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A two-fluid Taylor–Couette flow with a deformable interface separating two liquid layers is studied
numerically by a combination of the finite volume and level set methods. Effect of the interfacial
tension is accounted for. It is shown that if the layers are infinitely long, there exist stable steady
states with Taylor vortices of finite strength and finite deformations of the interface. On the other
hand, if the length of the layers is finite and no-slip conditions are imposed at the edges, the
liquid–liquid interface becomes unstable near the edges. Data from the literature and experimental
data acquired in the present work are used for comparison with the numerical predictions. A
qualitative agreement between the experimental and numerical observations of this instability is
obtained. The results are of potential importance for development of bioseparators employing Taylor
vortices for enhancement of mass transfer of a passive scalar(say, a protein) through the
interface. ©2004 American Institute of Physics. [DOI: 10.1063/1.1791171]

I. INTRODUCTION

The present study is focused on the numerical modeling
of deformations of a liquid–liquid interface in a two-fluid
Taylor–Couette apparatus. The study is motivated by recent
experiments,1,2 whose purpose was to build a novel
bioreactor/bioseparator using the Taylor vortices for en-
hancement of mass transfer through the liquid–liquid inter-
face. A possibility of such an enhancement was demonstrated
experimentally1,2 and theoretically.3,4 One of the main diffi-
culties in the establishing and sustaining the two-fluid
Taylor–Couette vortical flow reported in Refs. 1 and 2 was
related to the instability of the liquid–liquid interface occur-
ring near the edges of the rotating cylinders.

In the present study temporal development of a per-
turbed liquid–liquid interface in the Couette–Taylor appara-
tus is modeled using the finite volume method for calculation
of the flow and the level set method5 for tracking of the
deformable boundary between the layers. It is assumed that
the space between two independently rotating cylinders is
filled by two immiscible incompressible Newtonian fluids, so
that each fluid forms a cylindrical layer adjacent to one of the
cylinders (Fig. 1). Beyond the critical Reynolds number a
system of Taylor vortices develops in each of the layers.
Linear stability and emerging of the Taylor vortices in such a
system were studied for nondeformable6,7 and for
deformable8,9 liquid–liquid interfaces. The purpose of the
present study is calculation of a supercritical Taylor–Couette
flow with vortices in the two layers accounting for possible
deformations of the liquid–liquid interface. Interfacial ten-
sion is accounted for.

Regarding the bioseparator design mentioned above, we
are interested to find a set of parameters providing a stable
and steady Taylor–Couette flow, with rather intensive vorti-
ces and not very large deformations of the interface. Calcu-
lations of the time evolution of the flow and the interface
show that it, indeed, approaches the desirable structure when
the axially periodic boundary conditions are imposed. This
corresponds to the case of infinitely long cylindrical layers,
which does not fully represent the relevant experimental
setup.1

On the other hand, when the layers are finite and no-slip
conditions are applied at the edges, the time evolution of the
liquid–liquid interface does not approach any steady state.
The interface deforms strongly tending to reach one of the
cylindrical boundaries. Consideration of rather long, but fi-
nite, cylindrical layers shows that in the central part of the
system the interface behaves similarly to the infinite layer
case. However, it exhibits an unstable behavior near the
edges. This interfacial instability as well as an enlargement
of the Taylor vortices near the edges agree qualitatively with
the experimental observations.1,2 A large number of the gov-
erning parameters of the flow does not allow us to perform a
detailed parametric investigation of this instability. Based on
the examples considered, it is concluded that the liquid–
liquid interface is unstable in Taylor–Couette apparatuses of
finite length, which makes it difficult to perform protein
separation for a sufficiently long time.

The problem is posed in Sec. II, where the numerical
technique is also discussed. The numerical results are dis-
cussed and compared to the data found in literature in Sec.
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III A. In Sec. III B the experiments conducted in the present
work are described and the data obtained are compared with
the calculations. Conclusions are derived in Sec. IV.

II. FORMULATION OF THE PROBLEM AND
NUMERICAL TECHNIQUE

Consider a two-layer Taylor–Couette system shown
schematically in Fig. 1. The inner and outer fluid layers are
attached to the corresponding cylinders which can rotate in-
dependently with angular velocitiesV1 andV2, respectively.
Both fluids are Newtonian and isothermal. The interface
separating the two fluids is assumed to be deformable with
the capillary force acting on it. Following the two-fluid
model defined in Refs. 1, 10, and 11, the flow in both layers
is described by the momentum equation with the volumetric
representation of the capillary force,12

rF ]v

]t
+ sv · = dvG = − = p + = · s2mDd + gkdsfdn,

s1d

and the continuity equation

= ·v = 0. s2d

Herev=su,v ,wd is the flow velocity,p is the pressure,r is
the density,m is the dynamic viscosity,D is the rate-of-strain
tensor,g is the surface tension coefficient,k=s= ·nd is the
curvature of the liquid–liquid interface,d is the Dirac delta
function, andd= ufu andn are the normal distances reckoned
from the deformed interface and the unit outward normal to
the liquid–liquid interface. The density and viscosity are
equal tor1 andm1 in liquid 1 andr2 andm2 in liquid 2. The
three components of velocity and the pressure are assumed to
be axisymmetric. The centrifugal acceleration, which can be
estimated asV2R, reaches at the experimental values ofV
=10 rpm=62.8 1/s andR=10 cm the value of 394.4 m/s2,
which is much larger than the gravity acceleration

9.81 m/s2. Therefore the gravity effect is neglected.
The interface is defined by the position of zero level of

the level set functionf. This function is defined as the
signed distance to the liquid–liquid interface, namely,

f = 5− d, in liquid 1

0, on the interface

d, in liquid 2
6 . s3d

The curvature and the unit normal are derived from Eq.(3)
as5

n = = f/u = fu, k = = ·n. s4d

At each time moment the level set function is obtained as a
solution of the equation

]f

]t
+ sv · = df = 0, s5d

so that the zero level off moves together with the liquid–
liquid interface.5

The length, time, velocity, and pressure in Eqs.(1) and
(2) are rendered dimensionless byl =R2−R1, l /R1V1, V1R1,
and sV1R1d2r1, respectively. After the nondimesionalization
Eq. (1) reads

rF ]v

]t
+ sv · = dvG = − = p +

1

Re
= s2mDd

+ We−1dsfd
=f

u = fu
= ·S =f

u = fuD ,

s6d

where Re=V1R1lr1/m1 is the Reynolds number and We−1

=g / slV1
2R1

2r1d is the reciprocal Weber number. The dimen-
sionless density and viscosity in(6) are defined as

r = r21Hsfd + f1 − Hsfdg, s7d

m = m21Hsfd + f1 − Hsfdg, s8d

where Hsfd is the step Heaviside function andr21=r2/r1

andm21=m2/m1 are the density and dynamic viscosity ratios,
respectively.

The problem is considered in the domainR1/ l ø r
øR2/ l, 0øzøA, A=Z/ l (see Fig. 1) with no-slip boundary
conditions atr =R1/ l and r =R2/ l:

r = R1/l: u = w = 0, v = 1, s9d

r = R2/l: u = w = 0, v = V21R21, s10d

where V21=V2/V1 and R21=1/R12=R2/R1 are the angular
velocities and the radii ratios, respectively. On the bound-
ariesz=0 andz=A we consider either periodicity conditions

vsz= 0d = vsz= Ad, psz= 0d = psz= Ad, s11d

or no-slip conditions

z= 0 andz= A: u = w = 0, v = Vzrl /R1, s12d

whereVz=1 (the boundaries rotate with the inner cylinder)
or Vz=V21 (the boundaries rotate with the outer cylinder).

FIG. 1. Sketch of the problem.
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The numerical implementation of Eqs.(6)–(8) requires a
smoothing of thed and Heaviside functions in the vicinity of
the liquid–liquid interface(i.e., in the vicinity of the zero
level set). These functions are smoothed as proposed in Ref.
13,

d«sxd = 5 1

2«
F1 + cosSpx

«
DG if uxu , «,

0, otherwise,
6 s13d

H«sxd =5
0 if x , − «,

x + «

2«
+

1

2p
sinSpx

«
D if uxu ø «,

1 if x . «,
6 s14d

where«!1.
The problem is solved numerically using the finite vol-

ume discretization of Eq.(6) on the staggered and uniform
grid. The small parameter« in Eqs.(13) and(14) was taken
in Ref. 11 to be 2.5 times the mesh size. Since in the present
case the number of grid nodes can change inr andz direc-
tions independently, we define«=2Îhr

2+hz
2 which yields a

close value of 2.83hr for equal mesh sizeshr =hz in radial
and axial directions. Solution of Eqs.(2) and (6) is carried
out using the semi-implicit method for pressure-linked equa-
tions (SIMPLE) algorithm14 for time integration. Equation
(5) is discretized in space using the second-order essentially
non-oscillatory(ENO) scheme.11 Each time step of Eq.(5)
requires a reinitialization procedure forf to restore its prop-
erty of the signed distance for the liquid–liquid interface. We
use the same reinitialization procedure as in Refs. 10, 11, and
15, which requires numerical integration of the problem

]f

]t
+ sgnsf0dsu ¹ fu − 1d = 0, fst = 0d = f0, s15d

up to the convergence. Heref0 is the level set function ob-
tained after a single time step integration of Eq.(5) and
sgnsxd=2Hsxd−1 is the signum function. Equation(15) is
discretized in space using the third-order ENO scheme.16 The
time integration of Eq.(15) is followed by the volume-
correction procedure proposed in Ref. 17. With these proce-
dures we observe that the deviation of the volume remains
within 1%. For a better efficiency the convergence of Eq.
(15) is required within a tube whose boundaries are located
at approximately 10 mesh layers from the curvef0=0.18 The
calculations always started from the perturbed Couette flow.
An initial perturbation proposed in Ref. 19, which allows for
triggering the onset of Taylor vortices, was extended to the
two-layer case. The liquid–liquid interface was also per-
turbed using a 2p /Z-periodic cosine function multiplied by a
small amplitude. The time step was calculated as in Ref. 10.
An example of the convergence study is described in the
Appendix.

III. RESULTS

A. Numerical modeling

To estimate the reciprocal Weber number We−1 we refer
to the recent experiment,1 from which we take roughlyR1

,0.05 m, l ,0.005 m, V1,10 Hz, and r1,800 kg m−3.
The surface tension between the two liquid phases usually is
not known. We estimate it to beg,10−2 N m−1, of the order
of the surface tension at water–air interface. This yields the
value We−1<0.01, which was used in the calculations de-
scribed below. The density and viscosity ratios were chosen
asr12=1.4 andh12=0.96, respectively, which correspond to
one of the experiments in Ref. 1.

The first series of the calculations was performed for the
axially periodic boundary conditions(11) for the pressure
and velocity field. Periodicity conditions are also imposed on
the level set functionf. A wide-gap case withR12=0.5 and
A=2 was considered as a primary example, not directly re-
lated to the experiments described below. The result is shown
in Fig. 2. This case was chosen because the Taylor vortices in
this case appear at relatively small Reynolds number, Re
<100. To allow for a significant strength of the vortices
larger Reynolds numbers, Re=300 or 500, were used in the
calculations. The flow withV21=0 and prescribed nonde-
formable liquid–liquid interface was calculated first. Then
the interface was perturbed(with the amplitude of 1% of its

FIG. 2. Streamlines(the left frames) and position of the interface(the right
frames) of steady flows calculated for axially periodic boundary conditions.
A wide gapR12=0.5, A=2, We−1=0.01, Re=500,(a) V21=0, (b) V21=0.1,
(c) V21=0.2.
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radius) and straightforward integration in time was carried
out until the flow reached the steady state shown in Fig. 2(a)
for V21=0. The next result forV21=0.1 [Fig. 2(b)] was cal-
culated using the previous result as an initial guess. In the

same way the result forV21=0.2 [Fig. 2(c)] was obtained
starting from the steady state atV21=0.1. Figure 2 shows
that corotation of the cylinders smoothens the liquid–liquid
interface if the periodic boundary conditions are imposed.
All the calculations were carried out on the 503100 uniform
grid.

Calculations for a narrow gapR12=0.827, corresponding
to the experiment,1 show a similar behavior of the interface
(Fig. 3). Here the deformations of the interface are smaller
because of the narrower gap and larger Reynolds number,
both of which lead to larger pressure gradients on both sides
of the interface. The interface is almost straight at the experi-
mental value of the rotation ratio1 V21=0.62, which agrees
with the experimental observations at short times. This series
of calculations was performed on the 1003100 uniform
grid.

When the no-slip boundary conditions(12) are applied,
the boundary conditions atz=0,A for the level set function

FIG. 3. Streamlines(the left frames) and position of the interface(the right
frames) of steady flows calculated for axially periodic boundary conditions.
Narrow gapR12=0.827, A=1, We−1=0.01, Re=4490.(a) V21=−0.2, (b)
V21=0.2, (c) V21=0.62.

FIG. 4. Position of the liquid–liquid interface at several successive time
moments. Calculation for motionless ends of the interface.R12=0.5, A=2,
We−1=0.01, Re=300,V21=0. Calculations started from a developed
Taylor–Couette vortical flow and undeformed interface.

FIG. 5. Position of the liquid–liquid interface at several successive time moments. Calculation with the contact angle of 90°.R12=0.5, A=2, We−1=0.01,
Re=300. Upper frames:V21=0, lower frames:V21=0.5.
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are not obvious. In the case of axisymmetric interface the
formal extension of Eq.(5) to the boundaries yields

]f

]t
= 0 atz= 0,A, s16d

which means that the “ends” of the interface are motionless.
An example of the calculations with these boundary condi-
tions is shown in Fig. 4. The calculations started from a
developed Taylor–Couette vortical flow at Re=300 and an
undeformable interface. After the interface was slightly per-
turbed, its evolution(see Fig. 4) led to strong deformations
until the interface reached the middle of the outer boundary.

The boundary conditions(16) contradict the usually im-
posed conditions of a static or dynamic contact angle(the
latter is a function of the velocity of the contact line). The
conditions for the contact angle would define the spatial de-
rivatives of the level set function rather than its temporal
derivative in Eq.(16). Moreover, since the wettability effects
in the present case are expected to be much weaker than the
bulk flow, the influence of a certain value of the dynamic
contact angle on the general flow structure is expected to be
negligible.20–22 Since wettability of the experimental liquids
at the container top/bottom is unknown, an arbitrary contact

angle of 90° was used in further calculations. This leads to
the Neumann-type boundary condition for the level set func-
tion, namely,

]f

]z
= 0 atz= 0,A, s17d

and allows calculation from an unperturbed interface state.
Calculations with this boundary also do not reach a steady
position of the interface. This is depicted in Fig. 5, which
was obtained for the caseVz= l /R21, i.e., the upper and lower
boundaries moving together with the outer cylinder. A simi-
lar result was also obtained when these boundaries moved
together with the inner cylinder,Vz=1. Note that in this case
the corotation did not stabilize or smooth the interface, as it
was observed for the periodic boundary conditions(Figs. 2
and 3). Moreover, corotation even enhanced the interface
deformation.

A series of calculations for different values of the rota-
tion, density, and viscosity ratios were carried out to find a
case for which the liquid–liquid interface would approach a
stable steady state with no-slip boundary conditions atz
=0,A. However, in all the cases considered the interface de-
formed and reached one of the cylindrical boundaries. Figure
6 illustrates the case ofr12=h12=1, for which the longest

FIG. 6. Position of the liquid–liquid interface at several
successive time moments. Calculation with the contact
angle of 90°. R12=0.5, A=2, We−1=0.01, Re=500,
V21=0.1, r12=h12=1.

FIG. 7. Streamlines(the upper frames) and position of the liquid–liquid
interface(the lower frames) at several sequential time moments.R12=0.5,
A=10, We−1=0.01, Re=500,V21=0.

FIG. 8. Streamlines(the upper frames) and position of the liquid–liquid
interface(the lower frames) at several sequential time moments.R12=0.5,
A=10, We−1=0.01, Re=500,V21=0.2.
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time to observe a visible instability of the interface is re-
quired. Such a long time necessary for development of the
instability is probably explained by the absence of the jumps
of pressure and viscous stresses over the interface. It is also
seen that in spite of the fact that the level set function at the
boundary nodes atz=0,A is equal to its values at the neigh-
boring nodes, which is the numerical representation of Eq.
(17), the flow tends to distort the 90° contact angle. This
probably manifests the fact that the boundary conditions im-
plying dynamic contact angle could be needed.

To verify that the observed instability of the liquid–
liquid interface is caused by the end effects, a longer flow
region with A=10 was considered. The calculations were
carried out on the 503200 uniform grid. The boundaries at
z=0,A rotated together with the outer cylinder. The results
corresponding to two different rotation ratios are shown in
Figs. 7 and 8. In both cases we observe a regular vortical
structure and regular oscillations of the interface in the cen-
tral part of the cylindrical layer. At the same time larger
vortices and large deformations of the interface develop near
the no-slip ends atz=0,A. This indicates that the instability
of the interface sets in near the no-slip boundaries. A similar
result was obtained when the reciprocal Weber number was
increased to 0.1, i.e., the interfacial tension was increased.
Note that the corotation of the cylinders smoothes the inter-
face (cf. Figs. 7 and 8) similarly to what has been observed
for shorter domains with the periodic boundary conditions
(Figs. 2 and 3). Note also that the development of larger
vortices and large deformations of the interface near the no-
slip ends were also observed in the experiments.1,2 There-
fore, in spite of the unknown dynamic contact angle in the

experiments, a qualitatively similar behavior of the liquid–
liquid interface near the no-slip edges was predicted theoreti-
cally with the contact angle of 90°.

B. Comparison with experiment

Important experiments with the model two-fluid Taylor–
Couette bioseparator1 were conducted in the present work to
acquire more data for comparison with the present calcula-
tions. The experimental setup has the following parameters:
the lengths of the cylinders are 28 cm, the diameters of the
inner and the outer cylinders are 9.06 cm and 10.098 cm,
respectively, the rotation of the inner cylinder is at 10 rps,
the rotation of the outer cylinder varies between 5 and
10 rps, the dynamic viscosities and densities of the inner
s50% drakeol+50% isopard and outer s60% glycerol
+40% waterd fluids are 7.83 cP, 820 kg m−3 and 7.56 cP,
1150 kg m−3, respectively. This results in the following val-
ues of the dimensionless parameters: the radii ratioR12

=0.8972, the aspect ratioA=Z/ l =54, the Reynolds number
Re<1550, and the rotation ratio varying fromV21=0.5 to
V21=0.8. The no-slip end boundaries rotate together with the
outer cylinder. The interfacial tension between the fluids is
estimated as 0.05 N/m, which yields the inverse Weber

TABLE I. The distance between the deformed interface and the spacer at the midsurface compared with the
experimental measurements.

Vout/Vin

Distance between the end
region close to the left spacer

in centimeter at timet

Distance between the end
region close to the right

spacer in centimeter at timet

Experimentally
measured

position of the
edge of the end

vortex (cm)t=5 s t=10 s t=5 s t=10 s

0.5 0.72 1.13 0.61 1.15 1.15

0.6 0.26 1.18 0.36 1.70 1.08

0.7 0.24 0.78 0.24 0.78 0.88

0.8 0.35 0.63 0.35 0.63 0.35

FIG. 9. Sketch of the end region of the experimental setup.

FIG. 10. (a) Streamlines(the radial coordinate is stretched 45 times). (b)
Interface configuration at two sequential time moments(the radial coordi-
nate is stretched in 120 times). R12=0.897, A=27, We−1=1.5310−3, Re
=1550,V21=0.5.
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number We−1<0.0015. To reduce the computational costs
and assuming that the end effects are already clearly seen at
the aspect ratio 10(cf. Figs. 7 and 8), the calculations were
performed at the half of the actual aspect ratioA=27. The
calculations were done on the uniform grid with 100 and
1000 nodes in ther andz directions, respectively.

The experimental observations of the interface deforma-
tions were done in the following way. Consider the sche-
matic of the end region of the experimental setup shown in
Fig. 9. It turned out that a weak emulsion was present there
at all the outer cylinder rotation rates considered here(except
rigid rotation). We took the edge of the region containing
emulsion to demarcate the boundary of the end vortex. The
computations presented here predict that the interface would
actually move down into the narrow gap between the end of
the device and the end of the inner cylinder, providing the
likely explanation for the origin of the emulsion. The emul-
sion probably arose from interfacial instability of the two-
layer flow due to the very high shear rate in this narrow gap.

An example of the calculated flow is shown in Fig. 10(a)
and the interface positions att=2 and 5 are depicted in Fig.
10(b). The boundary conditions(17) for the level set function
were imposed. Note that to make the Taylor vortices and the
surface deformation visible the radial coordinate is stretched
45 times in Fig. 10(a) and in 120 times in Fig. 10(b). Note

that the dimensionless radial coordinate changes in the inter-
val 8.7276<R12/ s1−R12dø r ø1/s1−R12d<9.7276, so that
the midsurface is located atr <9.2276. It is seen that the
liquid–liquid interface exhibits the largest deformations near
the no-slip end boundaries, which grow in time until the
numerical process becomes unstable. Such a behavior of the
interface is characteristic of all rotation ratios in the interval
0.5øV21ø0.8. ForV21ù0.9 the Taylor vortices do not de-
velop; therefore these cases were not modeled.

To compare the deformation of the interface near the
no-slip boundaries with the experimental observations we
estimated the length between these boundaries(the spacers)
and the cross sections where regular wiggles of the interface
begin. The length was reckoned along the position of the
initially undeformed interface. The points used to measure
the distance are denoted in Fig. 10(b) by arrows.

Since the numerically estimated length of the end vorti-
ces as well as the experimentally measured one are time
dependent, only a qualitative comparison of the results is
possible. Note also that single fluid Taylor–Couette flows
between long but finite cylinders exhibit multiplicity of pos-
sible steady states.23,24The multiplicity can be expected also
in the present two-fluid case. It was found, for example, that
at V21=0.5 and 0.6 the flow pattern becomes asymmetric
with respect to the axial midplane. This means that a sym-
metry breaking pitchfork bifurcations takes place somewhere
in the interval 0.6,V21,0.7, and there are already two pos-
sible steady states at least.

Comparison of the experimental data with the numerical
results in Table I shows that for 0.5,V21,0.7 the experi-
mentally measured position of the edge of the end vortex
corresponds to the location between the third and the fourth
end vortices(the third vortex boundary). The caseV21=0.8
is different because at this rotation ratio the Taylor vortex
structure is not developed yet and only one pair of vortices
exists near the end boundaries. A closer look at the evolution
of the liquid–liquid interface shows that att=10 the points
corresponding to the beginning of the regular interface oscil-
lations (wiggles) are located rather close to the experimen-
tally observed points[see points indicated by arrows in Fig.
10(b)]. This location remains almost unchanged for a rather
long time. Thus fort.5 (which corresponds to<15 s) we
observed a rapid growth of the interface deformations near
the ends, while deformations at the central part remained
almost unchanged.

The calculations were repeated for the conditions of
experiments6 where the inner part of the end boundary ro-

TABLE II. Convergence of the maximal values of stream function.

Grid
Nr 3Nz

Without interface deformation With interface deformation

cmax
inner cmax

outer cmax
inner cmax

outer

30360 0.0307 0.0272 0.0305 0.0299

503100 0.0297 0.0281 0.0296 0.0280

753150 0.0299 0.0279 0.0295 0.0282

1003200 0.0298 0.0280 0.0295 0.0281

FIG. 11. (a) Streamlines.(b) Interface configuration at two sequential time
moments for the boundary conditions(18). R12=0.897,A=27, We−1=1.5
310−3, Re=1550,V21=0.5.
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tated with the inner cylinder and the outer part rotated with
the outer one. Thus, instead of(12) we define

z= 0 andz= A: u = w = 0,

v =5rl /R1, r ø
R1

l
+

1

2
,

V21rl /R1, r .
R1

l
+

1

2
.6 s18d

The contact line was permitted to move, while the contact
angle was fixed at 90°. In this case also the liquid–liquid
interface exhibits a behavior similar to that of Fig. 10, which
is illustrated in Fig. 11 forV21=0.5.

IV. CONCLUSION

It is shown that steady two-fluid Taylor–Couette flow
with a deformable capillary liquid–liquid interface can be
obtained only in an idealized case of an infinitely long
Taylor–Couette apparatus. In the finite length apparatus the
interface is found to be unstable near the no-slip edges of the
system. It is impossible to conclude that the instability ob-
served retains for all values of the governing parameters,
since too many of them are involved. However, the instabil-
ity was found for all the cases considered. A qualitative
agreement between the experimental and numerical results
on the instability development was obtained. The instability
found is indicative of the extreme difficulties in designing
bioseparators/bioreactors based on enhancement of mass
transfer by means of the Taylor vortices.
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APPENDIX: AN EXAMPLE OF THE CONVERGENCE
STUDY

The convergence of the numerical procedure is illus-
trated in the case shown in Fig. 2(a). Table II illustrates the
convergence of the maximal values of the stream function in
the inner and outer liquids. Calculations with and without
deformation of the interface are reported. It is seen that the
accounting for the interface deformation does not affect the
convergence of the flow approximation.

The steady position of the interface calculated with dif-
ferent total number of grid points is shown in Fig. 12. Start-
ing from the mesh with 50 and 100 nodes in the radial and
the axial directions, respectively, the calculated interfaces are
very close. To illustrate the existing differences the radial
coordinate in Fig. 12 was zoomed in 10 times.
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