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Abstract. Factorization of the incompressible Stokes operator linking pressure and ve-
locity is revisited. The main purpose is to use the inverse of the Stokes operator with a
large time step as a preconditioner for Newton and Arnoldi iterations applied to com-
putation of steady three-dimensional flows and study of their stability. It is shown
that the Stokes operator can be inversed within an acceptable computational effort.
This inverse includes fast direct inverses of several Helmholtz operators and iterative
inverse of the pressure matrix. It is shown, additionally, that fast direct solvers can be
attractive for the inverse of the Helmholtz and Laplace operators on fine grids and at
large Reynolds numbers, as well as for other problems where convergence of iterative
methods slows down. Implementation of the Stokes operator inverse to time-stepping-
based formulation of the Newton and Arnoldi iterations is discussed.
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1 Introduction

This study is motivated by many successful applications of an inverse Stokes operator
as preconditioners for steady state Newton solvers and Arnoldi eigensolvers [1, 2]. The
Stokes operator inverse is considered as an intrinsic part of a pressure/velocity coupled
time-dependent Navier-Stokes solver, which connects between time-dependent calcula-
tions and direct numerical solution for steady states and their stability. For examples of
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a successful use of this technique and results on multiplicity and stability of various flow
states we refer to [3–6] and references therein. An extension of this approach for calcu-
lation of leading eigenvalues in a prescribed frequency range is proposed in the recent
paper [7]. A further extension to study of non-modal optimal disturbances growth is
described in [8].

To become an effective preconditioner and to be applied as in [1–8] to large Reynolds
number flows, the Stokes operator must be evaluated with a large time step. The lat-
ter becomes especially difficult when three-dimensional flows are studied on fine grids
making most of traditional iterative methods to converge unacceptably slowly. In par-
ticular, we are interested in coupled incompressible pressure-velocity solvers, which are
more computationally demanding than segregated ones, but possess important advan-
tages: more stable time integration, correct calculation of pressure at each time step, and
a possibility to proceed without pressure boundary conditions. Applied as precondition-
ers to Newton and Arnoldi solvers the coupled methods are expected to perform well if
the Stokes operator with a large time step can be inversed within a relatively short CPU
time. Considering 2D stability problems one can apply a direct sparse solver to inverse
the 2D Stokes operator [9], however this becomes too memory demanding for fine three-
dimensional grids. A similar approach with the same restrictions in 3D cases was imple-
mented in [10] for explicitly calculated Jacobian matrices. At the same time, our recent
pressure-velocity coupled multigrid solver [11], which performs well at small time steps
fails to converge at large steps needed for 3D stability studies [10,11]. Based on the above
experience, in this paper we recall the well-known factorization of the Stokes operator,
which we use for computation of its inverse, applying fast direct methods where possi-
ble. Using the finite volume method, we arrive to an analog of the Uzawa scheme [12],
in which only one matrix, called ”pressure matrix” has to be inversed iteratively. As a
result, we arrive to a time-stepping method, which may be too CPU-time consuming for
a straight-forward time-integration, but yields the inverse of the Stokes operator with a
large time step, for which we are seeking.

Another important observation of this study relates to fully three-dimensional time-
dependent CFD modelling at very large Reynolds numbers, where all the known iterative
methods slow down or fail. Here we observe that for calculation on fine grids and at large
Reynolds numbers the eigenvalue decomposition based direct solver [13] becomes more
efficient than iterative solvers. Since computational requirements of the direct solver do
not depend on the time step and Reynolds number, all the time steps are completed
within the same CPU time, which is an attractive feature by itself. This observation is
not completely new, but the fact still is not widely recognized. We show also that the
eigenvalue decomposition based direct solver allows for an efficient parallelization in a
distributed memory multiprocessor computer.

As a preliminary step, we examine computational performance of the above direct
solver when implemented in a pressure-velocity segregated time-integration solver. We
consider a series of well-known natural convection benchmarks for the purpose of com-
paring performance of the direct solvers with that of an iterative method. We have chosen
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the BiCGstab(2) iteration as a representative example of modern Krylov-subspace-based
iteration methods. Our test calculations show that the direct methods perform better
than BiCGstab(2) on fine grids and for problems with large Reynolds or Grashof num-
bers. The same conclusion holds for geometric agglomerated multigrid (GAMG) solver
implemented in the OpenFoam package. Since performance of the direct method is inde-
pendent of problem governing parameters and the time step size, we argue that they can
be attractive not only as a part of the Stokes operator inverse, but also for computations
at large Reynolds numbers with a high spatial resolution.

The above test calculations allow us, in particular, to estimate computational cost of
inverse of the Helmholtz operators needed for the inverse of the Stokes operator. We ob-
serve that at small time steps, i.e., for the straight-forward time integration, the pressure
Laplacian inversed by the fast direct method can be a good preconditioner. The precon-
ditioned BiCGstab(2) iteration converges in 2-3 iterations for small time steps and within
6-8 iterations for large ones, which we consider as an acceptable performance.

Finally, we perform a test calculation for the time-stepping based Newton steady
solver and Arnoldi eigensolver. These computations show that the present approach
removes the memory restrictions of the technique proposed in [9], however remains too
slow on a scalar computer. It is shown that in contrast to computations of [10], the present
approach is efficiently scalable, so that a competitive performance for three-dimensional
problems can be expected if massively parallel computations are involved.

2 Symbolic factorization of the Stokes operator

Consider numerical semi-implicit time integration of the incompressible Navier-Stokes
equations where linear pressure and velocity terms are treated implicitly and all the other
terms - explicitly. Independently on a spatial discretization this leads to a system of linear
algebraic equations with the Stokes operator that links velocity and pressure. The Stokes
operator acting on velocity v=(u,v,w) and pressure p can be expressed as
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Here ∇x, ∇y and ∇z are the first derivatives in the x-, y- and z- directions and H=∆−I/δt
are Helmholtz operators. ∆ is the Laplacian operator, I is the identity operator and δt is
the time step. The lower indices show on which variable an operator acts. The right hand
sides contain the non-linear terms and all other terms that are treated explicitly. The left
hand side 4×4 operator matrix assembles the 3D Stokes operator.

For any spatial discretization, we can associate the vector of unknowns in Eq. (2.1)
with a vector assembled from all scalar unknowns of the problem, and the operators of
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the left hand sides as matrices containing a discretization of the corresponding opera-
tor. By assigning the lower indices, we also take into account a possibility of different
boundary conditions, as well as discretization of different terms, which takes place, e.g.,
on staggered grids. Therefore, in all further considerations we assume that Hu 6=Hv 6=Hw,
∇x

u 6=∇x
p, ∇

y
v 6=∇

y
p, and ∇z

w 6=∇z
p.

Treating the Stokes operator as a 4×4 matrix, we derive its LU decomposition. As-
signing identity operators to the main diagonal of L yields:
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where
C=∇x

uH−1
u ∇x

p+∇
y
vH−1
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p. (2.3)

It can be easily shown that assigning identity matrices to the main diagonal of U, or
application of the Sherman-Morrison-Woodbury formula, or Schur complement equation
lead to an equivalent result. The matrix C is an analog of the Schur complement matrix
(or Uzawa matrix), which arises in the well-known Uzawa method [12, 20]. Our matrix
C, however, is different since we took into account that velocity divergence and pressure
gradient operators on staggered grids act on variables defined at different nodes and also
result at different nodes. Therefore, these operators cannot always be connected via the
transpose operation. Additionally, computation of the divergence in the whole flow re-
gion involves velocity boundary values, while computation of the pressure gradient does
not use pressure boundary values. Contrarily to the Uzawa matrix, which is symmetric
and positive semi defined [20], the matrix C is not necessarily symmetric and its positive
definition should be examined for each scheme separately.

It is well known that the Uzawa method usually is not applied directly, but is used
as a starting point for definition of various segregated pressure-velocity solvers [12, 20].
We, however, are interested in the implementation of the Stokes operator factorization
directly. Using Eqs. (2.2) and (2.3) the solution is obtained in three steps:

Algorithm 2.1:

1. Solve û=H−1
u Ru, v̂=H−1

v Rv and ŵ=H−1
w Rv for û, v̂ and ŵ.

2. Solve p=−C−1(∇x
uû+∇

y
v v̂+∇z

vŵ) for p.

3. Solve u= û+H−1
u ∇x

p p, v= v̂+H−1
v ∇

y
p p, and w= ŵ+H−1

w ∇z
p p.

Thus, calculation of the solution of a 3D problem (2.1) requires 6 inverses of the
Helmholtz operator and one inverse of the matrix C. Since the matrix C defines solu-
tion for the pressure, we call it “pressure matrix”. Note, that if to assume very small time
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step δt, and at the steps 2 and 3, as well as in Eqs. (2.1)-(2.3) apply H ≈ I/δt, the opera-
tor C turns into the Laplacian of pressure, and step 3 can be interpreted as a projection
of intermediate solution (û, v̂, ŵ ) on the divergence-free space. Thus, we arrive to the
standard Chorin’s projection method.

For the fully coupled implementation of the steps 1-3, one needs inverse of the Helm-
holtz operators and of the pressure matrix C. The inverse of the Helmholtz operators
is usually a part of a pressure-velocity segregated code. Since at small time steps, the
Helmholtz operator is close to the identity operator, its iterative inverse typically does
not involve any numerical difficulties. As it was mentioned above, in some applica-
tions involving Newton and Arnoldi iterations for computation of steady solutions and
analysis of their stability, the inverse Stokes operator with a large time step is used as a
preconditioner [1,2]. In these cases an iterative inverse of the Helmholtz operators can be
problematic. In such cases, the direct methods discussed in the next Section can be called
for.

The main difficulty in the implementation of the proposed Stokes operator inverse is
computation of the inversed pressure matrix C. It is easy to see that this matrix is sin-
gular, which is a usual consequence of the pressure defined up to an additive constant.
As we already mentioned, at small time steps this matrix is close to approximation of
the pressure Laplacian, thus causing well known problems when inverted. Apparently, a
Dirichlet point should be added to make the matrix regular. The pressure boundary con-
ditions, however, can be avoided if calculation of the pressure gradient in step 3 does not
involve pressure boundary values. The simplest example of that is the use of staggered
grids, as was proposed by Patankar [21], and was implemented, e.g., in our earlier stud-
ies [9–11]. In general, to make pressure boundary conditions unnecessary the low-order
numerical scheme (i) must close the system of the momentum equation by the continu-
ity equation (divv = 0 in the non-boundary points) and not by a pressure or pressure
correction equation that always requires boundary conditions; and (ii) approximation of
the pressure gradient in the momentum equations should not involve pressure boundary
values.

Since computation of the whole matrix C can be CPU-time and memory consuming,
the most natural way of its inverse is implementation of one of the Krylov subspace iter-
ation methods, which requires only calculation of multiplication of the matrix by a vector
(the action of a matrix). The latter can be done by using Eq. (2.3) at the cost of two and
three Helmholtz operator inverses for 2D and 3D problems, respectively. Our numeri-
cal experiments, showed that inverse of C on the 1002 stretched grid by the BiCGstab(2)
method requires 80-100 iterations. At small time steps, the Helmholtz operators tend
to the identity operator, so that the whole matrix C tends to the approximation of the
Laplacian of pressure. Thus, at small time steps the number of iterations can be signif-
icantly decreased by use of the inverse pressure Laplacian matrix as a preconditioner.
The latter makes the resulting matrix close to the unity, so that for a 1002 stretched grid
the BICGstab(2) method converges in less than 2-4 iterations for a dimensionless time
step of 0.01, and in 6-8 iterations if the time step is increased to the value of 1. The ver-
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ification of the above three step algorithms against some known benchmark results is
straight-forward and is not reported here. It is emphasized that evaluation of the action
of matrix C requires two or three inverses of the Helmholtz operators in 2D and 3D cases,
respectively. Therefore it is a CPU-time consuming operation, so that time integration is
affordable only if C can be inversed in few iterations, or computation of its action can be
done faster.

It is clear at this stage that implementation of the above algorithm to the Stokes oper-
ator inverse for time-dependent computations will be much more computationally de-
manding than most pressure-velocity segregated techniques. A comparison with the
latter, if meaningful at all, is beyond the scope of the present paper. It should be em-
phasized however, that if direct methods are applied to the inverse of the Helmholtz
operators, then the inverse of the pressure matrix C remains the only iterative part of the
algorithm. We call it semi-direct inverse of the Stokes operator.

A weak dependence of the proposed Stokes operator inverse on the time step allows
one to perform calculations with large time steps, which we consider as a prerequisite
to applications of methodology of [1, 2] to calculate developed steady three-dimensional
flows and to study their stability. The reader is referred to above papers for further de-
tails.

3 Computation of the pressure matrix using the tensor-products

As is discussed above, inverse of the pressure matrix C can be done by one of Krylov
subspace iteration methods. Implementation of these methods involve computation of
the Krylov basis, for which one needs calculation of the matrix-vector product Cv, called
action of C on a vector v. In the following we show that the matrix C, as well as its action,
can be computed via tensor products of smaller matrices composed from the eigenvectors
and eigenvalues of one-dimensional operators.

First, we recall the result of Lynch et al. [13] that allows one to inverse the Helmholtz
operators with any time step and at any Reynolds number within the same computa-
tional effort.

Consider a Laplace operator acting on a scalar function u(x,y,z), defined on a region
0≤x≤a, 0≤y≤b, 0≤z≤c. The function u satisfies Dirichlet, Neumann or mixed linear ho-
mogeneous boundary conditions. We assume that the region is covered by an orthogonal
grid, that divides the three directions into Nx, Ny and Nz points. We denote discretiza-
tion of the second derivatives as operators Dxx, Dyy, Dzz that are one-dimensional and
act on a row or a column of the grid function uijk=u(xi,yj,zk). Representing Dxx, Dyy and
Dzz by matrices and following notations of the Kronecker (tensor) product we write the
discretized Poisson equation as

∆u=[Dxx⊗ Iy⊗ Iz+ Ix⊗Dyy⊗ Iz+ Ix⊗ Iy⊗Dzz]u= f , (3.1)

where Ix, Iy and Iz are identity matrices of the order Nx, Ny and Nz, respectively, ⊗
denotes the tensor product, and fijk = f (xi,yj,zk) is the discretized right hand side of the
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Poisson equation. For the following we assume that the eigenvalue decompositions of
matrices Dxx, Dyy and Dzz are known and are represented as

Dxx=ExΛxE−1
x , Dyy=EyΛyE−1

y , Dzz=EzΛzE−1
z . (3.2)

Here Ex, Ey and Ez are square matrices of the order Nx, Ny and Nz, respectively, whose
columns are eigenvectors of the matrices Dxx, Dyy and Dzz. Λx, Λy and Λz are diagonal
matrices having the eigenvalues of Dxx, Dyy and Dzz on their diagonals. According to [13]
the solution of Eq. (3.1) can be represented as

u=
(

Ex⊗Ey⊗Ez

)

Λ−1
(

E−1
x ⊗E−1

y ⊗E−1
z

)

f , (3.3)

where

Λ=(Λx⊗ Iy⊗ Iz)+(Ix⊗Λy⊗ Iz)+(Ix⊗ Iy⊗Λy) (3.4)

is a diagonal matrix of the order Nx NyNz, whose diagonal values are Λij=Λx,i+Λy,j+Λz,k.
For the Helmholtz equation (∆+aI)u = f the solution is also given by Eq. (3.3) with
Λij =Λx,i+Λy,j+Λz,k+a.

The eigenvalue decompositions (3.2) are computed in O(N3
x), O(N3

y ) and O(N3
z ) op-

erations, respectively. For a time-marching procedure this computation is needed only
once, so that its computational cost can be neglected if the number of time steps is suffi-
ciently large. Once these are known, the calculation of the solution via Eqs. (3.3) and (3.4)
requires 2Nx NyNz(Nx+Ny+Nz) multiplications and Nx NyNz divisions by Λijk. There-
fore the total amount of multiplications and divisions is NxNyNz(2Nx+2Ny+2Nz+1).
In the following we refer to Eqs. (3.3) and (3.4) as the tensor product factorization (TPF)
solver proposed in [13]. As mentioned, this solver is often applied together with spectral
and pseudospectral methods [14–16], however its application together with lower-order
spatial discretization, remains rare [17–19]. Regarding the lower-order methods, two ad-
ditional comments should be made. First, increase of an approximation order by use of
longer stencils will not increase the computational cost of TPF implementation, however
performance of any iterative methods will be affected due to lesser sparseness of the ma-
trices. Second, short three- or five-points stencils usually used in lower order methods
allow one to replace the eigenvalue decomposition in one of directions by the Thomas
algorithm. This will retain the direct inverse of the matrices, but will decrease the over-
all computational time. Below we call this approach the TPT solver. Apparently, the
direction with a maximal number of grid points should be chosen for such a replace-
ment. The Thomas algorithm applied for N grid points and a scheme defined on the
3-point stencil requires 5N multiplications and divisions, which is significantly less than
N2 multiplications needed for computations of the mass-vector product. Assuming in
the above Nx = Ny = Ny ≫ 5 we see that application of the Thomas algorithm in one di-
rection reduces the number of operations almost twice for a 2D case and by a factor of
approximately 2/3 for a 3D case.
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Clearly, the TPT or TPF factorization can be used to inverse Helmholtz operators in-
volved in the definition of the pressure matrix C, Eq. (2.3). Then, to complete compu-
tation of the action of C, the first derivative operators ∇x, ∇y, and ∇z can be evaluated
numerically. At the same time, defining the latter operators via the tensor products as

∇x
u =Dx

u⊗ Iy⊗ Iz, ∇
y
v= Ix⊗D

y
v⊗ Iz, ∇z

w = Ix⊗ Iy⊗Dz
w; (3.5a)

∇x
p=Dx

p⊗ Iy⊗ Iz, ∇
y
p= Ix⊗D

y
p⊗ Iz, ∇z

p= Ix⊗ Iy⊗Dz
p. (3.5b)

The terms of Eq. (2.3) can be expressed in the following form:

∇x
uH−1

u ∇x
p=

(

Dx
uEx

u⊗E
y
u⊗Ez

u

)

Γ−1
u

(

Ex
u
−1Dx

p⊗E
y
u
−1

⊗Ez
u
−1

)

, (3.6a)

∇
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y
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y
vE

y
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v
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v
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y
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D
y
p⊗Ez

v
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, (3.6b)

∇z
wH−1

w ∇z
p=

(

Ex
w⊗E

y
w⊗Dz

wEz
w

)

Γ−1
w

(

Ex
w
−1⊗E

y
w
−1

⊗Ez
w
−1Dz

p

)

, (3.6c)

where Γ are diagonal (Nx NyNz)×(Nx NyNz) matrices, whose diagonal elements are

(Γu)ijk =−τ
−1+(Λu

x)i+
(

Λu
y

)

j
+(Λu

z )k, (3.7a)

(Γv)ijk =−τ
−1+(Λv

x)i+
(

Λv
y

)

j
+(Λv

z)k, (3.7b)

(Γw)ijk =−τ
−1+(Λw

x )i+
(

Λw
y

)

j
+(Λw

z )k. (3.7c)

The expressions (3.6a)-(3.7c) form the analytical representation of the pressure matrix
C. Formally, it can be calculated and inversed, which completes a fully direct inverse
of the Stokes operator. Practically, evaluation of the above Kronecker products is CPU-
time consuming, but possible. The matrix C is not sparse, so that its direct inverse is
practically unaffordable. These expressions can also be used for evaluation of the matrix

C action. Calculating the one-dimensional matrices like Du
x Eu

x and Eu−1

x D
p
x and keeping

them in memory, makes the computational effort needed for each of Eqs. (3.6a)-(3.6c)
equal to that of Eq. (3.3), so that action of C consumes computational time exactly equal
to computation of three Helmholtz operator inverses using TPF. Moreover, the similar
structure of Eqs. (3.6a)-(3.6c) and Eq. (3.3) allows for the same parallelization algorithm,
an example of which is given in Appendix.

Calculating the matrix C and observing its components we find that many of them
are, in fact, numerical zeroes. After nullifying all the components that are at least 10 or-
ders of magnitude smaller than the leading term of the same row, we discover that the
matrix C is, in fact, a sparse matrix. The sparseness is most profound when the uniform
grid is used, for which more than 95% of the matrix elements are numerical zeroes. This
allows us to apply a sparse matrix solver and to keep the LU decomposition of the re-
sulting matrix. Then carrying out of step 2 of Algorithm 2.1 reduces to computation of
sparse back/forward substitutions, which makes the inverse of the Stokes operator fully
analytical. For stretched grids this approach is possible, however not efficient due to a
lower level of sparseness.
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4 Test calculations

4.1 TPF and TPT solvers versus BiCGstab(2)

In the following we show several examples illustrating that the eigenvalue decomposi-
tion approach may be more effective than an iterative solution. In particular, this justifies
the use of TPT/TPF direct solvers for the Stokes operator inverse. As a representative
example, we consider several benchmark problems on natural convection in laterally
heated two-and three-dimensional cavities [15,23–25]. We solve the Helmholtz and Pois-
son equations both by Jacobi (diagonal) preconditioned BiCGstab(2) iteration, by the ten-
sor product factorization (TPF) method, and by the tensor product method combined
with the Thomas algorithm (TPT) in one of the directions. In all the results reported both
approaches yielded numerical solutions that coincided at least to within the tenth dec-
imal digit. After establishing the equivalence of all the three solutions we compare the
consumed CPU times.

The choice of Jacobi preconditioner for the BiCGstab(2) iteration is justified by diago-
nal dominance of the matrices and its negligible computational cost. We are aware of the
fact that Krylov subspace iteration methods, like BiCGstab(2), with a smarter choice of a
preconditioner, can perform faster than they do in the following test calculations. How-
ever, the choice of a preconditioner is usually problem-dependent, the effect we want to
avoid. Moreover, we believe that the qualitative conclusions we derive will hold also
in the case of more efficient iteration techniques applied to large Reynolds number CFD
problems.

Along with the BiCGstab(2), we tried to apply multigrid solvers for inverse of the
same operators. For grids with 100 and more nodes in each spatial direction the classi-
cal geometric multigrid algorithm with a 4-level V-cycle was implemented with different
smoothers and under-relaxation at the prolongation step. Performance of SOR and LSOR
with regular, zebra and RB ordering, ADI and SIP smoothers was checked. A consid-
erable effort was devoted to optimization of the relaxation parameters of the smoothers
and prolongation, however this version of multigrid method never converged faster than
BiCGstab(2). We also tried a geometric agglomerated multigrid (GAMG) solver imple-
mented in Open Foam package. For the pressure equations on fine 1002 and 1003 grids
this solver converged approximately two times faster than BiCGstab(2).

We performed the time integration with the finite volume in space and three-time
level discretization as it was done in [10, 11]. The test problems were convection of air
(Pr = 0.71) in a laterally heated square cavity [23, 24], in a two-dimensional cavity with
height-to-width ratio A=8 [25], and in a laterally heated cubical box [15]. The finite vol-
ume staggered grids were stretched near the boundaries. The numerical method and the
code are already completely verified [9–11]. Here we are interested only in comparison
of consumed CPU times. To do that we start from the laterally heated square cavity and
perform time-dependent calculations for Gr = 105 until convergence to a steady state.
Then we set the Grashof number to Gr=106, use the calculated steady state as an initial
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condition, and carry out 10,000 time steps. Then we again increase the Grashof num-
ber by an order of magnitude to Gr= 107, and perform 10,000 more time steps. All the
runs were carried out on a 1002 nodes grid with the time step δt= 0.01, using either the
BiCGstab(2), TPF or TPT method. We also examined the supercritical oscillatory flow in
a tall vertical cavity [25] and compared the computation cost of a calculation over 5 oscil-
lation periods. The calculation was carried out on the grid with 100×800 nodes, for A=8
and Gr=4.8×107. To perform calculations on an already converged limit cycle solution,
we used a snapshot of the oscillatory flow computed in [11] on the same grid as the initial
state. The time step was δt=0.001.

For all two-dimensional problems the TPF and TPT methods consumed approxi-
mately the same CPU time for all of the unknown functions: u, v, T (which satisfy a
Dirichlet problem for the Helmholtz equation) and δp (which satisfies a Neumann prob-
lem for the Poisson equation). The TPT method was faster in agreement with the above
estimations. The BiCGstab(2) iterations converged much faster for the Helmholtz prob-
lems than for the Poisson problem. This is because the Helmholtz operator, which is close
to being a perturbation of the identity operator, is far better conditioned than the Lapla-
cian with Neumann boundary conditions, and hence requires many fewer BiCGstab(2)
iterations to converge.

For the two-dimensional tests, BiCGstab(2) required between 10 and 33 times longer
to solve the Poisson problem than to solve one of the Helmholtz problems. In conse-
quence, BiCGstab(2) is about 3 to 5 times faster than TPF for each of the Helmholtz prob-
lems and about 5 times slower than TPF for the Poisson problem. Moreover, with the
increase of the Grashof number, the BiCGstab iterations converge slower, which is quite
expected, while the CPU time consumptions of the TPF method does not change. There-
fore, one can expect that for the flows with larger Grashof (or Reynolds) numbers, the TPF
(or TPT) approach can become even more attractive. This suggests combining BiCGstab
(or another iterative solver) to calculate the temperature and velocity with the TPF or
TPT solver to calculate the pressure.

In the test calculations for the three-dimensional problem, we also started from Gr=
105. After carrying out 10,000 time steps, with the time step δt=0.001, we increased the
Grashof number to Gr=106 and then, after another 10,000 time steps to Gr=107. These
calculations were performed for stretched grids consisting of 503, 753 and 1003 nodes. To
explore the potential scalability of the TPF and TPT approaches we carried out these com-
putations twice, using either scalar or vector processors. The results can be summarized
as follows. In the three-dimensional calculations, the TPF approach is always faster than
BiCGstab. For a scalar processor, the ratio tBiCG/tTPF of CPU times is between 1.5 (for
a Helmholtz problem) and 12 (for a Poisson problem), while for a vector processor, this
ratio is between 2.5 and 50. Some details are given in Table 1. As expected, the CPU time
consumed by BiCGstab(2) increases with the Grashof number, as well as with the grid re-
finement. The CPU time consumed by the TPF and TPT approaches is Grashof-number
(or Reynolds-number) independent and grows with the mesh refinement according to
the operation counts discussed in Section 3. As mentioned, the ratios tBiCG/tTPF and
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Table 1: CPU times (sec) consumed for 10,000 time steps by the BiCGstab iterative solver (tBiCG) and by the
present eigenvalue decomposition solvers (tTPF and tTPT) for convection of air (Pr= 0.71) in laterally heated
cubical cavity. Calculation on a single vector Xeon(R) CPU 5355 2.66 GHz processor.

Problem Gr=105, 503 grid Gr=106, 503 grid Gr=107, 503 grid

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT

T 76.2 29.12 20.40 76.3 28.9 20.25 76.3 29.0 20.32

u 132.2 27.39 19.19 133.7 27.3 19.13 135.94 27.5 19.27

v 131.9 27.45 19.23 133.3 27.3 19.13 135.51 27.6 19.34

w 72.2 27.29 19.12 42.3 27.3 19.13 72.4 27.4 19.20

δp 724.7 29.32 20.54 1166.5 29.2 20.46 1222.1 29.3 20.53

total 1137.3 140.6 98.49 1582.2 140.0 98.09 1642.3 140.7 98.65

Problem Gr=105, 753 grid Gr=106, 753 grid Gr=107, 753 grid

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT

T 369.9 104.8 72.24 269.2 105.1 72.45 269.1 105.1 72.45

u 547.4 117.2 80.79 551.1 117.1 80.72 551.4 117.5 81.00

v 543.3 116.7 80.45 546.5 116.5 80.31 547.1 116.9 80.58

w 257.6 109.5 75.48 257.9 109.5 75.48 257.7 109.7 75.62

δp 3186.4 104.4 71.97 4696.8 104.7 72.17 5454.7 104.9 72.31

total 4904.6 552.6 380.93 6321.5 552.8 381.14 7080.0 554.0 381.97

Problem Gr=105, 1003 grid Gr=106, 1003 grid Gr=107, 1003 grid

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT

T 872.7 384.4 262.81 877.1 383.9 262.47 6256 384.7 263.01

u 1298.4 354.8 242.57 1307.4 355.1 242.78 1310.1 355.1 242.78

v 1293.0 357.5 244.42 1300.3 357.7 244.55 1302.4 356.9 244.01

w 600.5 361.9 247.43 601.4 360.9 246.74 601.3 361.9 247.43

δp 9036.4 383.7 262.33 12133.4 383.77 262.38 14152.1 384.2 262.67

total 13101.0 1842.3 1259.55 16219.6 1841.3 1258.92 17991.5 1842.8 1259.89

tBiCG/tTPT obtained on a vector processor are significantly larger than the ratio obtained
for a scalar processor. The proportion between the ratios corresponding to the scalar and
vector processors for 503 and 753 grids varies between the values 3 and 4, which corre-
sponds to the length of vector (equal to 4) in the processor used. This ratio is larger for
finer grids of 753 and more nodes, which also can be expected. The ratios tBiCG/tTPF and
tBiCG/tTPT obtained on a vector processor (Table 1) for 753 grid is larger than that obtained
for a 1003 grid, so that the grid refinement does not necessarily lead to a more profound
difference in the consumed CPU times. At the same time in all the 3D cases considered,
the TPF and TPT methods perform significantly faster than BiCGstab(2), and the CPU
time ratios tBiCG/tTPF and tBiCG/tTPT grow with the increase of the Grashof (Reynolds)
number. This shows that time-dependent fully three-dimensional calculations may ben-
efit if iterative solvers are replaced by the fast direct ones. More details on these test
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calculations can be found in http://arxiv.org/abs/1107.2461.

To verify the above conclusion using another independent code we have solved the
benchmark problems for convection in the square and cube cavities by Open Foam pack-
age. Since Open Foam uses different schemes the comparison cannot be straight-forward,
so that we focus on the time consumed by the Open Foam pressure solver. First, we
solved the pressure problem using different solver offered by the package and found
that for our test problems the generalized geometric/algebraic multigrid (GAMG) solver
with the Gauss-Seidel smoother converges faster than all other versions of smoothers
and preconditioned BiCG algorithms. Then, using this version of GAMG we repeated
calculations for 1002 and 1003 grids. Comparing the consumed CPU times we observe
that GAMG solver performs almost two times faster than our version of BiCGstab(2).
However, with the increase of the Grashof number CPU time consumed by the GAMG
solver grows similarly to BiCGstab(2) and for large Grashof numbers remains signifi-
cantly larger than that consumed by TPF and TPT solvers.

4.2 Test calculations for the Stokes operator inverse

For test calculations below we consider the above benchmark on convection in a laterally
heated square cavity. First we studied computational cost of the inverse of the matrix C
by the BiCGstab(2) iteration for a time-marching code. We used the same discretization
in space and time as in the previous calculations, however, no fractional time step or
pressure correction is needed when the Stokes operator is inversed at every time step.

The total CPU time spent for the inverse of C when a steady state at Gr= 105 is cal-
culated, starting from the solution at Gr=104, was 611 sec for 8200 time steps. Then, for
10,000 time steps the code consumed 919 and 1021 sec for the inverse of C at Gr=106 and
107, respectively. Thus, the observed slow-down of the convergence with the increase of
the Grashof number is not large. It is clear, however, that total computational cost of a
single time step is significantly larger than that of a segregated method, so that this ap-
proach should be applied only in the cases when, say, correct pressure values are needed,
or numerical stability of the time integration should be improved.

Performance of the Newton method was tested for calculation of the steady state at
Gr = 107 using a solution for Gr = 5×106 as initial guess. The whole Newton process
converges in 6 iterations. The time step δt was varied between 1 and 100, however, for
δt≥80 the iterations for the inverse of C diverge. The total consumed CPU time, the num-
ber of BiCGstab(2) iterations needed for calculation of the current Newton correction and
the maximal number of BiCGstab(2) iterations needed for the inverse of pressure matrix
C, are reported in Table 2. We observe that starting from δt = 2 the whole Newton it-
eration process completes in 700-800 seconds. Clearly, the number of iterations and the
consumed CPU time are problem dependent, making it impossible to find a generally
optimal time step. Thus, for example, calculation of the steady state at Gr=108 using the
solution at Gr=5×106 and δt=10 as an initial guess consumes more than 2 CPU hours.
The same Newton process as reported in Table 2, implemented with the approach pro-
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Table 2: Number of BiCGstab(2) iterations needed to compute the Newton correction NNewton for the first five
Newton iterations and maximal number of BiCGstab(2) iterations NC needed for the inverse of pressure matrix

C. Computation of steady state of the benchmark problem of [23,24] at Gr=107 starting from the steady state
at Gr=5×106 as an initial guess. For δt≥80 iterations for the inverse of C diverge. Single scalar Intel 2.4 GHz
processor.

iteration 1 2 3 4 5 ttotal

δt NNewton NC NNewton NC NNewton NC NNewton NC NNewton NC (sec)

1 64 368 21 141 41 229 11 79 1 52 1312

2 48 139 31 130 29 72 9 43 1 64 846

5 61 96 27 70 31 67 9 63 5 55 762

10 74 96 38 61 17 58 37 50 2 31 793

20 99 64 34 124 45 55 19 46 10 33 845

30 94 326 40 300 54 54 35 29 13 24 806

40 33 122 39 42 38 38 52 28 5 22 720

50 140 228 40 225 43 41 46 33 18 38 799

60 132 235 46 51 54 34 51 67 1 19 753

70 129 135 43 33 45 31 69 112 1 17 729

Table 3: Number of Krylov vectors Nvectors, maximal number of BiCGstab(2) iterations needed to compute the
Krylov vectors for Arnoldi iterations NArnoldi and maximal number of BiCGstab(2) iterations NC needed for the
inverse of pressure matrix C. Calculation of the dominant eigenvalues corresponding to the steady state of the
benchmark [23,24]: λ=(−0.02812,0) at Gr=107 and λ=(−0.032,0.8663) at Gr=108.

Gr=107 Gr=108

δt Nvectors NArnoldi NC ttotal (sec) t Nvectors NArnoldi NC ttotal (sec)

0.08 16 834 746 38013

2 16 128 931 17438 0.1 16 877 755 38491

5 16 99 180 7603 0.2 16 672 903 42660

10 16 103 875 6012 0.3 16 592 968 47491

20 16 116 801 5980 0.4 16 532 979 50949

30 16 141 641 6091 0.5 16 484 945 52224

40 16 149 736 5658 0.6 16 480 979 55974

posed in [10], completes in less than 5 seconds on the same processor. Clearly the present
approach is more than 100 times slower. At the same time, compared to the approach
of [10], it has two important advantages. First, it removes a heavy memory restriction that
allows one to compute fully developed 3D steady state flows. Second, the TPT decompo-
sition applied for inverse of the Helmholtz and Laplace operators is scalable, while the
backward/forward substitutions of sparse and packed LU decompositions used in [10]
are not scalable.

Performance of the inversed Stokes operator preconditioned Arnoldi iteration (for
computation of the leading eigenvalues is illustrated in Table 3. The same benchmark
problem as above was considered for two values of the Grashof number 107 and 108. The
ARPACK package was implemented. In both cases 16 Krylov basis vectors are sufficient
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to meet the ARPACK convergence criterion of 10−6. In the first case, Gr=107, the leading
eigenvalue is real and no shift is needed. The numerical experiment shows that iterations
converge for the time step 2≤δt≤40 and diverge beyond this interval. For 10≤δt≤40 the
whole process converges in less than an hour, and again most of CPU time is spent for
the inverse of the pressure matrix C. The whole process, as well as the convergence of the
C inverse, significantly slows down when the Grashof number is increased to Gr = 108

and the leading eigenvalue becomes complex. The convergence of the whole process is
observed now for 0.08 ≤ δt ≤ 1, which shows that not only optimal time step, but also
the convergence yielding one is problem-dependent. The CPU time needed to calculate a
single eigenvalue is beyond 10 hours, while the approach of [10] yields the same result in
less than one minute. It is stressed again, however, that the present approach removes the
memory restrictions and allows for scalable computations, which is not the case of [10].

5 Concluding remarks

In this study we offer methods for direct and semi-direct inverse of the Stokes operator
using an extended Uzawa method. Our pressure matrix C is an analog of the Uzawa
matrix, however not necessarily symmetric or positive semi defined. As in the Uzawa
method, the inverse of the pressure matrix C is the main bottleneck of the whole calcu-
lation. Analytical expressions for a direct calculation of the pressure matrix are derived,
seemingly for the first time. We have discussed a possibility of direct inverse of the matrix
C, which, along with the direct methods used for the Helmholtz operator inverse, would
make inverse of the whole Stokes operator fully analytical. Unfortunately, this approach
appears to be computationally effective only for uniform grids. For the general case of
non-uniform grid we propose a semi-analytic inverse of the Stokes operator, where only
the pressure matrix C is inversed iteratively by one of Krylov-subspace iteration meth-
ods.

We have shown that factorization of the Stokes operator followed by a fast direct
method inverse of the Helmholtz and Laplacian operators, and the preconditioned Krylov
subspace iterations used to inverse the pressure matrix, allow one to perform computa-
tions with a large time step. The latter is needed for application of inverse Stokes oper-
ator preconditioned Newton and Arnoldi methods for calculation of three-dimensional
steady states, and analysis of their modal and non-modal stability [1–8]. The correspond-
ing test calculations showed that in this way the heavy memory demands of the ap-
proach [10] can be removed. On the other hand, the calculations can become fast enough
only with a massive parallelization of the basic Laplace/Helmholtz operator direct in-
verse. The parallelization is algorithmically straight-forward and is presented as well.

We have shown additionally that the tensor product factorization (TPF) method, pos-
sibly combined with the Thomas solver (TPT), is sometimes, but not always, faster than
iterative methods, when applied in pressure/velocity segregated solvers. Our numerical
experiments made for incompressible Boussinesq equations showed that the direct TPF
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and TPT solvers can perform faster than an iterative method on fine grids and for large
Reynolds (Grashof) numbers, when convergence of any iterative method slows down. It
is emphasized that since the methods are direct, their computational cost depends only
on the problem size, but not on governing parameters, which may make it attractive for
cases where iterative methods converge too slowly.
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Appendix: Parallelization of TPT and TPF methods

In spite of the fact that computation of a solution according to Eq. (3.3) consists only
of matrix multiplications, a straight-forward application of scalable linear algebra tools
(e.g., ScaLapack) does not yield a good speedup due to too large amount of inter-CPU
communications. To arrive to an efficient scalability we note that the eigenvector matrices
Ex, Ey, Ez, and their inverses are small compared to the matrices containing right hand
sides and solutions. This allows one to keep copies of these matrices in local memory of
each CPU, so that no redistribution is needed. The matrices containing right hand sides
are distributed between the processors. Assume that the processors are arranged in a
grid p×q, so that the size of a block of Nx×Ny×Nz r.h.s. matrix contained in each CPU is
Nx×ny×nz, where ny=Ny/p and nz=Nz/q. For simplicity we assume that ny and nz are
exact integers. This distribution allows us to perform multiplication by Ex and E−1

x , or
application of the Thomas algorithm in x-direction independently on each CPU. Multi-
plication by two other eigenvector matrices Ey⊗Ez (or E−1

y ⊗E−1
z ) is done in the following

way. Assume that Riml is the Nx×Ny×Nz matrix, which is a result of multiplication of
the r.h.s. matrix Fijk by Ey⊗Ez:

Riml =
Nz

∑
k=1

Ny

∑
j=1

Ez,lkEy,mjFijk =
q

∑
K=1

p

∑
J=1

R̂KJ
iml, (A.1a)

RKJ
iml =

nzK

∑
k=nz(K−1)+1

ny J

∑
j=ny(J−1)+1

Ez,lkEy,mjFijk. (A.1b)
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The partial sums R̂KJ
iml are calculated in each CPU independently, while the final summa-

tion is performed as a series of reduction operations. Each CPU controls those reduction
operations that result in values distributed in its local memory. The latter helps to achieve
a uniform distribution of work between the processors. The main disadvantage of this

approach is a necessity of keeping partial sums R̂KJ
iml of the size Nx×Ny×Nz in each CPU.

The numerical tests performed on a cluster with 64 CPUs showed that we reach speedup
of 28 and 58 on 32 and 64 CPUs, respectively.
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