis functions, can be reproduced on rather

Figure 14.
Fragment of the stability

diagram for swirling
¯ow in a cylinder with

rotating top. The 3D
perturbation is de®ned

as A(r, z)exp(ik y +lt)
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®ne grids with about 200 £200 nodes of ®nite difference discretization (Lopez
et al., 2001a; Nore et al., 2003). The feasibility of parametric stability analysis is
determined by a drastic reduction in the number of degrees of freedom
provided by the spectral method. A pseudospectral method, like the one used
by Marques and Lopez (2001) and Lopez et al. (2002) yields good accuracy with
fewer number of degrees of freedom (than the ®nite difference method), but
uses a pressure-correction procedure for time-marching and therefore does not
seem to be suitable for the stability analysis. This comparison validates our
stability results for the considered swirling ¯ow. It should be emphasized that
the low dimension of our approximation allows us to perform a parametric
study of stability. This does not seem feasible with other numerical techniques.

4.5 Swirling ¯ow enclosed in a cylinder and driven by a RMF
Here, we report on some preliminary results obtained during our ongoing
investigation. We consider the case when the Lorenz force is negligibly small
compared to the time-averaged RMF force. This corresponds to the limit
Re! ? ¥ . Three distinct patterns of steady ¯ows are shown in Figure 15. The
pattern shown in Figure 15(a) is stable while the other two are unstable. The
two symmetric patterns, shown in Figure 15(a) and (b), were already reported
by Grants and Gerbeth (2001). Our conclusion that the one shown in
Figure 15(a) is stable while the other one in Figure 15(b) is unstable is in
agreement with the results of Grants and Gerbeth (2001). The non-symmetric
steady pattern shown in Figure 15(c) is reported here for the ®rst time.
Obviously, the non-symmetric patterns develop via a symmetry-breaking
pitchfork bifurcation, so that there are two equivalent non-symmetric solutions.
Our preliminary results show that for Tam . 105 there are stable limit cycles
around the unstable steady states (Figures 15(a) and (b)). However, it is yet to
be checked whether these limit cycles are stable or unstable.

This problem is very attractive because it can be easily reproduced in
experiment, has no discontinuities in the boundary conditions (conversely to
problem 2.4) and has direct practical applications (stirring of liquid metal and

Parameters Critical Reynolds number Discretization, Nr £Nz

g:k Present Independent Present Independent

2.5:0 2,706 2,707 (Lopez et al., 2001b) 30 £30 140 £350 uniform grid,
®nite difference

1:2 2,471 2,473 (Nore et al., 2003) 40 £40 200 £200 uniform grid,
®nite difference

3:4 2,839 , 2,850 (Marques and Lopez, 2001) 40 £40 64 £64 Legendre
pseudospectral

3.5:3 2,132 , 2,150 (Marques and Lopez, 2001) 40 £40 64 £64 Legendre
pseudospectral

Table I.
Critical Reynolds
number for swirling
¯ow within a cylinder
with rotating top and
stationary bottom
(x = 0)
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control of liquid metal ¯ows) (Berelowitz and Bar-Yoseph, 1992; Dold and Benz,
1999). Study of axisymmetric stability of this ¯ow was initiated by Grants and
Gerbeth (2001). The three-dimensional stability analysis is yet to be carried out.
The combination of the RMF and convective effects can be considered as a
possible extension of this problem.

4.6 Two-¯uid Dean ¯ow in a cylindrical annulus
To solve this problem, it was necessary to extend our numerical technique to
include the boundary conditions on the liquid-liquid interface in the continuous
Galerkin basis. Besides this we proposed an extension which allows us to
account for small perturbations of the interface considering its capillary
properties. Details of these extensions and the main results are described by
Gelfgat et al. (2001c). It is emphasized that these extensions can be used also for
stability analysis of other two-¯uid con®gurations, such as two-layer
Rayleigh-BeÂnard (Fujimura and Renardy, 1995), Taylor-Couette (Renardy
and Joseph, 1985) or plane Couette (Li and Renardy, 1998) ¯ows.

The problem is 2p -periodic in the azimuthal direction, and has the
translational symmetry in the axial direction, and therefore the perturbation
can be expressed as A(r)exp(iky + iaz + lt) for an integer azimuthal
wavenumber k and a real axial wavenumber a. The marginal Dean number
value is de®ned by the equation Real[l(Dem )] = 0 for ®xed k and a. The
critical Dean number is the minimum of the marginal numbers over all possible
values of k and a.

Figure 15.
Streamlines of

meridional ¯ows (upper
frames) and isolines of

azimuthal velocity (lower
frames) for three multiple

states of the swirling
¯ow driven by a rotating

magnetic ®eld. g = 2,
Tam= 105, Re!= ¥

(Lorenz force effect is
neglected). The fourth

non-symmetric state can
be obtained by turning

over the pattern (c)
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stability

233



The convergence of the critical Dean number Decr differs for the single- and
two-¯uid cases. In the single-¯uid case, 30 basis functions in the r-direction
yield convergence up to ®ve correct decimal digits. In the two-¯uid case,
however, we needed 70 basis functions to obtain the third decimal digit
correctly, and 100 functions to converge for the fourth one.

It was shown by Gelfgat et al. (2001c) that the most dangerous perturbation
switches from axisymmetric (k = 0) to three-dimensional (k Þ 0) when the
relative depth of the inner layer b tends to zero or unity. This is shown in
Figure 16, where the dependencies Dem(k a) for b = 0.8 and 0.9 are shown.
At b = 0.8 the most critical mode is axisymmetric and the critical axial
wavenumber acr is approximately 8.6 (Figure 16(a)). Increasing b from 0.8 to
0.9 leads to a complete change in the perturbation pattern: the most
dangerous perturbation becomes three-dimensional with k = 7 and acr < 39
(Figure 16(b)). Note that in both cases shown in Figure 16, the marginal Dean
numbers corresponding to some other non-critical values of k are close to the
critical one. Again, this indicates the possibility of multiple axisymmetric and
three-dimensional solutions in a supercritical regime.

4.7 Three-dimensional instability of axisymmetric convection ¯ows
This problem was studied for convection of water (Pr , 10) in Gelfgat et al.
(1999c), and for convection of liquid metals and semiconductors (Pr , 102 2)
in Gelfgat et al. (2000). The effect of an axial magnetic ®eld on the
three-dimensional instability onset was examined by Gelfgat et al. (2001b).
The convergence of the critical Grashof number to within three decimal
digits is usually reached with the use of 30 £30 basis functions in the r-
and z-directions, respectively. Here, we present the stability diagram for a
cylinder with a parabolically heated lateral boundary and for Pr = 0.03
(Figure 17) to illustrate once more that at a certain supercriticality, say
Gr . 3 £105 several modes having different azimuthal symmetry, can
grow simultaneously leading to a multiplicity of the supercritical ¯ow
states.

4.8 3D Taylor-Couette ¯ow with an axial pressure gradient
An example of the computed multiple three-dimensional ¯ows is shown in
Figure 18. The problem corresponds to the experiment of Lueptow et al.
(1992). The ¯ow between the two cylinders, the outer cylinder is stationary
and the inner one rotates, with a superimposed axial through-¯ow, is
considered. The ®nite volume scheme with 32 £64 £32 uniformly
distributed grid points in the r, y, and z directions, respectively, is used
for computing the ¯ow ®eld. In the supercritical regime, the ¯ow approaches
different asymptotic states depending on a perturbation introduced at
the initial stage of the calculations (Figure 18). The numerical results are
in good agreement with the experimental observations of Lueptow et al.
(1992).
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Figure 16.
Two-¯uid Dean ¯ow:
stability diagrams for
r21= Z21= 1.1, ā = 10,
We = 100 (a) b̄ = 0.8,

and (b) b̄ = 0.9
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5. Concluding remarks
In the present review, interest lies mainly in the basic ¯uid phenomena, rather
than in the complexities of the different processes. It has been clearly shown
that despite the simplicity in the domain geometry and the assumption that the
¯ow remains laminar, complicated multiple ¯ow patterns are revealed in all
the cases that we experienced. The most typical bifurcations observed are the
turning point, Hopf and breaking of different ¯ow symmetries such as
re¯ectional, rotational or axial. The multiplicity of ¯ow states observed is
usually related with the breaking of symmetry and competition of different
¯ow driving mechanisms.

Further progress in material processing will depend on the realistic
large scale computational simulations because a very ®ne resolution is
needed to resolve the various temporal and three-dimensional spatial scales
involved in simulating the related unsteady ¯ow ®elds. Furthermore, a large
number of computations are required in parametric studies to explore the
solution dependence on the process characteristic parameters. Special
computational methods have to be developed to yield a reliable description
of the ¯ow behavior in such complicated processes. Such ¯ow
simulations which require extensive computer resources, pose many
challenges both in terms of parallel algorithm and processing. The
present global spectral Galerkin approach yields the correct pattern of the
¯ow with a relatively few number of degrees of freedom. The explicit form

Figure 17.
Stability diagram for
convection in a vertical
cylinder with
parabolically heated
sidewall (Gelfgat et al.,
2000). Pr = 0.03. 3D
perturbations de®ned as
A(r, z)exp(iky + lt)
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of the dynamical system (2) allows for a straightforward ef®cient
parallelization for massively parallel computer units. This gives an
attractive approach to perform stability and bifurcation analyses for
materials processing.

Figure 18.
Multiple states of

Taylor-Couette ¯ow with
axial through¯ow:

isolines of the radial
velocity at different

cross-sections. Ta = 130,
Re = 10, radii ratio is

0.848 (out of scale on the
graph), axial period is

two. The initial
perturbation is

proportional to (a) siny,
and (b) sin2y
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