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Abstract: Experimental and numerical observations of oscillatory instability of
melt flow in a Czochralski model are compared, and a disagreement observed at
small crystal dummy rotation rates is addressed. To exclude uncertainties con-
nected with flow along the free surface, the latter is covered by a no-slip thermally
insulating ring. Experiments reveal an appearance of oscillations at temperature
differences smaller than the numerically predicted critical ones. At the same time,
a steep increase of the oscillations amplitude is observed just beyond the com-
puted threshold values. By increasing the dummy rotation gradually, we are able
to qualitatively confirm the numerically predicted flow destabilization. A good
quantitative comparison is reached only with a rather strong rotation of the crystal
dummy. Focusing on the disagreement in the non-rotating case, we argue that the
experimentally observed instability is triggered by an external excitation that results
from low-amplitude temperature oscillations in thermostatic baths. This argument
is supported by a numerical simulation of the parametrically excited model.
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1 Introduction

Czochralski melt flow is one of the challenging fluid flow / heat transfer problems
related to non-isothermal flow driven by buoyancy, thermocapillarity and rotation
[Hurle (1983); Jones (1983); Jones (1989); Ristorcelli and Lumley (1992)]. The
problem directly relates to the Czochralski crystal growth process, which is used for
production of most of the bulk monocrystals [Hurle and Cockayne (1994); Müller
(2007)]. Among others, one of the problems of the Czochralski flow laboratory
and numerical modeling is prediction of steady-oscillatory transition, which takes
place at certain values of the governing parameters, and directly affects the quality
of the growing crystals [Hurle (1983); Kakimoto (1995); Müller (2007)]. In large
Prandtl number melts, Pr>1, the instabilities appear as spoke patterns, cold plumes
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and oscillating jets [Jones (1983); Munakata and Tanasawa (1990); Hintz, Schwabe
and Wilke (2001); Hintz and Schwabe (2001); Schwabe (2002); Teitel, Schwabe
and Gelfgat (2008)]. These instabilities are studied and qualitatively described as
a result of the Rayleigh-Bénard mechanism that can be localized in different flow
areas and, therefore, results in different patterns [Gelfgat, Bar-Yoseph, Solan and
Kowalewski (1999); Gelfgat (2011)].

In the course of study of melt flows in the Czochralski crystal growth configura-
tion, many model experiments were performed (e.g., [Jones (1983); Munakata and
Tanasawa (1990); Hintz, Schwabe and Wilke (2001); Hintz and Schwabe (2001);
Schwabe (2002); Teitel, Schwabe and Gelfgat (2008); Gelfgat, Bar-Yoseph, Solan
and Kowalewski (1999); Gelfgat (2011); Son and Yi (2005); Haslavsky, Mirosh-
nichenko, Kit and Gelfgat (2011)]), and even more calculations of flow in the
Czochralski configuration were carried out (see, e.g., literature review and ref-
erences in [Gelfgat (2008); Szmyd, Jasczur, Ozoe and Imaishi (2008)]). How-
ever, a good comparison between experimental and numerical results remains rare.
One can mention a good numerical representation of experimentally visualized
steady state in [Hintz, Schwabe and Wilke (2001)], a good agreement between
linear stability results of [Gelfgat (2008)] and experiments of [Munakata and Tana-
sawa (1990)], and agreement between the calculated and measured oscillation fre-
quencies reported in [Munakata and Tanasawa (1990); Choi, Kim, Sung, Nakano
and Koyama (1997)]. While steady flow states can be reproduced numerically
with a very good accuracy, already transition to unsteadiness, which always hap-
pens beyond some critical forcing, is much more difficult to reproduce. Thus,
the above mentioned good agreements [Munakata and Tanasawa (1990); Gelfgat
(2008); Choi, Kim, Sung, Nakano and Koyama (1997)] were obtained for experi-
mental fluids of a very large Prandtl number, of the order of 103, which does not
relate directly to Czochralski grown crystalline materials. Attempts to make a com-
parison for more relevant experimental liquids result, as a rule, only in a qualitative
agreement, e.g., [ Vizman, Gräbner and Müller (2001)].

Another important issue, which is not usually addressed, is mesh independence of
the results. Some relevant convergence studies for the numerical technique applied
here can be found in [Gelfgat (2007)], and those performed for the Czochralski
configuration in [Gelfgat (2008)]. Several results obtained for the corresponding
benchmark problem [Crnogorac, Wilke, Cliffe, Gelfgat and Kit (2008) ] showed
that different computational approaches, when they are sufficiently accurate, do
arrive to the same result. On the other hand, a successful quantitative comparison
with an experiment remains a challenge.

When trying to reproduce numerically the experimental results of [Teitel, Schwabe
and Gelfgat (2008); Haslavsky, Miroshnichenko, Kit and Gelfgat (2011)] we at-
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tributed the disagreement either to incorrect value of surface tension temperature
coefficient, or to heat losses from the free surface due to silicone oil evaporation, or
to a possible contamination of a water free surface. In general, parameters of flow
along the free surface are not completely known, and therefore can be a source
of disagreement. To avoid this uncertainty, in the current study we covered the
free surface of the Czochralski setup by a no-slip thermally insulating ring, which
made the boundary conditions there definite. We expected that this will yield a bet-
ter comparison between numerics and computation. However, as is shown below,
there are still some disagreements between experimental and computational mod-
eling. At low crystal rotation rates, we can qualitatively confirm the numerically
observed destabilization effect, but are unable to arrive at a meaningful quantita-
tive comparison. Only with a sufficiently strong rotation of the crystal dummy the
experimental and numerical results agree quantitatively.

Seeking an explanation for the disagreement, we noticed that among geometri-
cal imperfections of the setup, which seem to be negligible but always exist, the
running water, yielding the isothermal boundary conditions, contains some small-
amplitude oscillations that are caused by the thermostatic baths control system. We
argued that these small-amplitude oscillations, nevertheless permanent, can trigger
so-called non-modal instability of the flow, which is expected to be noticeable in
subcritical flow regimes. Supplying measured oscillations of the bath water oscilla-
tions as boundary conditions, we observe non-periodic flow oscillations that attain
amplitudes larger than those of the boundary conditions, and appear at the same
temperature difference as is observed in the experiment. When the temperature dif-
ference exceeds the predicted linear stability limit, the oscillations become regular,
and their main frequency becomes close to the one predicted by the linear stability
analysis. In these regimes the frequencies of experimental and numerical oscilla-
tions are well compared, and are very close to the frequency of one of the unstable
eigenmodes.

Based on the above we argue that the observed “subcritical” instabilities may ap-
pear in different experimental studies, so that their source remains undetected.
Moreover, an unsteadiness introduced by an electronically controlled heating sys-
tem, which is assumed to be perfectly stationary, may trigger instabilities in crystal
growth and other technological processes far below the critical heating predicted
by a numerical simulation.

2 Experimental setup

Our experimental setup (Fig. 1) was designed to mimic the Czochralski melt flow
and is described in detail in [Haslavsky, Miroshnichenko, Kit and Gelfgat (2011)].
It consists of a precise 90 mm diameter cylindrical crucible made from transparent
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Figure 1: Photo of experimental setup

glass, and a 45 mm diameter cold copper dummy imitating a crystal pulled out from
the melt in a crystal growth facility. The latter plays a role of a cold rotating cover.
The glass container is put inside a double-glass envelope with vacuum between its
walls. Isothermal water, supplied by a computer controlled thermal bath flows be-
tween the envelope and the crucible. The double-glass envelope is closed by Teflon
covers, which ensures very good thermal insulation. Assuming that thermal baths
yield perfect isothermal water, and neglecting heat losses in the pipe system, we
expect that after a certain time period the container wall and bottom become per-
fectly isothermal. The copper dummy is cooled by the cold flowing water supplied
by another computer controlled thermal bath. To ensure an intensive cooling and a
constant temperature on its surface, the dummy is hollow and has copper ribs inside
it, so that heat transfer between the dummy’s lower surface and the cold water is
enhanced. The cold dummy, rotation rate can be varied in the range of 0.001-1 rev-
olutions per second according to experimental needs. To account for possible heat
losses in the pipe systems, temperatures inside the crystal dummy, and between the
envelope and crucible, are measured by separate thermocouples that yield an actual
temperature difference to be used in following calculations. With all the precau-
tions made, we expect that the boundaries of our setup are isothermal to a precision
supplied by the isothermal baths.

Special care is taken to match the crucible and dummy axes, as well as to align
them vertically, and to make all the other surfaces perfectly vertical or perfectly
horizontal. In particular, our optical table is supported by pneumatic legs making
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its surface entirely horizontal. Then all the other surfaces are aligned using the table
surface as a basis. Nevertheless, it is impossible to avoid small misalignments, as
well as thermal asymmetries caused by the water supply system. Their effect is
observed at low rotation rates as oscillations with crystal rotation frequency. A
similar effect was reported in [Hintz and Schwabe (2001)]. Another possible effect
of misalignment is excitation of a 2π-periodic m=1 mode, which we also observe
and report below.

Temperature fluctuations are measured by very fine 0.1 mm diameter, T-type ther-
mocouples. One pair of thermocouples is placed at the corner of the crucible, and
another pair – under the crystal dummy near to the crucible bottom. The interferom-
etry setup, seen on the photo (Fig. 1), consists of two beam splitters, two mirrors,
and a beam expander that allows for a precise adjustment of the laser beams to ob-
tain high-quality interferometry fringes on the screen. The fringes are filmed by a
CCD camera.

The main uncertainty in experimental boundary conditions of a Czochralski setup
is the heat balance and the thermocapillarity conditions at the free surface. The
problem of heat balance can be partially resolved in a numerical model by taking
into account the convection of air filling the upper part of the setup, as was done
in [Teitel, Schwabe and Gelfgat (2008); Haslavsky, Miroshnichenko, Kit and Gelf-
gat (2011); Gelfgat A.Yu. (2008)]. However, some authors [Hintz and Schwabe
(2001); Teitel, Schwabe and Gelfgat (2008)], report evaporation of experimental
liquid from the free surface, which leads to an additional uncertainty since param-
eters of the evaporation process are not known. Another uncertainty is temperature
dependence of the surface tension coefficient. For silicon oils it is usually taken
from the manufacturer’s supplied data (see Table 1 in [Teitel, Schwabe and Gelf-
gat (2008)]), which cannot be verified against independent measurements. It was
shown in [Teitel, Schwabe and Gelfgat (2008)] that a small variation of the surface
tension temperature dependence coefficient, or an addition of weak heat losses due
to evaporation, can reduce the critical temperature difference by half. Because ex-
periments run with the same experimental liquid for days and sometimes weeks,
the free surface necessarily contaminates leading to an additional uncertainty.

To avoid the above uncertainties, in the series of experiments reported here we cov-
ered the free surface located between the crystal dummy and the container wall by
a no-slip ring made from styrofoam, whose heat conductivity is very small and is
about 0.033W/m◦C. To reduce the remaining heat flux from the upper ring surface
the average liquid temperature in all the experiments was kept equal to the room
temperature supported by air conditioning. Thus, we create perfect no-slip and heat
insulation conditions, which replace the problematic conditions on the free surface.
In this way we expect to fully reproduce the experimental flow in computational
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Table 1: Experimentally and numerically obtained critical temperature differences
and oscillation frequencies

Experiment Calculation
Water

Ωdummy
(rpm)

∆T
(◦C)

f (Hz) mcr ∆Tcr (◦C) fcr (Hz)

0 0.3 0.028 0 0.84 0.034
1 0.1 0.0017 0 0.032 0.0032
4 0.1 0.0033 1 0.033 0.00033

20 cSt silicone oil
0 1.0 0.015 1 3.65 0.046
2.5 0.5 0.0083 0 0.055 0.0018
6.8 5.0 0.013 1 0.11 0.0018
10 4.0 0.011 1 0.2 0.0020
20 0.5 0.0028 2 0.52 0.0060
20 1 0.61 0.0034
50 1.2 0.0067 3 1.08 0.0084
50 2 1.2 0.0064

modeling, and to compare quantitatively experimental and numerical results relat-
ing to the primary instability onset.

Two experimental liquids were used in the reported experiments. The first one
was distilled water whose Prandtl number is Pr≈6.42 at 23◦C. The crucible was
filled up to the aspect ratio height/radius = 1. Since the characteristic size of our
setup is rather large the Grashof number is estimated as Gr≈244,000∆T , which
makes the critical temperature difference smaller than 1◦C. The value of ∆T is de-
fined as the temperature difference between the heated wall and the cold dummy.
A rather small difference between the hot and cold temperatures allows us to ne-
glect temperature dependence of water thermophysical properties when computing
the instability threshold. The second experimental liquid was 20cSt silicone oil
whose Prandtl number is Pr≈203. It was chosen because the corresponding crit-
ical Grashof number, estimated as Gr≈2391∆T , reaches its critical value at ∆T
located between 3◦C and 4◦C. Clearly within such a small temperature difference,
temperature dependence of the oil thermophysical properties can be neglected as
well.

We are mainly interested in finding the threshold from a steady to an oscillatory
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flow regime, as well as in studying some properties of the oscillatory supercritical
states. As it already was observed in [Haslavsky, Miroshnichenko, Kit and Gelfgat
(2011)] the power of frequency spectra calculated from the signals yielded by the
thermocouples and the interferometer have maxima at almost the same frequencies.
This is illustrated additionally in Fig. 2. Therefore, the frequency measurements
are cross-validated and can be used for comparison with corresponding numerical
results. Further results and comparison with the numerical results are described in
Section 4.

Figure 2: Comparison of the spectral power calculation from thermocouple and
interferometer measurements

3 Preliminary numerical results

The problem is sketched in Fig. 3 and is formulated as follows. We consider a
Boussinesq fluid in a cylindrical enclosure 0≤ r≤Rcrucible, 0≤ z≤H in cylindrical
coordinates. To render equations dimensionless we introduce the scales Rcrucible,
R2

crucible

/
ν , ν

/
Rcrucible,ρ (ν/Rcrucible)

2 for length, time, velocity and pressure, re-
spectively. The crucible radius is chosen as the characteristic length to simplify the
formulation in case the dummy radius is varied. The temperature is scaled by the
relation T =

(
T ∗−T ∗cold

)
/
(
T ∗hot −T ∗cold

)
, where T ∗hot and T ∗cold are the maximal and

minimal temperatures at the boundaries of the flow region. The set of equations for
the non-dimensional velocity v = {vr,vθ ,vz}, temperature T and pressure p in the
domain 0≤ r ≤ 1, 0≤ z≤ A reads

∂v
∂ t

+(v ·∇)v =−∇p+∆v+Grθ ez (1)

∂T
∂ t

+(v ·∇)T =
1
Pr

∆T , (2)
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Figure 3: Sketch of the computational model

∇ ·v = 0 (3)

Here A = H/Rcrucible is the crucible aspect ratio, Gr = gβ
(
T ∗hot −T ∗cold

)
R3

crucible

/
ν2

is the Grashof number, Pr=ν/χ is the Prandtl number, g is the gravity acceleration,
β is the thermal expansion coefficient, and ez is the unit vector in the z-direction.
Three additional governing parameters are the crystal rotation Reynolds number,
aspect and radii ratio, defined as Recrystal = ΩcrystalR2

crucible

/
ν , A = H/Rcrucible and

η = Rcrystal/Rcrucible, respectively. The velocity boundary conditions are

vr = vz = 0 at z = 0, r = 1 and z = A, 0≤ r ≤ 1, (4)

vθ = 0 at z = 0 and r = 1, (5)

vθ = Recrystalr at z = A, 0≤ r ≤ η , (6)

vθ = 0 at z = A, η ≤ r ≤ 1. (7)

The boundary conditions for the dimensionless temperature T are given by

T = 1 at the crucible sidewall and the bottom, z = 0 and r = 1; (8)

T = 0 at the surface of the cold dummy, z = A, 0≤ r ≤ η ; (9)

∂T
∂ z

= 0 at the surface of the insulating ring, z = A, η ≤ r ≤ 1. (10)

The thermophysical properties of water are taken at 23◦C, which is the average tem-
perature in all the experimental runs. This yields Pr=6.42, Gr=2.44×105∆T, and
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Re=2120Ω[rad/s]. Properties of the silicone oil were taken from [Rahal, Cerisier
and Azuma (2007)] and its governing parameters are derived as Pr=203, Gr=2391∆T,
and Re=101Ω[rad/s]u

The numerical approach used here is described in detail in [Haslavsky, Mirosh-
nichenko, Kit and Gelfgat (2011); Gelfgat (2008); Gelfgat (2007)]. The main
objective of our calculations is to study stability of base axisymmetric flow with
respect to three-dimensional infinitesimal perturbations. To do this we calculate ax-
isymmetric base states and consider the three-dimensional equations linearized in
the vicinity of the latter. The base flow is unstable when there exists an eigenvalue
of the linearized problem with a positive real part. The eigenvalue with largest real
part Λr is called the leading eigenvalue. The corresponding eigenvector represents
the fastest growing (Λr >0) or slowest decaying (Λr <0) disturbance. The imagi-
nary part of the leading eigenvalue Λi estimates the oscillation circular frequency
with which the disturbance oscillates, as well as the frequency of the resulting os-
cillatory flow in case of oscillatory instability. We call it critical frequency. Some-
times we also interpret the imaginary parts of other eigenvalues as "frequencies"
to underline that amplitude of the corresponding eigenmode grows or decays while
oscillating with this frequency. Due to 2π-periodicity of the flow region in the az-
imuthal direction θs all the disturbances are represented as Fourier series via the
complex Fourier harmonics exp(imθ). The linearized problem separates for each
value of the azimuthal wavenumber m, so that the stability results are computed
and reported for each integer value of m separately. Values of the Grashof number
Grm and the temperature difference ∆Tm for which Λr(m)=0 are called marginal,
and their minimal values over all m are called critical. The corresponding values of
Λi(m) yield the estimation of circular frequency with which the corresponding dis-
turbances grow or decay. These values are called marginal frequencies, respectively
to Grm and ∆Tm. For m 6=0, the perturbation is proportional to exp[imθ + iΛit], so
that it appears as an azimuthal travelling wave, and the sign of Λi defines counter-
clockwise (Λi >0) or clockwise (Λi <0) wave propagation. We assume that rotation
of the crystal dummy is counter-clockwise. For further details the reader is referred
to [Gelfgat (2008); Gelfgat (2007)] and references therein.

Results of the numerical linear stability study are shown in Figs. 4 and 5 for wa-
ter and silicone oil, respectively. Frames (a) show the dependence of the marginal
Grashof number (temperature difference) on the dummy rotation rate, and frames
(b) – the corresponding marginal frequencies. Frames (c) and (d) zoom these re-
sults in the range of the Reynolds numbers, for which experimental measurements
were carried out (see below). To make comparison with experiments easier, the
results are presented both via the dimensionless parameters and experimentally de-
fined values of Ω and ∆T. The base axisymmetric flow is stable below and on the
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Figure 4: Results of linear stability study for water as the experimental liquid. The
free surface is covered by a ring. Frames (a) and (c) - marginal stability curves;
Frames (b) and (d) - perturbation frequencies in marginal points. Inserts of frame
(a) show isotherms (left) and streamlines (right) of the base flows. Inserts of frame
(b) show distribution of the amplitude of temperature disturbances.
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Figure 5: Results of linear stability study for 20cSt silicone oil as the experimental
liquid. The free surface is covered by a ring. Frames (a) and (c) - marginal stability
curves; Frames (b) and (d) - perturbation frequencies in marginal points.

left-hand side of the marginal curves. To illustrate that, a relatively small stable
region is shadowed in Fig. 4a. The striking observation, however not a new one
[Haslavsky, Miroshnichenko, Kit and Gelfgat (2011); Gelfgat (2008)], is a steep
decrease of the critical temperature difference (the Grashof number) with a slow
increase of the rotation rate. Note, that the marginal curves never reach the ∆T=0
axis, which means that the observed effect takes place due to interaction of buoy-
ancy, centrifugal and Coriolis forces, and not by a purely rotational effect. The ex-
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Figure 6: Streamline and isotherm patterns for 20cSt silicone oil flow. The
Czochralski model with a free surface covered by a ring.

planation of this striking destabilization effect is given in [Gelfgat (2011)]. When
the rotation becomes stronger the critical temperature difference slowly grows. At
Re≈4300 the isothermal swirling flow becomes unstable (Fig. 4a), which gives rise
to another marginal stability curve.

Examples of water flow patterns are shown in Fig.4a as inserts. In the absence of
rotation the convective circulation drives the flow upwards along the crucible wall
and downwards along the axis. The upper insert in Fig. 4a corresponds to this
case. Two other cases illustrate flows where the centrifugal force is stronger than
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the buoyancy one, so that beyond the rotating dummy the flow is driven in a radial
direction from the axis to the wall. This leads to an opposite direction of the whole
circulation: the flow descends along the wall and ascends along the axis. A similar
change of flow pattern is observed also for silicone oil (Fig. 6). In this case, the
significantly larger Prandtl number leads to a stronger convective mixing due to
increase of the effective Peclet number. At large rotation rates this results in an
almost isothermal core located far from the horizontal and vertical boundaries of
the flow region. Note, that according to [Gelfgat (2011)], the opposite action of the
buoyancy and centrifugal forces is the main reason for flow destabilization at small
values of the Reynolds number (rotation rate).

Inserts of Fig. 4b show spatial distribution of the temperature disturbance ampli-
tude, which represents, to within multiplication by a constant, the expected dis-
tribution of the amplitude of oscillatory supercritical flows. According to these
patterns, as well as those reported previously in [Haslavsky, Miroshnichenko, Kit
and Gelfgat (2011)], a pair of thermocouples in our experiments is installed near the
bottom close to the axis. There we expect to observe relatively strong temperature
oscillations, especially in the non-rotating case (see, e.g. upper insert in Fig. 4a).
Another pair of thermocouples is installed in the lower corner. When the dummy
rotates, as well as at large supercriticalities without the rotation, we also observe
strong oscillations.

4 An attempt to compare experimental and numerical results

Measured and calculated critical temperature differences and critical frequencies
are summarized in Table 1. We observe that without rotation of the crystal dummy
(Ωdummy=0) numerically predicted critical ∆T is noticeably larger than the one mea-
sured experimentally. In contrast, at slow rotation rates, the numerically predicted
transitional values are far below the experimental ones. Only when rotation of the
crystal approaches a value of 20 rpm we observe certain quantitative agreement
between the experiment and computations. Some more information is gathered in
Figures 7 and 8 showing the experimentally measured frequencies of flow oscilla-
tions and comparing them with those predicted by our numerical implementation
of the linear stability analysis. In all the frames the black diamonds correspond to
the frequencies measured at corresponding ∆T . In some of the frames we show
also the value of the spectral power corresponding to a certain frequency as a num-
ber located near the diamond. The colored circles show the numerically predicted
values of frequencies at the marginal values of ∆Tm corresponding to the different
number of the Fourier modes m.

Since marginal and critical values obtained via the linear stability analysis corre-
spond to oscillations with zero amplitude, one would expect that experimentally
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Figure 7: The Czochralski model with a free surface covered by a ring. Measured
and calculated frequencies at different temperature differences for experiments with
water. The black diamonds correspond to measured frequencies, the circles – to
critical and marginal frequencies at the critical and marginal values of ∆T predicted
by the linear stability analysis. All the colors correspond to Figs. 4 and 5.

observed transitions to unsteadiness will be detected with finite amplitude, and
therefore will be slightly above the numerically predicted ones. Even in cases
of subcritical bifurcations we do not expect that the depth of subcriticality is too
large, so that a transition can be experimentally observed close to the numerically
predicted one. For an example of such observations we mention our comparison
with experiments of [Munakata and Tanasawa (1990)] reported in [Gelfgat (2008)],
or a recent comparison of calculated and experimentally found transition of a lid-
driven flow in a cube [Liberzon, Feldman and Gelfgat (2011)]. However, examin-
ing the non-rotating cases in Figs. 7a, 8a and Table 1 we observe that experimental
transitions to an oscillatory flow takes place at significantly smaller temperature
differences than those predicted numerically. A similar observation was reported
in [Teitel, Schwabe and Gelfgat (2008)], however there we explained it by evapora-
tion of the oil from the surface, and/or by a possibly incorrect value of the surface
tension temperature coefficient. In the cases presented here these possibilities are
excluded, however the effect remains.

An observation of the amplitudes carried by the reported frequencies yields a par-
tial explanation of the above effect. Note that in the case of water (Fig. 7a) the
spectral power of the main oscillation frequency increases by 2.5 times when ∆T is
increased from 0.6 to 0.7◦C, and then again increases by almost 4 times when the
temperature difference is raised to ∆T =0.8◦C. This steep increase of the spectral
power, which estimates the oscillation amplitude, takes place close to the numeri-
cally predicted ∆Tcr=0.84◦C. Near this value the measured and calculated frequen-
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Figure 8: The Czochralski model with a free surface covered by a disk. Measured
and calculated frequencies at different temperature differences for experiment with
20 cSt silicone oil. The black diamonds correspond to measured frequencies, hor-
izontal lines – to critical and marginal frequencies predicted by the linear stability
analysis. The circles correspond to the critical and marginal values of ∆T . All the
colors correspond to Figs. 3 and 4.
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cies also become close. A similar effect is observed also for silicone oil (Fig. 8a),
where the spectral power values increases by almost 80 times, when ∆T is increased
from 3.4 to 3.5◦C. As mentioned below, the predicted ∆Tcr=3.6◦C is close to this
point and the predicted critical frequency fcr=0.046Hz is close to the observed
value of 0.04Hz. Thus, we observe that the predicted linear instability exhibits it-
self as a steep increase of the oscillations amplitude, which happens close to ∆Tcr

and yields a frequency of oscillations close to the predicted fcr. At the same time,
the appearance of low-amplitude oscillations at lower ∆T still needs an explanation.
The latter is offered in the next section.

The case shown in Fig. 7b corresponds to a moderate crystal dummy rotation of
4 rpm, which corresponds to the Reynolds number Re≈900. According to Fig.
4, this value of Reynolds number corresponds to a steeply destabilized flow, for
which the instability is expected to set in at ∆Tcr=0.03◦C with the critical frequency
of 3.2×10−4Hz and m=1. This value of temperature difference is too low to keep
it constant in the experiment, while so small frequency is almost impossible to
distinguish from experimental noise. Nevertheless, the temperature oscillations,
possibly appearing at larger ∆T , have such a small amplitude that they cannot be
detected. Note, that the rotation affected minimal value of ∆T , at which oscillations
are observed, is smaller than that without rotation (cf. Figs. 7a and 7b), which qual-
itatively confirms the destabilization effect predicted numerically and described in
the above Section.

Experiments with a slower rotation, e.g. 1 rpm, could not successfully predict the
steady – oscillatory transition. According to the numerical results, two marginal
frequencies appearing at the steeply descending linear stability curves (Fig. 4) are
of the order of 10−3 Hz. A measurement of such a slow oscillatory signal would
require extremely long experimental runs with a very low noise level, since the
oscillations amplitude is not expected to be large. We were unable to do it in the
experiments described.

Experimental instability results with a slow rotation are more informative in the
case of silicone oil. Owing to large viscosity, the numerically predicted marginal
frequencies are an order of magnitude larger than those of the water, and can be
measured at significantly large temperature differences, at which the oscillations
amplitude becomes detectable. This is illustrated in Fig. 8b – 8e.

In the case of a very slow crystal dummy rotation of 2.5 rpm (Re≈26, Fig. 8b)
we detect a visible peak in the frequency spectrum starting from ∆T =0.5◦C. The
linear stability analysis predicts ∆Tcr=0.055◦C with m=0 and fcr=0.018 Hz (Table
1). Thus, for ∆T≥0.5◦C the flow oscillations are governed by a strongly non-linear
regime, which makes the frequencies incomparable with the linear stability analysis
results. The next marginal mode m=1 appears to be unstable beyond ∆Tm=0.62◦C
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with approximately the same marginal frequency. Seemingly, this mode already
does not affect the developed oscillatory flow. Here again, we experimentally ob-
serve flow destabilization by a weak crystal dummy rotation (cf. Fig. 8a and 8b),
which again qualitatively agrees with the above numerical findings.

Results obtained for crystal dummy rotation of 6.8 and 10 rpm (Re≈109 and 161,
Fig. 8c and 8d) are similar. In both cases, mode m=1 is the most unstable. Compu-
tations predict ∆Tcr=0.011◦C and 0.2◦C with fcr=0.0018 and 0.019 Hz for rotation
of 6.8 and 10 rpm, respectively. A next marginal mode is m=0 with, respectively,
∆Tm=0.18◦C and 0.32◦C for the two above rotation rates. The difference in ∆Tm re-
sults also in the difference of the marginal frequencies, which are 0.007 and 0.012
Hz for 6.8 and 10 rpm, respectively. In the experiment we can detect visible peaks
in the spectrum only starting from the temperature difference of 5◦C for the rotation
of 6.8 rpm and from 4◦C for 10 rpm. As above, this is already a well-developed
non-linear oscillatory regime, for which we cannot expect a good agreement be-
tween the measured and critical/marginal frequencies.

For crystal dummy rotation of 20 rpm (Re≈210, Fig. 8e), our calculations predict
that instability sets in at ∆Tcr,1=0.55◦C for mode m=2 with a frequency fcr,1=0.006
Hz. Increasing ∆T , we observe a non-monotonic behavior of Λr, so that flow be-
comes stable at ∆Tcr,2=0.8◦C and then unstable again at ∆Tcr,3=1.8◦C (Fig. 5c).
The corresponding frequencies are fcr,2=0.009 Hz and fcr,3=0.014 Hz (Fig. 5d).
Two closest marginal modes are m=1 with ∆Tm=0.6◦C and fm=0.0034 Hz and m=0
with ∆Tm=0.8◦C and fm=0.023 Hz. In the experiment we observe oscillations of
temperature starting from ∆T =0.5◦C with frequency 0.0028 Hz, which increases
with the increase of ∆T . This frequency is well-compared with those of the m=1
perturbation mode, which, together with the close values of ∆Tm, already can be
considered as a quantitative agreement.

The case with dummy rotation of 50 rpm (Re≈530, Fig. 8f) is another one, for
which we observe a quantitative agreement between the experiment and numer-
ics. The critical temperature difference here corresponds to ∆Tcr,1=1.1◦C with m=3
and fcr,1=0.0087 Hz. This mode also exhibits a non-monotonic behavior of Λr

and becomes stable at ∆Tcr,2=1.9◦C with fcr,2=0.02 Hz. It finally loses stability at
∆Tcr,3=2.4◦C with fcr,3=0.08 Hz. The two latter points are not included in Fig. 8f
since the observed experimental frequencies are significantly smaller than fcr,2 and
fcr,3. The next unstable marginal mode is m=2, whose ∆Tm=1.2◦C and fm=0.006
Hz. This is exactly the point where we start to observe the oscillations in the ex-
periment. Other modes, m=0 and m=1 become unstable at larger ∆T and their
frequencies are significantly smaller than the measured ones (Fig. 8f). We believe
that in this case we do observe the instability due to a perturbation corresponding
to the second azimuthal Fourier mode. Unfortunately, our visualization techniques
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do not allow us to confirm that the flow pattern attains a rotational periodicity for
the rotation in 180◦ around the axis.

5 External excitation of instability at lower temperature differences

In the following we propose an explanation to the fact that in the non-rotating case
the measured critical ∆T is noticeably smaller than that predicted numerically. To
address this issue, we start from an interesting observation made during the ex-
perimental measurements. Figure 9 shows temperatures measured by two thermo-
couples when the temperature difference was abruptly increased from 3 to 3.5◦C.
We observe that the temperature starts to increase almost monotonically and then
suddenly produces oscillations with large amplitude. At later times the amplitude
reduces, and finally the oscillations arrive to an asymptotic oscillatory state, whose
amplitude is much smaller. Such a transient behavior is well-known and is de-
scribed as a non-modal temporal growth of disturbances. This effect is caused by
non-orthogonality of the eigenvectors of the linear stability problem. It is studied
mainly for infinitely extended shear flows [Schmid (2007)], while confined flows,
like the one considered here, are yet to be addressed. Nevertheless, observation of
this phenomenon yields the first necessary step for the explanation we offer below.

Figure 9: Temperature measured by two thermocouples after the temperature dif-
ference was suddenly increased from 3 to 3.5◦C. Experiment with silicone oil.
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Figure 10: Temperature measured inside a thermostatic bath, which is assumed to
be equal 25.8◦C.

The next step is an examination of temperature inside the thermostatic bath. A
measurement of the temperature inside a bath by a thermocouple reveals that the
temperature there is not exactly constant, but oscillates with amplitude of approxi-
mately 0.02◦C, as illustrated in Fig. 10. The periodicity of these oscillations is de-
fined by the bath temperature controller and is not important for further discussion.
At this moment we understand that the cold and hot temperatures at the boundaries
are not exactly constants, but contain permanent low-amplitude oscillations.

To explain the appearance of oscillations at subcritical values of ∆T we assume
that the low-amplitude oscillations of the boundary temperature values trigger non-
modal perturbation growth. A non-modally growing disturbance would decay dur-
ing some time, but since the boundary values oscillate permanently, they supply
necessary excitation for the non-modal growth all the time. To verify this assump-
tion entirely, one has to measure boundary temperature values, and then to perform
a fully non-linear three-dimensional time-dependent calculation during a very long
time, posing the measured temperatures as the boundary conditions. Such an exer-
cise was not possible within the current study because the correct measurement of
boundary temperature values was not possible, and we had no necessary computa-
tional resources to perform the mentioned 3D computations.
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To make a qualitative verification of the above hypothesis, we notice that the crit-
ical instability mode in the case of water is axisymmetric (m=0). Thus, we can
restrict ourselves with an axisymmetric time-dependent calculation, using for the
temperature boundary conditions results of measurements in both baths. Such an
exercise is affordable and simulation can be done for sufficiently long times. Hav-
ing in mind the non-modal disturbances growth we expect that the oscillations we
observe in the flow will have amplitudes larger than that of the boundary conditions,
and frequencies of these oscillations will be comparable with the frequencies of the
eigenmodes, as well as with frequencies of measured temperature oscillations.

Results of the above modeling are shown in Figs. 11 and 12. Figure 11 shows time
dependence of the temperature at a point located at the axis close to the bottom,
approximately at the location of one of the thermocouples. We observe irregular
small-amplitude oscillations for ∆T ≤0.6◦C (Fig. 11a), while for ∆T ≥0.7◦C, the
oscillations become regular and their amplitude becomes noticeably larger (Fig.
11b). Note, that the instability threshold is predicted at ∆Tcr=0.84◦C, so that the
transition from irregular to regular oscillations takes place close to the linear stabil-
ity limit. Smaller amplitudes at subcritical ∆T agree with the experimental obser-
vations (Fig. 7a). The stability limit was calculated for a perfectly steady base flow,
so that transition of the externally excited flow can be expected slightly earlier, as
is observed. As expected, the amplitude of oscillations for ∆T ≤0.6◦C (Fig. 11a)
is 2 – 3 times larger than that measured into the bath (Fig. 10), which supports our
assumption about the non-modal excitation.

Figure 12 show spectral density of the time signals of Fig. 11. As expected, we
observe several sharp maxima for ∆T <0.6◦C (Fig. 12a-c), which, in our opinion,
correspond to different eigenmodes non-modally excited through time-dependent
boundary conditions. Starting from ∆T = 0.6◦C (Fig. 12d-h), a distinct most un-
stable mode appears and, as is shown in Fig. 13, the oscillations clearly exhibit
its frequency and following harmonics that still contain some noise caused by the
time-dependent boundary conditions. It is worth noting that the maximum ampli-
tude for the time-dependent calculations (Fig. 12) was obtained at ∆T = 0.7◦C,
which is lower than the instability threshold ∆Tcr= 0.84◦C. This emphasizes that
in flows with possible non-normal instability, the very moderate external random
forcing, e.g. time-dependent boundary conditions, can generate remarkably strong
fluctuations through non-modal excitation.

To complete the above argumentation we compare measured frequencies with those
obtained via the time-dependent calculations, as well as frequencies of several
eigenmodes corresponding to m=0 and m=1 azimuthal wavenumbers (Fig. 13 and
Table 2). Table 2 compares experimental frequencies with those obtained by the
time-dependent calculations and with frequencies of leading (shown in bold) and
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Figure 11: Histories of the calculated temperature in the location corresponding to a
thermocouple positioned near the center of the bottom. The temperature boundary
conditions are supplied from the measured temperatures inside the cold and hot
baths.

close to leading eigenmodes. For ∆T ≥0.7◦C, we observe a very good agreement
between the measured and calculated frequencies, which are all located near the
frequency of the most unstable axisymmetric eigenmode. At lower ∆T , the values
of experimentally and calculated frequencies diverge, which can be a result of dif-
ferent excitation of disturbances in the experiment and calculations. Comparison
of the latter values with the frequencies of the eigenmodes shows that there al-
ways exists an eigenmode corresponding to m=1, whose frequency coincides with
the experimentally observed one. On the other hand, the frequencies of the cal-
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Figure 12: Frequency spectra of the temperature histories shown in Fig. 11

Figure 13: Experimentally measured frequencies compared with frequencies of
eigenmodes whose growth rate is slightly smaller than that of the critical one, and
frequencies of time-dependent axisymmetric time integration with boundary con-
ditions incorporated from the measured bath temperatures. Experiment with water.
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culated time-dependent flow depart from those of the eigenvalues, and can relate
to main frequencies of the boundary conditions oscillations. Note, that the mode
m=1, yielding an agreement of the measured and the eigenmode frequencies, cor-
respond to the 2π-periodic azimuthal Fourier harmonic. This mode is most likely
to be excited by an experimental setup imperfection, as is discussed above.

Table 2: Comparison of experimentally measured oscillation frequencies with the
linear stability results and results of time-dependent computations implementing
experimentally measured boundary conditions. Frequencies of the leading eigen-
mode are shown in bold.

∆T (◦C) f (Hz)
experiment

f (Hz)
m=0

f (Hz)
m=1

f (Hz)
time integration

0.3 0.021 0.0186, 0.0199 0.0175 0.02286
0.4 0.022 0.0221, 0.0238 0.0215 0.02955
0.5 0.026 0.0253, 0.0293 0.0252 0.02986
0.6 0.031 0.0284, 0.0305 0.0286 0.03173
0.7 0.033 0.0312, 0.0338 0.0318 0.03361
0.8 0.036 0.0339, 0.0358 0.0348 0.03581
0.9 0.038 0.0365, 0.0369 0.0377 0.0374
1.0 0.040 0.0390, 0.0405 0.0404 0.0401

6 Conclusions

Experiments and calculations have been performed in a Czochralski-like flow model
with a purpose to obtain reliable experimental data that can be used for validation
of a computational code, especially those aimed at finding instabilities of the flow.
To exclude an obvious uncertainty connected with the free surface, i.e., precise
value of the surface tension temperature dependence, as well as the evaporation
and contamination effects, we covered the free surface by a no-slip thermally insu-
lating ring. The experiments were carried out for two experimental liquids: water
(Pr=6.42) and 20cSt silicone oil (Pr=203).

By calculating stability diagrams for both experimental fluids, we re-obtained the
effect of a sharp destabilization of flow by a slow rotation that was already reported
for the Czochralski configuration in [Haslavsky, Miroshnichenko, Kit and Gelfgat
(2011); Gelfgat (2008); Crnogorac, Wilke, Cliffe, Gelfgat and Kit (2008)] and was
recently explained in [Gelfgat (2011)]. The present experiments carried out with a
slow rotation of the crystal dummy support this prediction qualitatively, however
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they were unable to measure instabilities at very small numerically predicted tem-
perature differences, as well as to detect oscillations with the frequencies of the
order 10−3 Hz.

Comparing the numerically predicted and experimentally measured critical temper-
ature differences and frequencies of the appearing flow oscillations, we were able
to obtain a certain quantitative agreement for the flows affected by rather strong
rotation of the crystal dummy (Re>200). When rotation is slower, we observe the
mentioned above destabilization, but cannot successfully compare the results. Mea-
surements in the non-rotating case reveal that at values of temperature difference
smaller than the numerically predicted critical ones some oscillations of very low
amplitude emerge. At the same time, when ∆T is increased beyond the numerically
predicted value, the numerically predicted frequencies corresponding to the fastest
growing eigenmodes are clearly observed.

To explain the above effects, we paid attention that: (i) the flow exhibits transient
growth and decay of the oscillations amplitude, which can be caused by a non-
modal disturbances growth [Schmid (2007)]; and (ii) existence of small-amplitude
temperature oscillations inside thermostatic baths that leads to time-dependent tem-
perature at the crucible wall. We assumed that the experimentally observed in-
stability can be triggered by these small-amplitude temperature oscillations at the
boundaries. This assumption is supported by an additional numerical modeling, for
which we imposed the measured temperature oscillations in cold and hot baths as
the boundary conditions.

It is stressed that such a subcritical excitation of non-modal instability can be a
case in many experiments where constant boundary temperatures are supported by
an electronic feedback control system. It can be also an issue for such material
processing technologies as bulk crystal growth from melt.
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