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The three-dimensional linearized optimal energy growth mechanism, in plane parallel
shear flows, is re-examined in terms of the role of vortex stretching and the
interplay between the spanwise vorticity and the planar divergent components. For
high Reynolds numbers the structure of the optimal perturbations in Couette, Poiseuille
and mixing-layer shear profiles is robust and resembles localized plane waves in
regions where the background shear is large. The waves are tilted with the shear
when the spanwise vorticity and the planar divergence fields are in (out of) phase
when the background shear is positive (negative). A minimal model is derived to
explain how this configuration enables simultaneous growth of the two fields, and how
this mutual amplification affects the optimal energy growth. This perspective provides
an understanding of the three-dimensional growth solely from the two-dimensional
dynamics on the shear plane.
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1. Introduction
It is well-known that three-dimensional (3D) perturbations at incompressible, high

Reynolds number, on plane parallel shear flows, attain non-modal growth which may
be much larger than the growth attained by two-dimensional (2D) perturbations that
are confined to the shear plane, e.g. Butler & Farrell (1992) and Reddy & Henningson
(1993) for Couette and Poiseuille shear flows. The 3D growth appears at later stages
when the perturbations are tilted with the background shear. This stands in contrast to
the 2D optimal growth which is obtained when the perturbations are tilted against the
shear. In 2D, the perturbation in the energy norm grows via the Orr mechanism, Orr
(1907), and in the presence of an inflection point, by the action at a distance between
counter-propagating Rossby waves, Heifetz & Methven (2005). The 3D growth
mechanism is commonly rationalized by the lift-up mechanism, Ellingsen & Palm
(1975), Landahl (1980), Schmid & Henningson (2001), which can also be viewed as a
tilt-up of the spanwise background vorticity by the cross-stream perturbation velocity,
Farrell & Ioannou (1993). This explanation follows the mathematical procedure by
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which the dynamics is usually resolved: a homogeneous equation for the cross-stream
velocity is derived, and the spanwise variation of this velocity serves as a source
for the tilt-up of the background vorticity. However, since in planar 2D dynamics
there is no spanwise variation and the cross-stream vorticity is zero by definition,
it is difficult to compare the 2D and the 3D optimal dynamics from the lift-up
perspective.

Nonetheless, the third dimension adds a fundamental mechanism which is absent
from strictly 2D flow: the background shear vorticity (pointing by definition in the
spanwise direction) may be stretched due to contraction of areas in the shear plane by
the planar divergence of the shear plane projection of the perturbation field (d). This
implies generation of the spanwise component of the vorticity perturbation (q). Thus,
the perturbation divergence and vorticity scalar fields evolve together, and we expect
optimal growth to occur when the interplay between d and q results in a simultaneous
growth of the two fields. Since the circulation associated with q is on the shear plane,
the interplay between d and q is expected to provide an understanding of the 3D
optimal growth solely in terms of the 2D planar perturbation dynamics.

In § 2 we show that it is a robust feature that the largest 3D growth is obtained
when d and q are in (anti) phase in regions of positive (negative) mean shear.
Furthermore, the fastest growing perturbations resemble localized plane waves that
are tilted with the local maximal shear and this behaviour is insensitive to the shear
curvature. In § 3 we therefore derive a plane-wave minimal model for the interplay
between d and q in the presence of a constant background shear. In § 4 the optimal
growth in the energy norm is analysed from this d–q perspective, and in § 5 we
conclude and discuss our results.

2. Numerical comparison between 2D and 3D growth
We define the Cartesian coordinates r = (xi, yj, zk) as the (streamwise, cross-

stream, spanwise) directions so that the background shear velocity is U = U(y)i,
the perturbation velocity vector is u = (u, v,w), the perturbation spanwise vorticity
is q = (∂v/∂x) − (∂u/∂y), and the 2D divergence field on the shear plane is
d = (∂u/∂x)+ (∂v/∂y).

In figure 1 we present the optimal evolutions of 2D and 3D perturbations in
plane parallel bounded Couette and Poiseuille shear flows, as well as in an open
mixing-layer profile for relatively high Reynolds numbers (Re = 5000, 1000, 5000,
respectively), but below the critical values enabling modal instability. The first
two examples are in excellent agreement with the results of Reddy & Henningson
(1993), whereas the calculations of the last are new (to the best of our knowledge).
The optimal vectors of the perturbations are represented as Fourier modes in the
streamwise and spanwise directions (∝ ei(kx+mz)). In the cross-stream direction the
perturbations are discretized and resolved by central finite-difference schemes in the
same way as in Gelfgat & Kit (2006). For the three profiles the 3D maximal growths
are indeed larger by an order of magnitude than the corresponding 2D ones, and are
attained at later stages. The q contours indicate that in all cases the eddies are initially
tilted against the shear, and then they evolve to become more aligned.

The major difference between the growth evolution of 2D and 3D flows is that
in the former, the maximum energy value is obtained when the eddies are aligned
perpendicular to the shear, whereas in the latter it is obtained when the eddies are
tilted with the shear. For the 3D perturbations, the contours of d are superimposed
(for 2D perturbations d is zero since incompressibility is assumed). It is evident for
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FIGURE 1. For caption see next page.

the three profiles that when the eddies experience their largest 3D growth, d and q
are in (anti) phase when the mean shear is positive (negative), and the perturbation
structures resemble localized plane waves that are tilted with the local maximal shear.
These structures are robust and were found in many different Fourier modes of the
three canonical profiles. Therefore, it seems that at the stage of optimal growth the
exact curvature of the shear profile is not very important. Furthermore, the effect of
rigid boundaries is not essential as the plane-wave-like structures are located well
within the domain. Since the Reynolds numbers are relatively high, dissipation also
has a relatively small effect during the growth stage. Thus, in the following section the
essence of the d–q interaction is examined in a minimal model of an inviscid plane
wave in the presence of a constant unbounded background shear.



372 H. Vitoshkin, E. Heifetz, A. Yu. Gelfgat and N. Harnik

t

q q

qqq

y

x

1000

2000

3000

4000

5000

0 20 40 60
–1.0

0 0

0.5

1.0

1.0

–0.5

y

y

–1.0

0.5

1.0

–0.5

80
–40

–120

0 5 10
x

0 5 10

–160

0 5 10 15 0 5 10 15

0

0.5

–0.5

y
60

–40
–80

0 5 10 15

1.0

0 0

0.5

–0.5

y

1.0

0.5

–0.5

3000
–2000
–4000

x x x

–150

100
–50

107
–53

(c)

2D

3D

FIGURE 1. (cntd). Optimal energy growth for 2D and 3D perturbations on Couette (a)
Poiseuille (b) and mixing layer (c) plane parallel shear flows for relatively high Reynolds
numbers (Re = 5000, 1000, 5000, respectively). The different streamwise and spanwise
wavenumbers (k,m) are selected to generate maximal non-modal growth. Solid curves
indicate the energy growth evolution, E(t), from the initial optimal perturbations. Note that
E3Dmax � E2Dmax and t3Dmax > t2Dmax , where tmax is the time of maximal amplification over
all times. The structure of the optimal perturbations at selected times is indicated by the
contours of the spanwise vorticity q. For the 3D perturbations the planar divergent field d is
superimposed and indicated by the solid (positive) and dashed (negative) contours. Note that
in 2D, Emax is obtained when the eddies are aligned perpendicular to the shear, whereas in 3D
it occurs when the eddies are tilted with the shear, and d and q are in (anti) phase when the
mean shear is positive (negative). Furthermore, the structures resemble localized plane waves
that are tilted with the local maximal shear.

3. An analytical model of 3D plane-wave growth in constant shear
We consider an unbounded Eulerian flow with a constant background shear

U(y) = Λy, where Λ = (∂U/∂y) = −q, and q is the background vorticity, pointing
in the spanwise direction. Since in most regions of the three canonical examples the
background shear is positive, Λ is taken to be a positive constant and therefore the
background spanwise vorticity q is negative. The linearized eddy momentum equation
can then be written as:

Du
Dt
=−∇p−Λvi (3.1)

where p is the perturbation pressure divided by the constant density of the flow, and
D/Dt = (∂/∂t)+Λy((∂/∂x)) is the linearized Lagrangian derivative.

In the absence of dissipation, conservation of circulation implies that when d is
positive the absolute value of the spanwise vorticity decreases. Since q is negative, a
positive anomaly of q should be generated when d is positive (figure 2a):

Dq

Dt
=Λd. (3.2)
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FIGURE 2. (Colour online) Graphical interpretation of the dynamical processes described in
(3.2)–(3.4). Doubled and bold single arrows represent the background and the perturbation
flows, respectively. Dashed arrows represent the result of the process. (a) Equation (3.2):
conservation of circulation implies that an area expansion in the shear plane by the
planar divergent field perturbation d decreases the spanwise vorticity. Since the background
vorticity q is negative, expansion generates a positive spanwise vorticity perturbation q.
(b) The second term on the right-hand side of (3.3) for (∂v/∂x) < 0: generation of
d by differential advection of the mean flow by the cross-stream perturbation velocity
(b.I), together with differential advection of the cross-stream perturbation velocity by
the mean flow (b.II). Equation (3.4) and incompressibility imply that expansion in the
shear plane results in a shrinking in the spanwise direction, due to a negative pressure
perturbation. Therefore, for a positive background shear sign(p) = sign((∂v/∂x)) and
the two terms on the right-hand side of (3.3) are of opposite sign, with the latter
dominating.

Thus, in order to obtain growth in q, q and d should be positively correlated. On the
other hand, the divergence tendency equation, obtained from (3.1), is:

Dd

Dt
=−∇2

2 p− 2Λ
∂v

∂x
(3.3)

where ∇2
2 = (∂/∂x2) + (∂/∂y2) is the 2D Laplacian on the shear plane. The first

term on the right-hand side indicates that d will grow when the planar Laplacian
of the pressure anomaly is positive. The second term shows the contribution of
differential advection to d. The factor of 2 stems from the separate contributions of the
differential advection of the mean flow by the cross-stream perturbation velocity, and
the differential advection of the cross-stream perturbation velocity by the mean flow
(figure 2b). Incompressibility (∇ · u = 0) determines, however, that when d increases



374 H. Vitoshkin, E. Heifetz, A. Yu. Gelfgat and N. Harnik

the pressure anomaly is negative since:

Dd

Dt
=− D

Dt

∂w

∂z
= ∂2p

∂z2
. (3.4)

This somewhat counter-intuitive behaviour is simply because a divergent motion in the
shear plane must be accompanied by a shrinking in the spanwise direction. The latter
can only result from a negative pressure anomaly. This implies that the two terms on
the right-hand side of (3.3) must be of opposite sign, with the latter dominating.

The 2D shear-deformed plane-wave solution, presented originally by Orr (1907), can
be generalized straightforwardly to 3D: χ(r, t) = χ̂(t)eiK· r, where the 3D wavenumber
vector K = (k, l = l0 − kΛt,m), and Dχ/Dt = (dχ̂/dt)eiK· r. Then the right-hand side
of (3.3) can be expressed in terms of q and d. Since (3.3) and (3.4) yield the
diagnostic relation, ∇2p=−2Λ(∂v/∂x), we can write:

Dd

Dt
=−2Λ

(
m

|K |
)2
∂v

∂x
. (3.5)

It is now left to express v in terms of q and d by applying the 2D Helmholtz
decomposition:

u= ud + uq = ∂φ

∂x
− ∂ψ

∂y
, v = vd + vq = ∂φ

∂y
+ ∂ψ

∂x
(3.6a,b)

so that

d =∇2
2φ, q=∇2

2ψ. (3.7a,b)

Equations (3.2) and (3.5) now determine the plane-wave d–q dynamics:

dq̂

dt
=Λd̂,

dd̂

dt
=−2Λ

(
m

|K |
)2 k

(k2 + l2)
(ld̂ + kq̂) (3.8a,b)

where the general solution of (3.8) is given, for completeness, in the Appendix.
We look for configurations allowing simultaneous growth in both q and d. As

pointed out, (3.8a) implies that q and d must be positively correlated. For positive
streamwise wavenumber k (by construction), (3.8b) indicates that −(∂vq/∂x) is always
negative for positive q, hence while d acts to increase q, q acts to decrease d.
Therefore, only the cross-stream velocity vd, induced by the divergent field itself,
can contribute to the divergent growth. Equation (3.8b) and figure 3 indicate that this
may happen only when l is negative, that is when the plane wave is tilted with the
shear, i.e. later than t = l0/(kΛ).

The d–q dynamics are reflected in the energy growth mechanism via the Reynolds
stress term. The spatially averaged perturbation energy growth, obtained from the
momentum equation (3.1), is:

∂

∂t
〈E〉 = −Λ〈uv〉, E = |u|

2

2
(3.9a,b)

where 〈 〉 represents spatial averaging, and

−〈uv〉 = −〈(uq + ud)(vq + vd)〉 = −〈(uqvq + udvd + uqvd + udvq)〉
= 1

2 (k2 + l2)
2
[kl |q̂|2−kl |d̂|2+l2Re(q̂d̂∗)− k2Re(d̂q̂∗)] (3.10)
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FIGURE 3. Planar divergent and rotational contributions to the 3D energy growth via the
Reynolds stress mechanism, for eddies with positive spanwise vorticity, positive planar
divergence and negative pressure perturbations. The contributions are illustrated for both
where the eddies are tilted against and with the shear. The rotational Orr term, −〈uqvq〉, is
positive (negative) for negative (positive) tilt, and the divergent term, −〈udvd〉, is positive
(negative) for positive (negative) tilt. The sign of the first mixed q–d term, −〈uqvd〉, is
always positive, whereas the second mixed d–q term, −〈udvq〉, is always negative. When
the eddies are strongly tilted with the shear the latter term dominates and generates large
growth that overwhelms the strong decay by the Orr mechanism. Furthermore, when the
eddies are strongly tilted, (∂v/∂x) < 0, and simultaneous growth for both d and q is obtained.

where * and Re denote the complex-conjugate and the real part, respectively. The
first term represents the 2D Orr mechanism which is positive (negative) when l is
positive (negative), whereas the second term represents the ability of the divergent
field to amplify (decay) itself for negative (positive) l. If q and d are in phase,

[Re(q̂d̂∗) = Re(d̂q̂∗) = |q̂||d̂|], the third mixed term is always positive but the fourth
one is always negative. The signs of the different terms are evident as well from
figure 3.

4. Optimal d–q dynamics in the canonical profiles
The analysis in the previous section suggests that the structure of the optimal

evolution in the early and intermediate stages should not take the form of a plane wave
since when l > 0, the increasing of q by d is accompanied by a decreasing of d by
both q and d. Indeed, as indicated from figure 1, during these stages d and q depart
from each other and do not resemble a plane-wave structure. This uneven interaction is
expected to generate a much larger growth in q than in d, as presented in figure 4(a).
In figure 4(b) the evolution of the cosine of phase shift between d and q is shown
at levels where the shear is strong. Initially d and q are in phase; however while d
amplifies q, both q and d act to decay d so that at some stage d changes sign and
q and d become anti-phased, and then d acts to decay q. Nonetheless, at the later
stage of maximum growth, q and d return to being in phase and a mutual growth is
obtained when the plane-wave-like structures are tilted with the shear. Note that for a
non-constant shear, (3.2) should be modified to Dq/Dt =Λd + v(∂2U/∂y2). The latter
additional term is the advection of the mean flow vorticity by the cross-stream velocity
perturbation. It is vital for the 2D optimal growth mechanism in the presence of an
inflection point, e.g. Heifetz & Methven (2005); however, in figure 4(c) we can see
that this term contributes almost nothing to the 3D growth mechanism.
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FIGURE 4. (Colour online) 3D growth of the planar divergent (d) and the spanwise vorticity
(q) terms for the cases presented in figure 1, for Couette (solid), Poiseuille (long-dashed) and
mixing-layer (short-dashed) profiles. (a) Evolution of the absolute values of the two fields. (b)
The cosine of the phase shift between d and q at three selected levels (far enough from the
boundaries) where the shear is positive and large. (c) Comparison between the two sources for
growth of q, when the shear curvature is taken into account.

We now wish to focus on how the interplay between d and q affects the energy
growth. Toward this end we invert d and q numerically to compute φ = ∇−2

2 d,
and ψ = ∇−2

2 q in order to derive the divergent and vorticity-induced velocity fields
according to (3.6). The contributions of the four terms of (3.10) to the energy growth
are then computed and presented in figure 5.

A similar qualitative behaviour is identified for the three profiles. At the beginning,
when the growth is mainly 2D, the Orr mechanism −〈uqvq〉 dominates. Later on,
when d amplifies q, the Orr mechanism increases accordingly but contributes toward
a decay of the energy since the plane-wave-like structures are tilted with the shear.
Hence for 3D growth, the Orr mechanism is mostly an energy sink rather than a
source. At this stage the pure divergent contribution, −〈udvd〉, is positive as expected;
however this contribution is relatively small since d itself remains small. It is clear
from figure 5, and from the eddy geometry (figure 3), that the mixed term, −〈uqvd〉,
should be positive and large when the eddies are tilted strongly with the shear (the
larger −l becomes). This mixed term is responsible for most of the 3D optimal
energy growth and is able to overwhelm the large negative contribution of the Orr
mechanism. The last combined term, −〈udvq〉, is negative but relatively small since by
then k 	 |l|. For comparison, for the 2D bounded Couette flow the amplitude of q
remains constant (apart from small dissipation), and therefore energy growth and decay
by the Orr mechanism should be almost symmetric. In figure 5 we also show the
evolution of −〈uqvq〉 for the 2D case presented in figure 1. It indeed maximizes when
the eddies are tilted against the shear in an angle of π/4, vanishes when they become
perpendicular to the shear and finally becomes negative, in an antisymmetric fashion,
when tilted with the shear.

5. Conclusions and discussion
The energy growth mechanism which results from the Reynolds stress,

〈−uv(∂U/∂y)〉, involves only the 2D shear plane dynamics, and is the same whether
or not the perturbation itself is 2D or 3D. Nonetheless, the behaviour of the optimal
energy growth in 2D is very different from that in 3D. This motivates us to re-examine
the problem and seek an understanding which involves only the dynamics on the
shear plane.
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FIGURE 5. (Colour online) The various components of the Reynolds stress for the three
3D examples presented in figure 1: (a) Couette flow, (b) Poiseuiile flow, (c) mixing-layer
flow. The behaviour is robust: at the beginning of the evolution, when the eddies are tilted
against the shear, the growth is dominated by the Orr term, −〈uqvq〉. When the eddies are
turned to be tilted with the shear the Orr mechanism becomes the major energy sink (for the
2D dynamics in the Couette profile the Orr term is the only source for the Reynolds stress
and it is presented for comparison in (a)). The pure divergent contribution, −〈udvd〉, turns
from being negative to positive but remains small, while the mixed divergent rotational term,
−〈udvq〉, changes sign from positive to negative but remains small as well. It is the other
mixed term, −〈uqvd〉, that becomes positive and large as the eddies become strongly tilted
with the shear. Indeed the latter term is responsible for the large 3D optimal growth.

For incompressible flow the 2D dynamics results only from the rotational
component (the spanwise vorticity) of the flow, whereas in 3D it results from both the
rotational and the divergent components on the shear plane. A mutual growth of these
two components explains why the 3D optimal growth is much larger than the 2D one.
Numerical computations of the optimal dynamics for three different canonical profiles
of plane parallel shear flows (Couette, Poiseuille, and mixing layer) reveal a generic
behaviour of the perturbations at the stage of maximal growth. The perturbations are
then organized as localized plane waves, in regions where the background shear is
the largest. Furthermore, the waves are tilted with the shear, and the planar vorticity
and divergence fields are in (out of) phase when the background shear is positive
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(negative). This picture is very different from the optimal growth of 2D perturbations
where energy grows when eddies are tilted against the shear.

While the divergent field affects the rotational one by vortex stretching in a
straightforward manner, the growth mechanism of the planar divergent field is less
obvious. It occurs when the pressure perturbation is negative and results both from
a differential advection of background momentum by the perturbation field, and from
a differential advection of perturbation momentum by the background flow. Indeed, a
minimal model of a plane wave in an unbounded constant shear shows that mutual
amplification of the divergent and rotational components may occur only when the
waves are tilted with the shear. Such mutual growth is not enough by itself to ensure
a large energy growth since the rotational Orr mechanism yields energy decay when
the eddies are tilted with the shear. Decomposing the Reynolds stress in terms of the
various contributions from the divergent and the rotational fields indicates that during
the optimal evolution the mixed term 〈−uqvd(∂U/∂y)〉 dominates the energy growth
and overwhelms the decaying effect of the Orr mechanism.

The divergent–rotational interplay seems to occur in more complex setups. Pradeep
& Hussain (2006) showed that there are two distinct mechanisms for transient growth
in a vortex column: the 2D Orr mechanism and the growth of azimuthal stretching
of spiral vortex filaments containing radial vorticity. From inspecting their simulations
it seems that this mechanism is indeed the divergent–rotational one and it occurs
when the filaments are tilted with the shear. In a following paper Hussain, Pradeep
& Stout (2011) examined the nonlinear transient growth in a vortex column and
found that the same 3D mechanism is responsible for the initial transient growth
that generates new vortex threads, and hence leads to a cyclical energy growth that
might sustain turbulence. Furthermore, Mao, Sherwin & Blackburn (2012) performed
direct numerical simulations showing that the optimal 3D perturbation may cause a
co-rotating vortex pair system to break up before a 2D merging occurs. It is interesting
to examine whether the divergent–rotational interplay is responsible for this large 3D
growth mechanism. Moreover, a 2D analogue of the 3D divergent–rotational interplay
may occur in a 2D compressible flow. Chagelishvili et al. (1997), Farrell & Ioannou
(2000) and Bakas (2009) showed that compressibility indeed leads to extraction of
energy when the Orr waves are tilted with the shear.

The representation of the transient growth in terms of a mutual growth between
the divergent and the rotational components can have direct implications for quasi-
2D geophysical fluid dynamics where the rotational and the divergent (stretching)
components are combined into a single variable – the potential vorticity (PV). Since
transient growth occurs generically in such flows, and the nonlinear lifecycles of
vortices, waves and jets are commonly analysed from the PV perspective, e.g. Methven
et al. (2005), it will be interesting to decompose the non-modal PV dynamics and
examine explicitly the interplay between the rotational and divergent components
during the optimal evolution.

Since the Reynolds stress is the instantaneous source for energy growth in
incompressible nonlinear flows, the linear analysis of optimal dynamics presented here
may also have some relevance to nonlinear processes. We have shown that the vortex
stretching mechanism which acts only in 3D, leads to the fundamentally different
energy growth dynamics in 3D compared to 2D. Furthermore, vortex stretching also
leads to the basic difference in the direction of energy cascade in 2D and 3D flows.
One might argue then that in 2D, the Orr mechanism contributes to the inverse cascade
since the maximum energy is attained when the cross-stream wavenumber vanishes, so
that the total wavenumber decreases. In contrast, in 3D, the vortex stretching dynamics
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FIGURE 6. (Colour online) Same as in figure 5 but for the plane-wave solution of (A 1)
and (A 2). The initial perturbation is normalized by the energy norm. The streamwise and
spanwise wavenumbers (k,m) = (0.5, 1), are as in the example for the Couette flow in
figure 1. The initial cross-stream wavenumber is l0 = kΛtperp = 9, where Λtperp = 18 is the
normalized time by which the eddy streamwise vorticity contours become untilted in the
bounded Couette simulation, presented in figure 1. At the stage of maximal growth figures 5
and 6 present a similar qualitative behaviour.

leads to amplification of energy when the cross-stream wavenumber is large, in line
with the direct cascade mechanism.

Appendix. Analytical solution of a sheared plane wave in unbounded Couette
flow

Define K 2
V ≡ (k2 + m2), then the solution for (3.8) is:

q̂(t)= q̂0 + d̂0Λt − m2p̂0

2k2Λ

K4
0

K2
V

×
(
Λkl0

K2
0

t + l

|KV |
[

arctan

(
l

|KV |
)
− arctan

(
l0

|KV |
)])

, (A 1)

d̂(t)= d̂0 + m2p̂0

2kΛ

K 4
0

K 2
V

×
(

l

K2
− l0

K0
2
+ 1

|KV |
[

arctan

(
l

|KV |
)
− arctan

(
l0

|Kv|
)])

, (A 2)

where p̂= (|K0|/|K |)4 p̂0, and v̂ = (|K0|/|K |)2 v̂0.
As an example, the different components of the energy growth are presented in

figure 6 for the plane-wave solution. The background shear and the streamwise and
spanwise wavenumbers (k,m) = (0.5, 1), are the same as in figure 1 for the 3D
bounded Couette flow example. The initial cross-stream wavenumber l0 = kΛtperp = 9,
is chosen so that l = 0 corresponds to the normalized time Λtperp = 18, at which the
optimal perturbation spanwise vorticity contours become perpendicular to the shear.
Comparison between figures 5(a) and 6 reveals that, as expected, the plane wave
does not mimic the energy growth when it is tilted against the shear. Nonetheless,
at the stage of maximum growth the essence of the behaviour is similar, where
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the mixed d–q term, 〈−uqvdΛ〉, overwhelms the negative contribution of the Orr
mechanism 〈−uqvqΛ〉.
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