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Abstract 
      A recent numerical approach for the study of 
three-dimensional instabilities of axisymmetric melt 
flows in Czochralski crucible is described. The 
convergence studies and comparisons with previously 
published experimental and numerical data are 
reported. Convergence requirements are estimated. 
Basing on a certain experimental configuration we 
give an example of the stability diagram which shows 
how the critical temperature difference varies with the
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crystal rotation. We show also that the critical temperature difference can be 
significantly increased by a weak rotation of the crucible and report the 
corresponding stability diagrams.   
 
1. Introduction 
 Since the early works of D.T.J Hurle [1-3] it was argued that formation of 
defects and inhomogeneities in the bulk crystals grown from melt is caused by 
instabilities of melt flow. The early evidence of connection between the melt 
flow instabilities and crystal defects was reported in [1-6]. Nowadays this 
connection became a common knowledge (see, e.g., [7-12]). The melt flow and 
its instabilities are driven by the buoyancy forces, by thermocapillary and 
concentration-capillary forces caused by the dependence of surface tension on 
temperature and concentration, and by rotation of crystal and possibly of other 
parts of a bulk crystal growth setup. Since melt flows are always bounded by 
crucible walls, capillary surfaces and the crystal itself, their instabilities usually 
differ qualitatively from the instabilities in infinite domains, e.g., infinite 
convective layers, unbounded shear flows or Taylor-Couette configuration. 
The recognition of this fact motivated a large number of works that studied 
stability of simplified model flows in confined domains. These studies, which 
are reviewed in [13-15], considered, as a rule, the action of only one of flow 
driving mechanisms. Nevertheless, they lead to the understanding of many 
important facts, such as an existence of multiple steady and unsteady states and 
non-monotonic, non-trivial behavior of flow stability properties. At the same 
time these studies did not yield a quantitative measure of instability in 
practically important crystal growth processes, where the whole process and 
the melt flow in particular are much more complicated.  
 In this paper we describe a possible way to arrive to some quantitative 
results on stability of melt flow taking into account all possible driving 
mechanisms. We focus on melt flow in a model of Czochralski crystal growth 
setup. The choice of the Czochralski setup is motivated by its most intensive 
use in the manufacturing of bulk monocrystal [16,17], as well as by its relative 
complexity with respect to other bulk crystal growth techniques, e.g., floating 
zone and Bridgman growth. The description of the Czochralski crystal growth 
technique can be found in [18]. Within the Czochralski model considered here 
we incorporate the combined action of the buoyancy, thermocapillary, 
centrifugal and Coriolis forces, and allow for an arbitrary heating of the 
crucible walls and bottom and for an arbitrary cooling of the melt interface. In 
this paper we shortly review the experimental evidence of different instabilities 
in the Czochralski melt flow and the corresponding model experimental 
studies. We discuss also existing computational approaches being used to 
model and study these instabilities numerically. Then we describe some recent 
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achievements of our research group in the developing of numerical approach to 
three-dimensional stability analysis of Czochralski melt flow, describe some 
recent results and define the target problems for possible future research. 
 Experimental studies of instabilities in the Czochralski melt flow can be 
carried out either by measuring the temperature [19-40],  or velocity [38] 
oscillations at some fixed points into the melt or by visualization of the melt 
flow either on its free surface [34,41-48], or inside the container using 
transparent liquid and crucible for a model experiment [30,33,51,52]. When 
the melt is not transparent the visualization data can be achieved by X-ray 
radiography [53-62] or by arrays of thermocouples [63,64] and conductive 
anemometer probes [64]. Most of the cited works studied the supercritical 
regimes of melt flow and did not focus on the question under which conditions 
the axisymmetric steady flow turns into three-dimensional or oscillatory. 
Attempts to study this transition and to measure the critical values of 
parameters were made in [19,31-33] and other studies. Unfortunately, in most 
of such studies the thermal boundary conditions are not definite enough to 
reproduce them in a computational code. For example, our attempts to 
reproduce results of [32] failed because we were not able to fit thermal 
boundary condition at the melt surface to conditions of the experiment. 
 Early numerical studies of instabilities, as well as some of the recent ones, 
consider transition from steady to oscillatory flow regimes in the axisymmetric 
flow configurations [28,65-75]. All these studies did not account for possible 
three-dimensional instabilities and therefore did not yield the complete 
answers on the stability limits and possible flow transitions. Besides that all 
these studies are performed on rather coarse grids with less than 100 nodes in 
one spatial direction, which is rather unexpected for the studies that appeared 
during last years. The necessary grid resolution will be discussed below. Since 
most of experimental flow visualizations observe three-dimensional flow 
patterns the comprehensive numerical analysis should be three-dimensional, 
which is really the case for most of numerical studies [76-120].  The numerical 
studies are even more restricted to a coarse grid resolution, however some of 
them, e.g.,  [107], approach an order of 100 nodes in each spatial direction.  
 Obviously, accurate fully three-dimensional computations do provide 
feasible results, however they are extremely CPU-time consuming even when 
the most powerful computers are used. In many cases computer restrictions do 
not allow one to perform three-dimensional computations to within the 
numerical accuracy needed for correct resolution of all kinds of possible flow 
perturbations. These restrictions can be partially removed in cases when the 
primary instabilities of initially axisymmetric flows are studied. A big part of 
bulk crystal growth setups including the Czochralski setup are built to support 
axisymmetric conditions and considerable efforts are applied to keep the 
axisymmetric states stable. This leads to a problem of accurate computation of 
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a primary instability of an axisymmetric steady state of a process. Possible 
instabilities must be studied as functions of governing parameters of the 
process to enable search for most stable conditions and possible means of 
stability control. From a formal mathematical view point this problem needs a 
calculation of an axisymmetric steady state of a process followed by the 
computation of the spectrum of the governing equations linearized in the 
vicinity of the steady state. To be realized numerically this approach needs a 
fast solver for calculation of steady state base flows and an effective 
eigensolver to approach the linear stability problem. This task seemed 
impossible for many years and started to be attacked only recently [121-124].  
 The stability solver of this king is being developed in our laboratory. It has 
been validated via a series of benchmark problems [125-127] and is being 
applied now to a model corresponding to the melt flow in Czochralski crucible. 
In the following we describe our numerical approach and some test 
calculations that allow us to validate the code and to study the convergence of 
critical parameters with mesh refinement. Then we report several examples of 
parametric stability studies based on the configuration of recently published 
experimental study [35]. It is emphasized that according to our recent 
understanding of instabilities observed in simpler model flows (see [13-15] and 
references therein) the flow stability strongly depends on fluid properties and 
geometry of the flow region. Therefore, an attempt to study of stability of melt 
flow in the Czochralski configuration for a general case would be meaningless 
since it is not possible to account for all possible variations of the setup and 
different physical properties of materials. To perform a meaningful study we 
always need to connect our numerical model to some published experimental 
configuration. A successful comparison with an experiment, as it is done 
below for the experiment of [19], yields a necessary validation of the recent 
code, which is essential for its further development and extension. 
 
2. Formulation of the problem 
 The model of the Czochralski melt flow is sketched in Fig.1. The flow is 
located in a cylindrical crucible, which can be heated or cooled arbitrarily by 
posing a constant temperature, constant heat flux, convective cooling or 
radiative heating/cooling conditions at its bottom and sidewall. The bottom and 
the sidewall are no-slip. The crystal is modeled by a no-slip isothermal surface. 
The crystal and the crucible can rotate around their common axis in any 
direction with independent angular velocities. The melt surface located 
between the crucible wall and the crystal is assumed to be flat and subjected to 
the action of the thermocapillary force. It can be cooled by external convection 
or by radiation. Clearly, this is a simplified model, which does not account for 
many important phenomena, however allows us to study the main features of  
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                               Figure 1. Sketch of the model problem.                                                        

 
the instability of melt flow driven by buoyancy convection, thermocapillary 
convection and rotation. In particular, the considered model corresponds to the 
experimental configurations of [31-33,35,36].   
 The problem is formulated for a Boussinesq fluid with kinematic viscosity 
ν, density ρ and thermal diffusivity χ in the region crucibleRr ≤≤0 , Hz ≤≤0 . The 
flow is described by the momentum, continuity and energy equations in 
cylindrical coordinates. To render the equations dimensionless we use the 
scales crucibleR , ν2

crucibleR , crucibleRν , ( )2
crucibleRνρ  for length, time, velocity and 

pressure respectively. The temperature is rendered dimensionless by the 
relation ( ) ( )*

cold
*
hot

*
cold

* TT/TTT −−= , where *
hotT  and *

coldT  are the maximal and 
minimal temperatures at the boundaries of the flow region. The set of 
Boussinesq equations for the non-dimensional velocity { }zr ,, vvv θ=v ,  
temperature Τ  and pressure p  in the domain 0≤ r ≤ 1, 0 ≤ z ≤  A reads 
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Here A=H/Rcrucible is the aspect ratio of the crucible, ( ) 23 ν−β= crucible

*
cold

*
hot RTTgGr  the 

Grashof number, Pr = ν / χ the Prandtl number, g the gravity acceleration, β 
the thermal expansion coefficient, and ez the unit vector in the z-direction. The 
velocity boundary conditions are 
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vr = vz = 0 at   z = 0,  r = 1 and z = A,  cruciblecrystal RR,r =ηη≤≤0 ,                    (4) 
 

vθ = Recrucible r    at z = 0,    vθ = Recrucible   at r = 1,            (5)    
 
vθ = Recrystal r    at and   z = A,  η≤≤ r0 ,             (6)    
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Here ( ) ρνχ−γ= crucible

*
cold

*
hot RTTMa  is the Marangoni number, 

νΩ= 2
cruciblecrystalcrystal RRe , νΩ= 2

cruciblecruciblecrucible RRe  are the crystal and crucible 
rotation Reynolds numbers, and γ is the coefficient of the assumed linear 
dependence of the surface tension coefficient on the temperature. The temperature 
boundary conditions will be specified below, separately for each problem. 
 

3. Numerical approach 
 Since we are interested in the stability of steady and axisymmetric basic 
state ( ) ( ) ( ){ }z,rW,z,rV,z,rU=V , T(r,z) and P(r,z) its calculation is discussed first. 
Assuming the rectangular staggered finite volume grid we define the scalar 
variables Τ and P, the azimuthal velocity component V and the divergence of 
velocity V⋅∇  at the nodes with integer indices [ri,zj]. The mesh values of the radial 
and axial velocity components U and W are defined at the points [ri+1/2,zj] and 
[ri,zj+1/2], respectively, where ( ) 2121 ++ += iii rrr  and ( ) 2121 ++ += jjj zzz . Denoting by 
square brackets with subscripts [•]i,j approximation of a term in a grid node, the 
resulting system of steady equations reads 
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 The indices i and j vary from 1 to Nr and Nz, respectively. To obtain the 
base steady axisymmetric flow the equations (8) are solved using the Jacobian-
full Newton iteration. The Jacobian matrix is evaluated analytically. The 
computations proceed as in [125,127] using the MUMPS solver at each 
iteration to calculate the solution of the corresponding system of linear 
algebraic equations. Note that all equations (8) are solved simultaneously 
without any pressure-velocity decoupling. The finite volume approximations 
of the continuity equation (8.4) are used as equations defining the pressure.  
 We consider infinitesimally small three-dimensional perturbations, which 
are decomposed in Fourier series in the azimuthal direction. The k-th Fourier 
mode is represented as ( ) ( ) ( ) ( ) ( ){ } ( )θλθ iktyxpyxyxwyxvyxu +exp,~,,~,,~,,~,,~ , where λ is a 
complex amplification rate. It is well-known that the linear stability problem 
separates for each Fourier mode, so that k has a meaning of an integer 
azimuthal wavenumber. The linear stability eigenproblem written for a calculated 
steady state U, V, W, T, P is 
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 Assuming that J is the Jacobian matrix calculated from the r.h.s. of (9) and 
B is the diagonal matrix such that its diagonal elements corresponding to the 
values of θ~,w~,v~,u~  are equal to one, while the elements corresponding to p~  
are zeros,  the equations (9) can be written in the matrix form as 
 

( ) ( )TT ~p~,w~,v~,u~~p~,w~,v~,u~ θ=θλ JB .                                                       (10) 
 
Since detB = 0 the generalized eigenproblem (10) cannot be transformed into a 
standard eigenproblem.  
 The stability of an axisymmetric steady flow state for a given set of the 
governing parameters is defined by the eigenvalue λ having the largest real 
part for all integer azimuthal wavenumbers k. This λ is called leading eigenvalue. 
Apparently, ( ){ }max 0

k
Real kλΛ = >⎡ ⎤⎣ ⎦  means the exponential growth of a 

perturbation, i.e., the instability of an axisymmetric steady flow state. The 
value of the azimuthal wavenumber yielding the maximum of Real(λ) we call 
critical and denote as kcr. The imaginary part of the leading eigenvalue we call 
critical frequency and denote as ( )[ ]crcr kλω Im= . The corresponding eigenvector 
of (10) defines the meridional pattern of the most unstable perturbation of the 
base state.  
 The eigenproblem (10) is solved by the Arnoldi iteration in the shift-and-
invert mode  
 

( ) ( ) ( )
σ−λ

=µθµ=θσ− − 11 ,~p~,w~,v~,u~~p~,w~,v~,u~
TT

BBJ                            (11) 

 
where σ is a complex shift. The ARPACK package is used. To calculate the 
leading eigenvalue λ it is necessary to choose the shift σ close to λ and to 
calculate 10-20 eigenvalues µ with the largest absolute value. The choice of σ 
is not an easy task, since the estimate of λ is not known. To find the leading 
eigenvalue we fix Real(σ)=0 and vary Im(σ) until the leading eigenvalue λ is 
computed. Then we calculate the instability point with ( )( )λ=σ Im,0  and vary 
Im(σ) further to ensure that there is no another eigenvalue with larger real part. 
 The computations proceed similarly to ones described in [125,127]. At the 
first stage we calculate a steady axisymmetric flow state using the Jacobian-
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full exact Newton iteration. Then the linear stability of the calculated steady 
flow is studied for each value of k separately. For each k we compute the 
marginal value of the critical parameter, which can be Reynolds, Grashof, or 
Marangoni number, or other. The marginal value is computed by solving the 
equation max [Real(λ)] = 0 for a fixed k using the secant method. All other 
parameters during these computations are fixed. The minimum of the marginal 
values over all k yields the value of the critical parameter corresponding to the 
instability of the base flow.  
 As it was done in [125, 127] we combine both Newton and Arnoldi 
iteration techniques with the multifrontal direct solvers for sparse matrices (we 
use the MUMPS solver). The efficiency of this approach is a sequence of the 
high level of sparseness of the Jacobian matrices of equations (8) and (9). 
Using the second-order finite volume discretization scheme these matrices are 
composed from banded blocks of the size (Nr×Nz)×(Nr×Nz), where each block 
have less than 15 diagonals filled by non-zero elements. The LU-decomposition 
of the matrix (J - σB) remains unchanged for the whole Arnoldi iteration 
procedure, which makes the iterations much faster than it is observed in the cases 
when Krylov-subspace-based iterative solvers are applied. For the Newton 
iteration the efficiency of such approach is not obvious, but appears to be 
rather good. The characteristic times needed for the calculation of a steady state 
and for performing the stability analysis can be found in the Appendix of [127].  
 
4. Validation of the code 
 It should be mentioned that there is no well-established experimental or 
numerical data, which allows for a complete and certain validation of a code of 
such complexity. The set of benchmarks formulated for much simpler 
configurations was considered in [125, 127]. Here we report comparisons with 
the experiments [19] and with the calculation of the eigenvalues made in 
[121,122]. Then we address the configuration of experiments [35], and show 
how the critical parameters calculated for this configuration converge on 
uniform and stretched grids. 
 The model experiments [19] were carried out in isothermal cylindrical 
crucible with an isothermal crystal dummy using silicone oil with Pr = 1000 as 
a working liquid. Apparently, this Prandtl number is too large to characterize 
even relatively large Prandtl number oxide melts, for which it usually does not 
exceed the value of  20. On the other hand this is the only experimental study 
of the Czochralski melt flow we could find where the critical parameters were 
measured and the boundary conditions were controlled precisely enough to 
make it possible to compare with calculations. In these experiments the 
temperature drop between the crystal and the crucible was fixed and the 
rotation of  both crystal and crucible was varied. Figure 2 shows the measured and 
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Figure 2. Critical value of the crucible rotation Reynolds number (a) and period of 
appearing oscillations (b) versus the crystal rotation Reynolds number. Symbols 
correspond to the experiments of Munakata & Tanasawa [19] and lines to present 
calculations. Solid line and ○ for Gr = 356, Ma = 1660; Dashed line and ∆ for 
Gr = 1020, Ma = 4756. 
 
calculated values of the critical crucible Reynolds number and the 
corresponding period of oscillations for different crystal rotation rates and for 
two different heating conditions (see figure caption). The instability in this 
case is axisymmetric (k = 0), which is consistent also with the experimental 
and numerical observations of [28] made for large-Prandtl-number fluids. 
Figure 1a shows that the experimental and calculated critical Reynolds 
numbers agree very well. An examination of Fig. 2b shows that our 
calculations reproduce a correct tendency of variation of the oscillation period, 
however there is no a precise agreement, like in Fig. 2a.  This discrepancy can 
be explained by the fact that the experimental values of the period are 
measured at some finite supercriticality while the calculation yields this value 
exactly at the instability point. The difference can be larger in the case of 
subcritical bifurcation, however the issue of sub- or supercriticality is not 
considered here. Another possibility is not very precise values of the 
thermophysical parameters given in [19], which prevent a correct 
transformation of dimensionless results into dimensional ones. Since the 
instability is axisymmetric the time-dependent axisymmetric calculations 
performed in [19] also showed rather good agreement with experiment. 
Comparing to the present results the critical numbers were slightly 
overestimated and the critical periods showed a similar discrepancy. 
 The next comparison was made for the eigenvalues of the linearized 
equations (9) computed in [121,122]. A model problem similar to one 
considered here was studied in these works. The bottom of a cylindrical 
crucible was assumed to be thermally insulated and the sidewall to be 
isothermal. It was assumed also that there exists a linear temperature profile at 
the free melt surface, which would correspond to a very large heat conductivity 
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Table 1. Eigenvalues calculated for the data of Nikitin & Polezhaev [121, 122] using 
defferent finite volume grids. Gr = 106. 
 

  k      100×100      200×200      300×300       400×400      500×500       Result 
     of [122] 

   Recrystal = 0    

  1  (-46.99, 808.6)  (-49.21, 811.1)   (-49.69, 811.6)  (-49.86, 811.8)  (49.94, 811.8)   (-54., 795.) 
  2  (-70.27, 223.0)  (-68.91, 223.2)   (-68.69, 223.3)   (-68.61, 223.3)  (-68.59, 223.3)    (-80., 247.) 
  3  (56.63, 485.8)  (57.88, 488.8)   (58.11, 489.3)   (58.18, 489.5)  (58.22, 489.6)     (48., 478.) 
  4  (50.55, 993.3)  (50.39, 997.4)   (50.32, 998.2)   (50.28, 998.5)  (50.26, 998.6)     (38., 966.) 
  5  (-55.11, 1039.)  (-56.01, 1046.)   (-56.11, 1047.)   (-56.15, 1047.)  (-56.18, 1048.)  (-68., 1030.) 
  6    (-25.18, 0)     (-26.91, 0)     (-27.29, 0)     (-27.43, 0)     (-27.50, 0)   (-39., 424.) 
    Recrystal = 1000    

  1  (-24.60, -807.3)  (-31.49,- 809.2)  (-33.11, -809.3)  (-33.79, -809.2)  (-34.16, -809.1)  (214., -2130.)
  2  (-64.71, -1201.)  (-66.16, -1208.)  (-66.55, -1210.)  (-66.72, -1210.)  (-66.81, -1211)      (-95., -) 
  3  (64.23, -566.9)   (64.48, -572.0)   (64.38, -573.4)  (64.30, -574.0)  (64.24, -574.3)     (58., 58) 
  4  (29.17, -1056.)   (26.93, -1061.)   (26.14, -1062.)  (25.75, -1062.)  (25.53, -1062).      (-13., -) 
  5  (-26.70, -1114.)  (-27.90, -1122.)  (-28.18, -1124.)  (-28.31, -1125.) (-28.38, -1125.)      (-42., -) 
  6  (-83.57, -974.2)  (-88.13, -977.5)  (-89.86, -978.6)  (-90.72, -979.1) (-91.23, -979.4)      (-88., -) 

 
of the melt. Steady states and the corresponding eigenvalues were computed 
for A=1, Pr=0.05, Ma=0, Recrystal=0 and 1000, Recrucible=0 and Gr=105, 
5×105, and 106. The azimuthal wavenumber k was varied from 1 to 6. The 
calculations of [121,122] were unsteady and three-dimensional using the 
finite difference method in the (r,z) plane and the pseudospectral approach in 
the azimuthal direction. The finest grid in the meridional plane had 128×128 
nodes. The eigenvalues were calculated from the calculated time-dependent 
perturbation amplitudes. We repeated this calculation using different finite 
volume grids with the number of nodes in one direction varied from 100 to 
500 and with the direct calculation of the eigenvalues. The results are 
reported in Table 1. It is seen that present results converge with the grid 
refinement, however the convergence rate is different for different Recrystal 
and azimuthal wavenumbers. The difference is caused by the different spatial 
patterns of the corresponding eigenvectors, which are not shown here. 
Comparison with the results of [121,122] shows only a qualitative 
agreement. In the author's opinion the present calculations are more accurate 
and the comparison indicates on two important numerical issues: the grid 
convergence, which needs more than 100 nodes in the shortest spatial 
direction (see also [125,127]), and on the importance of correct calculations 
of the eigenvalues, which cannot be extracted from time-dependencies 
accurately enough. 
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a = b = 0.12a = b = 0.06  
 

Figure 3. Examples of the grid stretching. 
 
 In the next example illustrated in Figs. 3 and 4 we illustrate the 
convergence of critical temperature difference and the critical frequency for 
the example described in the Section 5 below. Here we are interested in the 
rate of convergence and the effect of mesh stretching. The mesh stretching is a 
rather unclear issue. The common opinion is that the stretching improves the 
convergence, however, as it was shown in [125,127], it is not always the case. 
It is not quite clear also where the stretching should be applied for the model 
considered here. In this study we tried to stretch the grid near the boundaries, 
near the cylindrical axis and also near the discontinuity point r = Rcrystal, z = A, 
where the crystal meets the melt surface. The stretching used here is defined in 
the following way: 
 

for crystalRr ≤≤0 :   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
π−←

crystal

i
ii R

r
sinarr 2                       (9.1) 

 

for cruciblecrystal RrR ≤≤ :  ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
π−−←

crystal

crystali
crystalii R

Rr
sinaRrr

1
21       (9.2) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π−←

A
z

sinb
A
z

Az jj
j 2                                                   (9.3) 

 
where parameters a and b vary from 0 to 0.12. Apparently a = b = 0 
corresponds to the uniform grid. Examples of the stretched grids are given in 
Fig. 3. 
 Taking the configuration of a model experiment of [35] as a representative 
example we calculated the critical temperature difference and the critical 
frequency of oscillations for the stationary crystal and the crystal rotation 
Reynolds number equal to 1000 and 5000. The calculations were done using the 
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Figure 4. Convergence of the critical temperature difference and the critical frequency 
for different crucible rotation rates. Results for the configuration of [35]. Dash line – 
uniform grid, solid line – stretched grid with a = b = 0.12.  
 
uniform and stretched grids with the number of nodes in both r- and z-
directions varied from 100 to 500 with the increment of 10. Note that at 
Recrystal = 0 the instability sets in as a transition to an axisymmetric oscillatory 
state (k = 0), while at Recrystal = 1000 and 5000 an azimuthal traveling wave 
with the azimuthal wavenumber k = 1 breaks the axial symmetry. 
 Figure 4 shows that unlikely simpler benchmark problems [125,127] the 
definite convergence is not reached even with the use of the grid of 5002 
nodes. We can state that the largest discrepancy between the uniform at 
stretched grids at N = Nr = Nz = 500 is observed for the critical frequency 
calculated for Recrystal = 0, where it reaches approximately 1% (Fig. 4f). The 
uniform grid exhibits the fastest convergence at Recrystal = 1000. It is striking 
that starting from this Reynolds number the calculations with the stretched grid 
converge visibly faster.  Starting from approximately N = 300 both stretched 
and uniform grids yield rather reliable results with the accuracy sufficient for 
the practical purposes. On the other hand, use of the grids coarser than 
100×100, especially without stretching, can lead to a significant inaccuracy. 
The calculations reported below are carried out on the 300×300 grid. 
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Table 2. Comparison of the critical temperature difference and critical frequency 
calculated on uniform and stretched grids and their Richardson extrapolations. 
 

Recrystal 0 1000 5000 0 1000 5000 
  ∆Tcr   ωcr  
Uniform grid, 500×500 0.63046 0.14729 0.88142 1.0039 0.11916 0.12555
Richardson extrapolation 
from uniform grid  

0.63562 0.14734 0.88286 1.0098 0.11940 0.12558

Stretched grid, 500×500 0.63690 0.14712 0.88572 1.0152 0.11964 0.12576
Richardson extrapolation  
from stretched grid  

0.64099 0.14708 0.88531 1.0178 0.11975 0.12581

 
 It was argued in [127] that Richardson extrapolation improves the results 
even for problems having discontinuous boundary conditions, for which local 
convergence of the Taylor series cannot be expected. It is not easy to check 
this statement for the present case, since no reference solution exists. We 
expect that if the Richardson extrapolation is helpful then the results 
extrapolated from the uniform and stretched grids will become closer. We 
checked that by calculation of the Richardson extrapolation based on 4902 and 
5002 grids. The results are shown in Table 2, from which we can conclude that 
the Richardson extrapolations based on the stretched and uniform grids are 
really closer than the results corresponding to calculation of the 5002 grid. 
 To present an example of an insufficient resolution we consider 
configuration of [85,86]. The melt flow of LiNbO3 (Pr = 13.6) in the crucible 
with the aspect ratio A = 1.945 is considered. The bottom of the crucible is 
thermally insulated and the heat is supplied through the sidewall with a 
constant heat flux q. The governing parameter characterizing the heating is the 
dimensionless heat flux Q =qRcrucible/κ∆Τ. The melt surface is cooled by 
radiation, which is characterized by the dimensionless parameter 

κ∆σε= crucibleRTRd 3  and dimensionless ambient temperature θa. Here χ is the 
thermal conductivity, σ is the Stefan-Boltzmann constant and ε is the 
emissivity. Since there is no characteristic temperature difference in this case 
we follow [85,86] and choose ∆Τ = Τmelting = 1526 K. For the example we use 
parameters of Fig. 8 of [86], which are Q = 0.05, Rd = 0.34 and θa = 0.8, 
Recrystal = Recrucible = 0. 
 The first unexpected result for the above parameters is the existence of two 
distinct steady states of the flow. They are illustrated in Fig. 5. The first branch 
(two left frames of Fig. 5) is the one obtained in [86]. The second branch (two 
right frames in Fig. 5) can be called "anomalous" since its minimal temperature 
is below the melting point, which would mean that part of the flow region can 
be frozen. On the other hand, as it is shown below, this branch is always unstable 
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Figure 5. Two steady states corresponding to configuration of [85,86]. 
 

and it is not quite clear how the instability will develop if this steady 
axisymmetric solution will be supplied to a three-dimensional solver as an 
initial condition. 
 Tables 3 and 4 show how the real part of the leading eigenvalue converges 
with the grid refinement. For this exercise we varied the azimuthal 
wavenumber k from 0 to 10 and used stretched grids with a = b = 0.12. 
Considering the first branch (two left frames in Fig. 5 and Table 3) we see that 
a qualitatively correct result, i.e., the eigenvalue and the eigenvector describing 
the most unstable perturbation, are obtained starting from the grid consisting of 
60×60 nodes in the meridional plane. Coarser grids of 40×40 and 50×50 nodes 
can lead to a wrong conclusion that the flow is unstable. The calculations of 
[85,86] used not more than 40×40 nodes in the azimuthal plane, which really 
lead to observation of the axisymmetry-breaking and three-dimensional flow 
patterns. According to the present result these observations are caused by a 
numerical inaccuracy. 
 The second steady state branch (two right frames in Fig. 5 and Table 4) is 
always unstable for the considered values of parameters. However, an 
examination of the convergence shown in Table 4 shows that a qualitatively 
correct answer for this case can be obtained only starting from 100×100 nodes 
grid. Presumably, the slower convergence is a consequence of a more 
complicated flow structure (see Fig. 5). We see also that a certain conclusion 
about the convergence cannot be made on the basis of another similar case, but 
the convergence needs to be studied separately every time.  
 The stability study of the first steady state branch shows that for the crystal 
Reynolds number varied from 0 to 200 it becomes unstable due to the 
azimuthal modes k = 1 and 2 and the critical dimensionless heat flux varies 
from Qcr = 3.7 at Recrystal = 0 to Qcr = 2.7 at Recrystal = 200. 
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5. Results  
 As mentioned above, we use the experimental configuration of [35] for a 
representative study of three-dimensional instability of axisymmetric melt 
flows. We consider the flow of NaNO3 melt with Pr = 9.2 in the crucible of 
the aspect ratio height/radius = 0.92 and the crystal to crucible radii ratio 0.5 . 
The temperature boundary conditions are defined as 
 
T = Thot at the crucible sidewall; T = Tmelting at the melt/crystal interface;      (10) 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2

1429085710
crucible

hot R
r

..TT  at the crucible bottom;                     (11) 

 

( )meltingTTBi
z
T

−−=
∂
∂  at the free surface                                                             (12) 

 
Defining ∆T = Thot - Tmelting and using the data of [35] we estimate the Grashof 
and Marangoni numbers as Gr = 1.9×105 ∆T and Ma = 5400 ∆T, where ∆T is 
measured in oC. The Biot number is fixed and is estimated as Bi = 0.1  Since a 
variation of temperature difference ∆T affects both Grashof and Marangoni 
numbers in the following we consider as a critical parameter the temperature 
difference itself, and not one of the dimensionless numbers. Such a 
consideration makes it easier to connect our numerical results with possible 
future experiments.  
 An example of the marginal stability curves showing the dependence of 
the marginal value of the temperature difference ∆Tk on the crystal rotation 
Reynolds number Recrystal for the stationary crucible is shown in Fig. 6. The 
marginal temperature difference ∆Tk corresponds to the beginning of growth of 
the perturbations with a fixed k (k = 0, 1 and 2 in Fig. 6). The largest value of 
the crystal rotation Reynolds number considered is 5000, which for the 
experimental data of [35] corresponds to the rotation frequency of 
approximately 0.8 rps. This rotation rate seems to be too large for the 
Czochralski setup, however it can be easily reached at smaller viscosities or 
larger crystal or crucible radii.  
 As explained above, the onset of instability corresponds to the minimum 
of ∆Tk over all values of k. The values of ∆Tk for k > 2 were always larger than 
the values plotted in Fig. 6. At the same time with the increase of the crystal 
rotation the axisymmetric mode k = 0 and the three-dimensional mode k = 1 
yield the minimum of ∆Tk and several times replace each other as critical 
modes. For Recrystal > 1000 the mode k = 2 has the marginal values of ∆T close 
to the critical ones. This can lead to an interaction of the two or even three 
modes in the supercritical regime, which would mean a rather complex non-linear 
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Figure 6. Marginal temperature difference and critical frequency for the three-
dimensional instability of flow configuration of [35]. Recrucible = 0. 
 
dynamics. Note also a sharp decrease of the critical value of ∆T with a very 
weak increase of the rotation rate from the zero value. Such a destabilization 
was observed also in [21,22,74,126] and in our calculations, which are not 
included in this paper. It seems to be a common feature for the melts with 
Pr > 1. Attempts to explain the physics of this destabilization were done in the 
above cited papers, however the comprehensive explanation is yet to be done. 
 The marginal frequencies of oscillations corresponding to the marginal 
stability curves of Fig. 6 are shown in the insert. Note that the negative value 
of the critical frequency means that the unstable azimuthal traveling wave 
rotates in the direction opposite to the crystal rotation. It is seen that the 
frequencies corresponding to the different modes have different signs and 
magnitude, which also can make their interaction very complicated.  
 To illustrate how different can be flow patterns and the perturbations 
leading to instability we illustrate some of them in Figs. 7 and 8. Figure 7 
shows two cases that correspond to the axisymmetric instability at k = 0, and 
Fig. 8 other two cases corresponding to k = 1. It is seen that the instability at 
Recrystal = 0 is developing near the cylindrical axis (left border of the graphs). 
When rotation is relatively strong, at Recrystal ≥ 1000, the perturbation 
amplitude is distributed over the whole flow region, however its pattern 
undergoes noticeable changes. Apparently, an additional and considerable 
effort is needed to describe the physical mechanisms, which cause the 
instability and to gain the understanding of the rapid destabilization of the flow 
at small crystal rotation rates. 
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 Several studies [19,54-61,94,117,120] describe a possibility to affect the 
melt flow instability by a simultaneous rotation of the crystal and crucible. For 
the configuration considered here this possibility is shown in Fig. 9 for two 
fixed crucible Reynolds numbers 100 and −100, which correspond to the co- 
and counter-rotating crucible, respectively. For the data of [35] this value of 
the Reynolds number can be reached with the crucible angular velocity of 
approximately 2 rpm. The flow is stable inside the neutral stability lines 
plotted in Figs. 9a and 9b and unstable outside of them. The striking 
observation is that by a slow crucible rotation the critical temperature 
difference can be increased in several times or even in an order of magnitude 
compared with the stability limit corresponding to the stationary crucible. Our 
calculations show that the patterns of meridional flow do not change 
significantly when the crucible rotates with Recrucible = ±100 or is stationary. At 
the same time the stability properties of the flows illustrated in Fig. 9 change 
drastically (cf. Fig. 9 and Fig. 6). Clearly, this stabilization effect is different 
for different configurations, however its existence is obvious and can be used 
in the crystal growth processes. The comprehensive explanation of this 
stabilization is not given yet and possibly has to be done in a framework of a 
fundamental fluid dynamics research. 
 

stream function isotherms

perturbation of radial velocity perturbation of axial velocity

perturbation of temperature

Recrystal = 0, ∆Tcr = 0.628 Recrystal = 1500, ∆Tcr = 0.266 

perturbation of radial velocity

stream function isotherms

perturbation of axial velocity

perturbation of temperatureperturbation of azimuthal velocity

 
 
Figure 7. Patterns of flows at the critical points and patterns of the perturbation 
amplitudes for the instability corresponding to the axisymmetric mode k = 0. 
Recrucible = 0. 
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Figure 8. Patterns of flows at the critical points and patterns of the perturbation 
amplitudes for the instability corresponding to the axisymmetric mode k = 0. 
Recrucible = 0. 
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Figure 9. Fragments of stability diagrams for the experimental configuration of [35] 
calculated for a slow crucible rotation. 
 
6. Concluding remarks 
 The three-dimensional stability analysis of the hydrodynamic model of 
Czochralski melt flow can be done in a realistic time on a rather moderate 
computer using the approach similar to one used in [125,127] for simpler 
benchmark problems. We have shown that the conclusion of [125,127] stating 
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that the convergence of the critical parameters requires finite volume grids 
having about 100 or mode nodes in the shortest spatial direction remains valid 
also for the Czochralski melt flow and even sometimes should be strengthened. 
The present results show that the convergence strongly depends on the 
governing parameters and varies for different Fourier modes. Therefore it 
should be examined for every configuration separately. As shown above, a 
insufficient numerical accuracy can lead to wrong qualitative conclusions. 
 The stability diagram calculated for experimental configuration of [35] 
showed that a slow rotation of the crystal leads to a steep decrease of the 
critical temperature difference. In other words a combination of a weak 
rotation with a weak heating destabilizes the flow. The nature of this 
destabilization is yet to be studied, however it seems to be a rather common 
phenomenon for different Czochralski systems. Another observation made is a 
possibility of significant flow stabilization by a slow rotation of the crucible.  
Again, the mechanism of this stabilization needs to be studied separately. 
 One of the crucial problems for the computations of this kind is a 
possibility to validate the code against independent calculations and 
experiments. Several attempts of doing this are described in this paper, 
however they are not sufficient. In the author's opinion it is necessary to 
formulate a benchmark problem based on an experiment. The experiment 
should be done with the sufficient control of all the boundary conditions, so 
that it will be possible to reproduce them in numerical models. Computations 
of flows and their instabilities using different numerical approaches for the 
problem formulated on the basis of such an experiment will yield a valuable 
benchmark data, necessary for the further development of computational 
modeling. 
 Future development of the current numerical approach will focus on the 
issues of phase transition, capillary meniscus and volume radiation in the 
transparent and semi-transparent melts and crystals. The latter is necessary to 
study the growth of oxide crystals [12]. We intend to include these effects in 
the steady solver and to examine their effect on the stability of melt flow. 
 
Acknowledgements 
 This study was supported by Israel Science Foundation, grant No. 156/05. 
 
References 
1. Hurle D.T.J. 1966, Philosophical Magazine, 13, 305. 
2. Hurle D.T.J. 1983, J. Cryst. Growth, 65, 124. 
3. Hurle D.T.J. 1983, Mater. Sci. Forum, 276-277, 27. 
4. Brehm C., Boniort J.-Y., Margotin P. 1973, J. Cryst. Growth, 18, 191. 
5. Kim K.M., Smetana P. 1985, J. Appl. Phys., 58, 2731. 



3D instabilities of Czochralski melt flow 23 

6. Tower J.P., Tobin R., Pearah P.J., Ware R.M. 1991, J. Cryst. Growth, 114, 665. 
7. Santos M.T., Rojo J.C., Cintas A., Arizmendi L., Dieguez E. 1995, J. Cryst. 

Growth, 156, 413. 
8. Sasaura M., Miyazawa S. 1996, J. Cryst. Growth, 166, 825. 
9. Kanda T., Hourai M., Miki S., Shigematsu T., Tomokage H., Miyano T., Morita 

H., Shintani A. 1996, J. Cryst. Growth, 166, 663. 
10. Zhao G.I., Zeng X.H., Zhou S.M., Xu J., Tian Y.L., Huang W. X., 2003, Phys. 

Stat. Solidi, 199, 186. 
11. Dold P. 2003, Crystal Research and Technology, 38, 659. 
12. Uecker R., Wilke H., Schlom D.G., Velickov B., Reiche P., Polity A., Bernhagen 

M., Rossberg M. 2006, J. Cryst. Growth, 295, 84. 
13. Gelfgat A. Yu., Bar-Yoseph P.Z. 2004, Int. J. Numer. Meth. Heat and Fluid Flow, 

14, 213. 
14. Lappa M. Fluids, Materials and Microgravity: Numerical Techniques and Insights 

into Physics, Elsevier, 2004, 520pp. 
15. Lappa M. 2005, Cryst. Res. Technol., 40, 531. 
16. Scheel H.J. 2001, J. Cryst. Growth, 211, 1. 
17. Scheel H.J. In: Crystal Growth Technology (eds. H.J.Scheel and T. Fukuda), John 

Wiley & Sons, 2003, pp.3-14 
18. Hurle D.T.J, Cockayne B. In: Handbook of Crystal Growth (ed. D.T.J. Hurle), 

North-Holland, Amsterdam, 2, 99.   
19. Munakata T., Tanasawa I. 1990, J. Cryst. Growth, 106, 566. 
20. Ozoe H., Toh K., Inoue T., 1991, J. Cryst. Growth, 110, 472. 
21. Kishida Y., Tanaka M., Esaka H. 1993, J. Cryst. Growth, 130, 75. 
22. Seidl A., McCord G., Müller G., Leister H.-J. 1994, J. Cryst. Growth, 137, 326. 
23. Togawa S., Chung S.-I., Kawanishi S., Izunome K., Terashima K., Kimura S. 

1996, J. Cryst. Growth, 160, 41. 
24. Togawa S., Chung S.-I., Kawanishi S., Izunome K., Terashima K., Kimura S. 

1996, J. Cryst. Growth, 160, 49. 
25. Miyano T., Inami S.-I., Shintani A., Kanda T., Hourai M. 1996, J. Cryst. Growth, 

166, 469. 
26. Lee Y.-S., Chun Ch.-H. 1997, J. Cryst. Growth, 180, 477. 
27. Choi J.-I., Sung H.J. 1997, Int. J. Heat Mass Transfer, 40, 1667. 
28. Choi J.-I., Kim S., Sung H.J., Nakano A., Koyama H.S. 1997, J. Cryst. Growth, 

180, 305. 
29. Lee Y.-S., Chun Ch.-H. 1999, J. Cryst. Growth, 197, 297. 
30. Lee Y.-S., Chun Ch.-H. 1999, J. Cryst. Growth, 197, 307. 
31. Hintz P., Schwabe D., Wilke H. 2001, J. Cryst. Growth, 222, 343. 
32. Hintz P., Schwabe D. 2001, J. Cryst. Growth, 222, 356. 
33. Schwabe D., 2002, , J. Cryst. Growth, 239, 1849. 
34. Hibiya T., Azami T., Sumiji M., Nakamura S., 2003: in: Interfacial Fluid 

Dynamics and Transport Process", Narayanan, R., Scwabe, D.,  (Eds), Springer, 
New York, 2003, pp. 131-155. 

35. Schwabe D., Sumathi R.R., Wilke H. 2004, J. Cryst. Growth, 265, 440. 
36. Scwabe D., Sumathi R.R. 2005, , J. Cryst. Growth, 275, e15. 
37. Suzuki T. 2004, J. Cryst. Growth, 270, 511. 



A. Yu. Gelfgat  24

38. Tokuhiro A., Takeda Y. 1993, J. Cryst. Growth, 130, 421. 
39. Son S.-S., Yi K.W. 2005, J. Cryst. Growth, 275, e249. 
40. Son S.-S., Yi K.W. 2005, J. Cryst. Growth, 275, e259. 
41. Whiffin P.A.C., Bruton T.M., Brice J.C. 1976, J. Cryst. Growth, 32, 205. 
42. Brandle C.D. 1977, J. Cryst. Growth, 42, 400. 
43. Jones A.D.W. 1983, J. Cryst. Growth, 61, 235. 
44. Jones A.D.W. 1983, J. Cryst. Growth, 63, 70. 
45. Jones A.D.W. 1989, J. Cryst. Growth, 94, 421. 
46. Tanaka M., Hasebe M., Saito N. 1997, J. Cryst. Growth, 180, 487. 
47. Nakamura S., Eguchi M., Azami T., Hibiya T. 1999, J. Cryst. Growth, 207, 55. 
48. Miyazawa Y. 1999, Progr. Crystal Growth and Charact. Materials, 38, 261. 
49. Kishida Y., Okazawa K. 1999, J. Cryst. Growth, 198/199, 135. 
50. Azami T., Nakamura S., Eguchi M., Hibiya T. 2001, J. Cryst. Growth, 233, 99. 
51. Rappl P.H.O., Ferraz F.M., Scheel H.J., Barros M.R.X., Schiel D. 1984, J. Cryst. 

Growth, 70, 49. 
52. Aleksic J., Szymczyk J.A. 2003, PAMM, 3, 322. 
53. Kakimoto K., Eguchi M., Watanabe M., Hibiya T. 1989, J. Cryst. Growth, 94, 412. 
54. Kakimoto K., Eguchi M., Watanabe M., Hibiya T. 1990, J. Cryst. Growth, 102, 16. 
55. Kakimoto K., Watanabe M., Eguchi M., Hibiya T. 1992, Int. J. Heat mass 

Transfer, 35, 2551. 
56. Watanabe M., Eguchi M., Kakimoto K., Baros Y., Hibiya T. 1993, J. Cryst. 

Growth, 128, 288. 
57. Yi K.-W., Kakimoto K., Eguchi M., Watanabe M., Shyo T., Hibiya T. 1994, J. 

Cryst. Growth, 144, 20. 
58. Kakimoto. K. 1995, Appl. Phys. Rev., 77, 1827. 
59. Kakimoto. K. 1995, Progr. Crystal Growth and Charact. Materials, 30, 191. 
60. Watanabe M., Kakimoto K., Eguchi M., Hibiya T. 1997, Jpn. J. Appl. Phys., 36, 6181. 
61. Watanabe M.,  Yi K.W., Hibiya T., Kakimoto K., 1999. Progr. Crystal Growth 

and Crystallization of Materials, 38, 215. 
62. Imaishi N, Kakimoto K., 2002, Ann. Rev. Heat Transfer, 12, 187. 
63. Gorbunov L., Klyukin A., Pedchenko A., Feodorov A., 2003, Magnetohydrodynamics, 

39, 521. 
64. Gorbunov L., Klyukin A., Pedchenko A., Feodorov A., 2003, Energy Conversion 

and Management, 43, 317. 
65. Biberin V.I., Osvenskii V.B., Smirnov V.A., Starshinova I.V., Fryazinov V.I. 

1985, Sov. Phys. – Crystallography, 30, 568. 
66. Fontaine J.P., Randriamampianina A., Bontoux P. 1991. Phys. Fluids A, 3, 2310. 
67. Anselmo A., Prasad V., Koziol G., Gupta K.P. 1993, J. Cryst. Growth, 134, 116. 
68. Zhou W., Bornside D.E., Brown R.A. 1995, J. Cryst. Growth, 137, 26. 
69. Sung H.J., Jung Y.J., Ozoe H. 1995, Int J. Heat Mass Transfer, 38, 1627. 
70. Fontaine J.P., Bontoux P. Ouazzani J., Extrémet G.P., Raspo I., Chevrier V., 

Launay J.C. 1996, Eur. J. Mech., B/Fluids, 15, 665. 
71. Okano Y., Audet N., Dost S., Hayakawa Y., Kumagawa M. 1998, Int J. Numer. 

Model., 11, 289. 
72. Rujano J.R., Crane R.A., Rahman M.M., Moreno W. 2002, J. Cryst. Growth, 245, 

149. 



3D instabilities of Czochralski melt flow 25 

73. Savolainen V., Heikonen J., Ruokolainen J., Anttila O., Laakso M., Paloheimo J. 
2002, J. Cryst. Growth, 243, 243. 

74. Banerjee J., Muralidhar K. 2006, J. Cryst. Growth, 286, 350. 
75. Roy S., Roy A., Arora R.C. 2006, Heat Mass Transfer, 42, 187. 
76. Mihelčić M., Wingerath K. 1989, J. Cryst. Growth, 97, 42. 
77. Kakimoto K., Watanabe M., Eguchi M., Hibiya T. 1994, J. Cryst. Growth, 139, 197. 
78. Xiao Q., Derby J.J. 1995, J. Cryst. Growth, 152, 169. 
79. Givoli D., Flaherty J.E., Shephard M.S. 1997, Int. J. Numer. Meth. Heat Fluid 

Flow, 7, 880. 
80. Akamatsu M., Kakimoto K., Ozoe H. 1997, J. Mater. Proc. & Manufact. Sci., 5, 329. 
81. Tomonari H., Iwamoto M., Kakimoto K., Ozoe H., Suzuki K., Fukuda T. 1998, 

The Chem. Eng. J., 71, 191. 
82. Kakimoto K., Ozoe H. 1998, Comput. Mater. Sci., 10, 127. 
83. Won Y.C., Kakimoto K., Ozoe H. 1999, Numer. Heat Transfer, Pt. A, 36, 551. 
84. Rojo J.C., Derby J.J. 1999, J. Cryst. Growth, 198/199, 154. 
85. Jing. C.J., Imaishi N., Yasuhiro S., Miyazawa Y., 1999. J. Cryst. Growth, 200, 204. 
86. Jing. C.J., Imaishi N., Sato T., Miyazawa Y., 2000. J. Cryst. Growth, 216, 372. 
87. Basu B., Enger S., Breuer M., Durst F. 2000, J. Cryst. Growth, 219, 123. 
88. Enger S., Basu B., Breuer M., Durst F. 2000, J. Cryst. Growth, 219, 144. 
89. Jing. C.J., Imaishi N., Yasuhiro S., Sato T., Miyazawa Y., 2000. Int. J. Heat Mass 

Transfer, 43, 4347. 
90. Chatterjee A., Prasad V., Sun D. 2000, Numer. Heat Transfer, Pt. A, 37, 823. 
91. Jing C.-J., Yasuhiro S., Suenaga H., Sato T., Imaishi N. 2000, Thermal Sci. & 

Eng., 8, 1. 
92. Wang W., Watanabe M., Hibiya T., Tanahashi T. 2000, Jpn. J. Appl. Phys., 39, 372. 
93. Vizman D., Friedrich J., Müller G. 2001, J. Cryst. Growth, 230, 73. 
94. Polezhaev V.I., Bessonov O.A., Nikitin N.V., Nikitin S.A. 2001, J. Cryst. Growth, 

230, 40.  
95. Enger S., Grabner O., Müller G., Breuer M., Durst F. 2001, J. Cryst. Growth, 230, 135. 
96. Kohno H., Tanahashi T. 2001, CMES, 2, 155. 
97. Vizman D., Gräbner O., Müller G. 2001, J. Cryst. Growth, 233, 687. 
98. Won Y.C., Kakimoto K., Ozoe H. 2001, J. Cryst. Growth, 233, 622. 
99. Basu B., Enger S., Breuer M., Durst F. 2001, J. Cryst. Growth, 230, 148. 
100. Kohno H., Tanahashi T. 2002, J. Comput. Appl. Math., 149, 359. 
101. Ivanov N.G., Smirnov E.M. 2002, J. Eng. Phys. And Themophys., 75, 599. 
102. Vizman D., Gräbner O., Müller G. 2002, J. Cryst. Growth, 236, 545. 
103. Kakimoto K., Tashiro A., Shinozaki T., Ishii H., Hashimoto Y. 2002, J. Cryst. 

Growth, 243, 55. 
104. Kumar V., Biswas G., Brenner G., Durst F. 2003, Int. J. Heat mass Transfer, 46, 1641. 
105. Zeng Z., Chen G., Mizuseki H., Shimamura K., Fukuda T., Kawazoe Y. 2003, J. 

Cryst. Growth, 252, 538. 
106. Jing C.J., Kobayashi M., Tsukada T., Hozawa M., Fukuda T., Imaishi N., 

Shimamura K., Ichinose N. 2003, J. Cryst. Growth, 252, 550. 
107. Kumar V., Basu B., Enger S., Brenner G., Durst F. 2003, J. Cryst. Growth, 255, 27. 
108. Bänsch E., Davis D., Langmach H., Miller W., Rehsa U., Reinhardt G., Uhle M. 

2004, J. Cryst. Growth, 266, 60. 



A. Yu. Gelfgat  26

109. Zhao G.J., Zeng X.H., Zhou S.M., Xu J., Tian Y.L., Huang W.X. 2003, Phys. Stat. 
Sol (a), 199, 186. 

110. Li Y.R., Imaishi N., Peng L., Wu S.-Y., Hibiya T. 2004, J. Cryst. Growth, 266, 88. 
111. Zheng Z., Chen J., Mizuseki H., Fukuda T., Kawazoe Y. 2004, J. Cryst. Growth, 

266, 81-87. 
112. Kitashima T., Liu L., Kitamura K., Kakimoto K. 2004, J. Cryst. Growth, 267, 574. 
113. Zeng Z., Chen J., Mizuseki H., Sato H., Shimamura K., Ichinoseki K., Fukuda T., 

Kawazoe Y. 2004, Mater. Trans., 45, 1515. 
114. Schäfer F., Kumar V., Breuer M., Durst F. 2005, Int. J. Comput. Fluid Dyn., 19, 501. 
115. Liu L., Kakimoto K. 2005, Int. J. Heat Mass Transfer, 48, 4481. 
116. Liu L., Kakimoto K. 2005, Int. J. Heat Mass Transfer, 48, 4492. 
117. Liu L., Kakimoto K. 2005, Cryst. Res. Technol., 40, 347. 
118. Li Y.-R., Quan X.-J., Peng L., Imaishi N., Wu S.-Y., Zeng D.-L. 2005, Int. J. Heat 

Mass Transfer, 48, 1952. 
119. Tsukada T., Kobayashi M., Jing C.J., and Imaishi N. 2005, Fluid Dynamics and 

Material Processing, 1, 45. 
120. Bänsch E., Davis D., Langmach H., Reinhardt G., Uhle M. 2006, Computers and 

Fluids, 35, 1400. 
121. Nikitin N., Polezhaev V. 1999, Fluid Dynamics, 34, 322. 
122. Nikitin N., Polezhaev V. 2001, J. Cryst. Growth, 230, 30. 
123. Walker J.S., Henry D., Ben Hadid H. 2002, J. Cryst. Growth, 243, 108. 
124. Gelfgat A.Yu., Rubinov A., Bar-Yoseph P.Z., Solan A. 2005, J. Cryst. Growth, 

275, e7. 
125. Gelfgat A.Yu. 2007, Int. J. Numer. Meths. Fluids, 53, 485.  
126. Gelfgat A.Yu. 2007, Int. J. Numer. Meths. Fluids, 54, 269. 
127. Gelfgat A.Yu., Rubinov A., Bar-Yoseph P.Z., Solan A. 2005, Fluid Dynamics and 

Material Processing, 1, 21. 
 
 
 
 
 
 


