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The motivation for this study is the need for accurate numerical models of melt flow instabilities during 

Czochralski growth of oxides. Such instabilities can lead to undesirable spiralling shapes of the bulk crystals 

produced by the growing process. The oxide melts are characterized by Prandtl numbers in the range 

5<Pr<20, which makes the oxide melt flow qualitatively different from the intensively studied flows of 

semiconductors characterized by smaller Prandtl numbers Pr<0.1. At the same time, these flows can be 

modelled experimentally by many transparent test fluids (e.g. water, silicon oils, salt melts), which have 

similar Prandtl numbers, but allow one to avoid the extremely high melting-point temperatures of the oxide 

materials. Most previous studies of melt instabilities for Prandtl numbers larger than unity suffer from a lack 

of accuracy that is caused by the use of coarse grids. Recent convergence studies made for a series of 

simplified problems and for a hydrodynamic model of Czochralski growth showed that for a second order 

finite volume method reliable stability results can be obtained on grids having at least 100 nodes in the 

shortest spatial direction. The obvious numerical difficulties call for an extensive benchmark exercise, which 

is proposed here on the basis of recently published experimental and numerical data, as well as some 

preliminary results of this study. The calculations presented are performed by two independent numerical 

approaches, which are based on second-order finite volume and finite element discretizations. We start our 

comparison from the steady states, whose parametric dependencies sometimes exhibit turning points and 

multiplicity. We then compare the critical temperature differences corresponding to the onset of instability, 

and finally compare calculated supercritical oscillatory states and phase plots. 

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Melt flow instabilities arising during the Czochralski (CZ) growth of bulk oxide crystals can lead to serious 

problems. Sometimes the instabilities are so serious that the growth process must be stopped, which 

dramatically reduces the yield. These hydrodynamic instabilities cause morphological changes, for example 

spiral formation. Figure 1 shows several examples of spiral growth arising after the onset of symmetry 

breaking in an initially axisymmetric process. 

The basic assumption of this study is that the spiral growth is caused by a three-dimensional axisymmetry-

breaking instability in the system, which includes heat transfer in the melt and in the crystal, as well as melt 

flow in the crucible. It is clear also that in order to study possible instabilities of the whole system, the melt 

flow must necessarily be taken into account. This fact is supported by figure 2, where a change of the crystal 

rotation direction has caused a change of the direction of the grown spiral, that again indicates the macroscopic 

nature of the instability. Because of the complexity of the whole problem, we focus on studying the instabilities 

of a non-isothermal melt flow only, thus assuming that the melt flow is the main source of instability. 

____________________ 
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Oxide crystalline materials have very high melting temperatures (about 2000°C [1]) making an experimental 

study of their melt flows extremely difficult. On the other hand these melts are characterized by Prandtl 

numbers in the range 5<Pr<20. This allows one to use various transparent fluids having similar Prandtl 

numbers, e.g. water, silicon oils, salt melts, as an experimental liquid and consequently the melt flow driven by 

buoyant convection, thermocapillarity and rotation can be mimicked experimentally (see, e.g., [5,9]). 

Computational modelling of these flows has been carried out by many authors, and has been reviewed in [4]. 

However, as was shown in [2-4], most of these studies suffer from a lack of numerical accuracy. The 

convergence studies performed for simplified models of convective and rotational flows [2,3], as well as for 

some Czochralski melt flow configurations [4] showed that in order to obtain convergence using a second-

order numerical method one needs more than 100 grid points in the shortest spatial direction. Additionally, it is 

shown here that steady and oscillatory states of CZ melt flow exhibit multiplicity similar to that in simpler 

model flows in rectangular and cylindrical domains. We argue here that dealing with the problematic 

convergence observed for large-Prandtl-number Czochralski melt flows, complicated by the multiplicity 

phenomenon, makes it is necessary to define a benchmark exercise for the performance of different numerical 

codes. It is mandatory also to base such a benchmark exercise on the existing experimental setup, so that the 

numerical results can be validated against experiments. 

 

 
 

Fig. 1 From left to right: DyScO3 crystal showing an extreme case of spiral growth, DyScO3 crystal with 

later onset of spiral growth, SmScO3 with very distinctive spiral growth, SmScO3 crystal with later onset of 

spiral growth. (Online color at www.crt-journal.org) 

 

 

Fig. 2 DyScO3 crystals grown 

in opposite rotation directions. 

The formed spirals show 

opposite turns. (Online color at 

www.crt-journal.org) 

 

In this study we formulated a test problem for a Czochralski melt flow based on the recent experiments of 

Schawbe, Sumathi and Wilke [5]. This problem was treated by two independent  computational codes which 

incorporate two different numerical approaches. The Israeli group (A. Yu. Gelfgat, E. Kit, School of 

Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Israel) is using a code based on the 

second-order finite volume method, while the German group (N. Crnogorac, H. Wilke, Institute for Crystal 

Growth (IKZ) Berlin, Germany) uses a FEM code with quadratic polynomial interpolation for the velocities 

and temperature and linear interpolation for the pressure. We compare results of calculations of steady state 
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flows, their instabilities and supercritical oscillatory regimes. In the following we present the problem 

formulation and several preliminary results on the calculations of steady state flows, their stability, and 

supercritical oscillatory states. Then we propose a set of benchmark exercises for the code validation. 

Conclusions based on our preliminary results are summarised at the end of the paper. 

2 Model problem and numerical methods 

The problem under study is a so-called hydrodynamic model of CZ melt flow, which considers flow in a non-

uniformly heated cylindrical crucible, driven by buoyancy convection, thermocapillary convection and rotation 

of the crystal. The detailed formulation and definitions are given in [4,6] and are briefly repeated here. The CZ 

melt flow is governed by the momentum, continuity and energy equations in the Boussinesq approximation. 

We consider a flow of melt with kinematic viscosity ν, density ρ and thermal diffusivity χ in a cylindrical 

crucible 0
crucible

r R≤ ≤ , 0 z H≤ ≤  in cylindrical coordinates. To nondimensionalise the equations the scales 

crucible
R , 2

crucible
R ν , 

crucible
Rν , ( )

2

crucible
Rρ ν  for length, time, velocity and pressure, respectively, are used. The 

temperature is nondimensionalised by the relation ( ) ( )* * * *

/
cold hot cold

T T T T T= − − , where *

hot
T  and *

cold
T  are the 

maximal and minimal temperatures at the boundaries of the flow region. The set of equations for the non-

dimensional velocity { }v , v , v
r zθ

=v ,  temperature Τ and pressure p in the domain 0≤ r ≤ 1, 0 ≤ z ≤  A reads 
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Here A = H / Rcrucible is the crucible aspect ratio, ( )* * 3 2

hot cold crucible
Gr g T T Rβ ν= −  the Grashof number, 

Pr = ν / χ the Prandtl number, g the gravity acceleration, β the thermal expansion coefficient, and ez the unit 

vector in the z-direction. The velocity boundary conditions are 
 

vr = vz = 0 at z = 0, r = 1 and z = A, 0 , crystal crucibler R Rη η≤ ≤ = , (4) 

vθ = 0 at z = 0 and r = 1, (5) 

vθ = Recrystal r at and z = A, 0 r η≤ ≤ , (6) 

v
v 0, ,r

z

T
MaPr
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Here ( )* * 2

hot cold crucible
Ma T T Rγ ρν= −  is the Marangoni number, 2

Recrystal crystal crucibleR ν= Ω  is the crucible 

rotation Reynolds numbers, and γ is the coefficient of the assumed linear dependence of the surface tension 

coefficient on the temperature. The boundary conditions for the dimensionless temperature T are given by 
 

T = 1 at the crucible sidewall; T = 0 at the melt/crystal interface;  (8) 
2

0.8571 0.1429

crucible

r
T

R

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 at the crucible bottom;  (9) 

T
BiT

z

∂
= −

∂
 at the free surface   (10) 

 

In the above formulation we choose Rcrucible as the characteristic length to make it easier to alter the crystal 

radius as was done in the recent experiments of Teitel, Schwabe and Gelfgat [9]. In eq. (10) we also assumed 

that the ambient temperature is equal to the temperature at the melt/crystal interface. This is apparently wrong 

for the realistic crystal growth, however it does correspond to the model experiments [5]. Defining 

hot meltingT T T∆ = −  and using the geometric and material data of [5] we estimate the governing parameters as 

Pr=9.2, height/radius=0.92, the crystal to crucible radii ratio 0.5, Bi=0.1, Gr=1.90×105
∆T and 

Mn=MaPr=586∆T, where ∆T is measured in K. In the following we consider the dimensional temperature 
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difference ∆T as a critical parameter. This is a necessary choice since both Grashof and Marangoni numbers 

are affected by the value of ∆T. Moreover, ∆T and the crystal rotation rate are the only parameters that can be 

varied in the experiment.  

Two independent numerical codes are applied. The finite element code of the German group is based on a 

discretization containing up to 200 x 200 non-uniform quadrilateral elements with biquadratic interpolation for 

the velocity and temperature fields and bilinear interpolation for the pressure. The finite volume code of the 

Israeli group is also of the second order and uses staggered and stretched grids with up to 1000x1000 nodes. 

Both codes include a direct calculation of steady flow states and time-dependent computations. The finite 

volume code contains also an eigenvalue solver, which allows us to study three-dimensional linear stability of 

axisymmetric steady states. The details can be found in [4,6]. 

3 Results and discussion 

Steady state flows The study is started from a calculation of steady states that sometimes exhibit turning 

points and multiplicity. We then compare the critical temperature differences corresponding to the onset of 

instability, and finally the calculated supercritical oscillatory states and phase plots. Examples of calculated 

steady state flows are shown in figure 3 for ∆T=1.0K and the Reynolds number 0, 1000 and 5000. The solid 

lines in figure 3 are equally spaced between the maximum and minimum values. The maximum and minimum 

values of the temperature are 0 and 1, of the azimuthal velocity are 0 and Re, and those for the stream function 

are reported in table 1.  

 

Fig. 3 Stream function (left frames), 

isotherms (middle frames), and 

isolines of azimuthal velocity 

calculated by the finite volume 

method on 200×200 stretched grid for 

∆T=1. (a) Re=0, (b) Re=1000, (c) 

Re=5000. Solid lines are equally 

spaced. Dash lines are added to 

illustrate more details of the patterns. 

The left border of each frame 

corresponds to the symmetry axis. 
  

 

Table 1 contains some quantitative properties of the flows shown in figure 3, which can be used for a 

comparison. They are: maximum and minimum values of the stream function and their location ψmin/max(r,z); 

maximum and minimum values of the radial velocity at the cross-section r=0.5 and their locations 

umin/max(r=const.,z); maximum and minimum values of the axial velocity at the cross-section z=0.5A and their 

locations wmin/max(r,z=const.; total kinetic energy of the flow Ekin; Nusselt numbers at the bottom Nubottom, side 

wall Nuwall, crystal surface Nucrystal, and free surface Nusurface; leading eigenvalue of the problem linearized in 

the vicinity of the corresponding steady state. It is seen that results obtained by the two codes are reasonably 
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close, however, do not coincide even to within the second decimal digit. This indicates on the absence of a 

complete convergence, which affects the stability results shown below. 

 

Table 1 Characteristic values for steady state flows at ∆T=1.0K and different Reynolds numbers. 
 

 Finite volume code (Israeli group), stretched grid 200×200 Finite element code (German group), 120×120 biquadratic 

elements 

Re 0 1000 5000 0 1000 5000 

ψmin /(rmin, zmin) -1.510 / (0.8100, 

0.3263) 

-2.070 / (0.6900, 

0.6797) 

-1.206 / (0.8652, 

0.1610) 

-1.502 / (0.7904, 

0.3246) 

-2.130 / (0.6701, 

0.6802) 

-1.203 / (0.8696, 

0.1597) 

ψmax /(rmax, zmax) 0.0 0.7079 / (0.1770, 

0.4600) 

26.71 / (0.7500, 

0.6087) 

0.0 0.7102 / (0.1798, 

0.4501) 

24.85 / (0.7450, 

0.6195) 

umin(r=0.5) / zmin -36.55 / 0.9183 -33.94 / 0.9183 -145.8 / 0.05774 -36.61 / 0.9013 -33.10 / 0.9104 -146.3 / 0.0611 

umax(r=0.5) / zmax 14.63 / 0.08736 11.83 / 0.08736 475.5/ 0.9075 15.02 / 0.0842 11.88 / 0.0860 478.3/ 0.9092 

wmin(z=0.5A) / rmin -231.8 / 0.0 -35.52 / 0.2631 -157.5 / 0.8577 -232.2 / 0.0 -35.40 / 0.2603 -155.5 / 0.8595 

wmax(z=0.5A) / rmax 15.76 / 0.9477 124.4 / 0.0 192.9 / 0.4039 15.78 / 0.9502 126.4 / 0.0 193.7 / 0.4014 

Ekin 80.92 54.83 4262. 83.92 55.89 4280.1 

Nubottom 1.575 1.499 0.7685 1.580 1.502 0.757 

Nuwall 1.246 1.185 7.306 1.231 1.155 7.352 

Nucrystal -2.784 -2.647 -8.053 -2.785 -2.634 -8.093 

Nusurface -0.036 -0.037 -0.0215 -0.026 -0.023 -0.016 

Leading eigenvalue (-0.06967, 0.1494) (-0.005880, 0.05768) (-0.25232, 0.1217) not calculated not calculated not calculated 

 

When the crystal is stationary (Re=0, Fig. 3a) the flow is driven by the buoyancy and thermocapillary forces, 

which create a counter-clockwise convective circulation. Note that this counter-clockwise motion would be 

created by each of the two forces separately, so that the two driving mechanisms enhance each other. This flow 

pattern is characterized by an intensive descending flow near the axis, where the temperature changes rapidly. 

This region is interpreted sometimes as a “cold jet” and is a source of the experimentally observed so-called 

“cold plumes” and “cold jet” instabilities [5,9]. We observe also the velocity boundary layer near the crucible 

wall. These two regions with rapid variation in the velocity and temperature make the calculations very 

demanding with respect to the numerical accuracy. 

With the increase of crystal rotation we observe the increasing action of centrifugal force, which tends to 

create a circulation in the clockwise direction, opposite to the convective circulation (Fig. 3b). At Re=1000 this 

splits the main circulation into two: the clockwise one located below the crystal and driven mainly by the 

centrifugal force, and the counter-clockwise one located below the free surface and driven mainly by the 

buoyancy and thermocapillary forces. Note that in this case the total kinetic energy and the total heat transfer 

through the cavity are both reduced compared to the case of a non-rotating crystal (Table 1). Regions of a rapid 

variation in the velocity and temperature also disappear, which makes the numerical calculations less 

demanding. Really, it follows from table 1 that results obtained by two codes are closer at Re=1000 and 5000 

than at Re=0. This seemingly surprising result is a sequence of a smearing of the boundary layer and the “cold 

jet” region by rotation. 

At very large Reynolds number the centrifugal force is dominant and the circulation rotates clockwise (Fig. 

3c). The flow pattern is similar to a so-called rotating disk – cylinder flow [10,11]. At large rotation rates we 

also observe a dramatic change in the shape of the isotherms caused by the strong effect of thermal convection. 

The total kinetic energy and the total heat transfer through the melt volume are dramatically increased. 

Obviously, this case should be considered as an extreme for the usual parameters of oxide crystal growth. 

However, it is important for understanding the stability properties of the flow, as well as being another 

representative case for numerical benchmarking. Note also that the boundary layers developing near the 

crucible wall (fig. 3c) again place greater demands on the computations. 

The comparison of path-following techniques of [4,8] used for calculation of steady states is shown in fig. 

4. The steady flows at ∆T = 0.27K and Reynolds numbers varied between 0 and 2000 where compared. The 

total kinetic energy of the flow was chosen to illustrate the parameter-dependence of the steady states and the 

comparison. The first observation of fig. 4 shows that the curves of German and Israeli groups are in very good 

agreement. For Re<1200 and Re>1600 we observe a single steady-state solution. In the interval 

1200≤Re≤1600 we observe two turning point bifurcations. Inside this interval the result is dependent on the 

initial conditions. Thus, for Re=1375 (shown by a vertical line in fig. 4) the first solution with the smallest 

kinetic energy is a stable steady state, the next one is unstable below the curve and is stable above it, and the 

third solution corresponds to a Hopf bifurcation point, i.e., onset of an oscillatory instability. The steady states 

at the third branch are stable at the right hand side of the curve and are unstable at the left hand side of it. Such 

instability can possibly lead to the spiral crystal formation. It should be noted that multiple solutions appear for 
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the values of Reynolds number characteristic for real crystal growth process. For example, Re=1375 

corresponds to the crystal rotation with the angular velocity of approximately 12 rpm. It should also be 

mentioned that the value of ∆T = 0.27K is much smaller than that applied in the oxide crystal growth 

equipment. Finally, it is stressed that the existence of multiple steady states and the dependence of the final 

state on the initial conditions is well-known for model convection and rotating flow. Several examples can be 

found in the review paper [12]. To the best of our knowledge, the multiplicity of steady state flows has not 

previously been reported for the CZ configuration.  
 

  
 

Fig. 4 Continuation diagram for control parameter Re for 

∆T=0.27K. 

 

Fig. 5 Stability diagrams of NaNO3-melt flow in a CZ-

crucible using a 80x80 FEM grid and a 120x120 FEM grid, 

respectively. 

 

Figure 5 shows an example of the grid-dependence study. With the help of direct numerical simulation (DNS 

starts from an initial guess in order to obtain a steady state or time-dependent solution.), which is very time 

consuming, we have calculated step by step two stability diagrams of the melt flow in a CZ crucible for two 

different FEM grids. Every point on the curves in figure 5 shows the last converged steady state solution for a 

certain parameter combination on a given grid. We can see that for small rotational Reynolds numbers the 

numerical simulations of this kind are strongly grid dependent. Apparently, this is the effect of steep velocity 

and temperature change near the crucible axis and the boundary layer close near the crucible wall. To retain the 

numerical accuracy we have to use a finer grid at small rotational Reynolds numbers. As mentioned above, 

calculations for larger Reynolds numbers converge at coarser grids because the boundary layers smear due to 

the action of the centrifugal force.  

Stability limits and unsteady flows Neutral stability curves corresponding to the oscillatory instability of 

steady state flows with respect to the axisymmetric perturbations are shown in figure 6. Preliminary results 

corresponding to the three-dimensional perturbations can be found in [4]. Here we focus mainly on the 

comparison exercise, which we start from the axisymmetric instability. The stability diagram in figure 6 shows 

the critical temperature difference ∆Tcr for different rotational Reynolds numbers. Below the stability curve the 

melt flow is linearly stable and is unstable above the curve. The solid and dashed curves in figure 7 show 

results of the stability study carried out by the German and Israeli groups, respectively. The curves are plotted 

through calculated Hopf bifurcation points in which the leading eigenvalues of the linearized stability problem 

appear as conjugate complex pairs having zero real parts. Hopf bifurcation points are origins of oscillatory 

solution branches (periodic orbits). 

For rotational Reynolds numbers Re>400 the results of both groups are in good agreement (Fig. 6). For 

small rotational Reynolds numbers Re< 400 the results of the two groups disagree. Reasons for this 

disagreement are not completely clear yet. Here we stress again that calculations at zero and small Reynolds 

numbers are more difficult, which is also reflected in the current disagreement. Possible reasons for the 

disagreement are grid dependence of different numerical approaches (FVM vs. FEM) or overlooking of the 

most dangerous eigenvalues. The last possibility always exists in such computations, since only a part of the 

spectrum is computed [4]. At the same time the good agreement obtained for Re>400 is important since these 

Reynolds numbers are close to the real oxide crystal growth conditions, where crystal rotation rates vary 

between 5 and 25 rpm (Re=5000 corresponds to 50 rpm). 
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Fig. 6 Stability curves for the critical temperature 

difference versus Reynolds number. 

 

Fig. 7 Time history of the kinetic energy norm of the flow 

for rotational Reynolds number Re=0 and ∆T=0.6K 

calculated with different time steps on the grid 100x100 by 

the finite volume method. (dashed line - ∆t=0.1, dash-and-

dot line - ∆t=0.01, solid line - ∆t  =0.001, symbols - 

∆t=0.0001). 

 

In carrying out time-dependent calculations one has to also consider the time-step dependence. Figure 7 

illustrates a possible effect of a too large time step. It is seen that a too large time step leads to a time-

asymptotic periodic solution that overestimates the oscillation amplitude and also affects its period. At the 

same time such a simple comparison allows us to conclude that there is no visible difference between the two 

smallest time steps used. The results obtained agree well with the oscillation period yielded by the linear 

stability analysis. We must also be aware that with the increase of ∆T or Re it will be necessary to reduce the 

time step further, and at some stage to repeat the convergence study. This example shows that time-dependent 

calculations done without a proper examination of the time-step dependence may lead to misleading 

conclusions. 

 
 

Fig. 8 Transient simulations for different rotational Reynolds numbers for constant ∆T=0.27K. Calculation 

by the finite volume method on 100×100 grid. 
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According to the stability diagram shown in figure 6 the flow at ∆T=0.27K and Re=1500 is oscillatory and 

remains oscillatory unstable at Re=1000. At Re=500 the steady state is oscillatory and unstable according to 

results of Israeli group (dash line in fig. 6), but is stable due to results of German group (solid line in fig. 6). 

This issue was investigated by time-dependent calculations, which started from oscillatory unstable state at 

Re=1500, and then the Reynolds number was abruptly reduced to the values of 1000 and 500. The results are 

shown in figures 8 and 9. 

Figure 8 shows the result of time-dependent calculations carried out by Israeli group. For Re=1500 and 

∆T=0.27K the oscillations become sinusoidal after a certain period of time. With the decrease of the Reynolds 

number to 1000 we still observe sinusoidal oscillations. In spite of the visible decrease in the total kinetic 

energy, the amplitude of oscillations remains almost unchanged. Further decrease in the Reynolds number to 

the value of 500 again leads to a decrease in the total kinetic energy. 

To compare time-dependent results we use phase plots that show change in the temperature and the axial 

velocity at the point r=0.13, z=0.8 over several oscillation periods (Fig. 9). The phase plots calculated by both 

groups with the established time-step convergence coincide for Re=1000, and agree only qualitatively for 

Re=500 and 1500. It shows again that the grid-dependence issue should be carefully checked when governing 

parameters are varied in large intervals. Another interesting observation is the oscillatory state at Re=500 

obtained by German group whch is in apparent conflict with the prediction of their stability diagram shown in 

figure 6. However, as shown in [6], this happens because of the simultaneous existence of stable steady state 

along with the oscillatory one.  

 

 

Fig. 9 Phase plots for different rotational 

Reynolds numbers at a position close to the 

solid liquid interface for ∆T=0.27K. 

 
 

4 Suggestion of a benchmark exercise 

The above results show the importance of the choice of the grid size and the time step for obtaining reliable 

results for computational modelling of melt flow in Czochralski growth of oxides and other large-Prandtl-

number materials. On the basis of these calculations, we propose a benchmark exercise that comprises three 

separate sets of comparisons related to calculation of steady states, analysis of their stability and calculation of 

supercritical oscillatory states. Taking the present problem formulation and values of A and Pr, and the 

dependence of Ma and Gr as given in section 2, the benchmark problems are defined as follows. 

Set 1: calculation of steady states 

1 to report data of table 1 (except the eigenvalue) for ∆T=1K and Re = 0, 500, 1000, and 1500  

2 to calculate the parameter-continuation diagram of figure 4. The purpose of this task is to validate the 

calculation of steady states and to establish the evidence of the existence of multiple steady states in the CZ 

melt flow. 

Set 2: stability analysis 

1 To calculate leading eigenvalues corresponding to the axisymmetric perturbations for ∆T=1K and Re = 0, 

500, 1000, and 1500. 
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2 To calculate marginal stability curve as shown in fig. 6 for axisymmetric instability of the flow. 

3 For the parameters of 2(i) consider three-dimensional perturbations and calculate leading eigenvalues for 

the azimuthal wavenumbers varying from 1 to 5 (for details see [4]). 

4 To calculate marginal stability curves as shown in fig. 6 for three-dimensional instability of the flow for the 

azimuthal wavenumbers varying from 1 to 5. 

Set 3: time-dependent calculations 

1 For ∆T=0.27K to perform unsteady time-dependent axisymmetric calculations with an abrupt increase of 

the Reynolds number from Re=50 to Re=100, 200, 300, 500, 1000, and 1500. Report the asymptotic 

steady or oscillatory state as a time history of the total kinetic energy.  

2 Repeat 3(i), but starting from the asymptotic state at Re=1500 and abruptly reducing the Reynolds number 

to Re=1000, 500, 300, 100 and 50. This exercise is aimed to check a possible existence of hysteresis 

phenomenon. In this way we can show that there exist simultaneously several oscillatory states or a steady 

and an oscillatory state. 

3 To perform fully 3D calculations for ∆T=0.7K and Re=0, and for ∆T=0.15K and Re=1000. Note, that 

these parameters are based on the results of [4], which yet to be validated. 
 

Note that the tasks of this benchmark partially repeat the tasks of three well-known benchmarks of convection 

flows in rectangular cavities [13-15], which dealt with steady states [13], oscillatory instability [14], and 

slightly supercritical oscillatory flows [15]. The benchmark quality data for a rotating disk – cylinder flow is 

also established. The benchmark proposed here considers much more complicated flow, which, according to 

our numerical experience, is much more demanding with respect to the required numerical accuracy. 

Additionally, it is directly related to the CZ growth of oxide crystals and may be interesting to a wide 

community of researchers that do not deal with numerical methods and use commercial codes for their research 

needs. 

5 Concluding remarks 

Steady states, their stability and slightly supercritical oscillatory states of a model of CZ melt flow were studied 

numerically by two independent numerical approaches. It has been argued that spiral instabilities observed in 

the growth of rare-earth scandates are caused by instabilities in the melt flows. The set of computations 

reported here shows how the flow patterns change with the increase of crystal rotation rate, at which 

parameters the oscillatory instability of the flow sets in and how it develops at slightly supercritical parameters. 

The existence of multiple steady and oscillatory flow states means that for a transient CZ growth the final 

asymptotic flow state depends on the initial conditions, i.e. on the history of the process. This is in agreement 

with the previous observations made for simplified flow models [12] and should be taken into account in the 

research and development of CZ crystal growth processes. 

We showed here that computational modelling of large-Prandtl-number CZ melt flows is extremely 

demanding with regard to numerical accuracy. The two numerical approaches applied here showed good 

agreement in most of the comparisons done. However, there is some disagreement that has to be resolved in 

our future studies or by comparison with other independent studies. For the latter purpose we propose here a 

benchmark exercise that includes comparisons for steady and oscillatory flows, as well as for the stability 

results that partially disagree. 
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