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Context: A visualization of three-dimensional incompressible flows by divergence-free quasi-
two-dimensional projections of velocity field on three coordinate planes is proposed.

Objective: To visualize 3D incompressible flow by 3 two-dimensional plots.
Method: It is argued that such divergence-free projections satisfying all the velocity boundary condi-

tions are unique for a given velocity field. It is shown that the projected fields and their vector potentials
can be calculated using divergence-free Galerkin bases.

Results: Using natural convection flow in a laterally heated cube as an example, it is shown that the pro-
jections proposed allow for a better understanding of similarities and differences of three-dimensional
flows and their two-dimensional likenesses. An arbitrary choice of projection planes is further illustrated
by a lid-driven flow in a cube, where the lid moves parallel either to a sidewall or a diagonal plane.

Conclusion: A new method for visualization of 3D incompressible flows is developed and described.
� 2014 Elsevier Ltd. All rights reserved.
1. Introduction choice of visualization coordinate system is arbitrary, so that the
With the growth of available computer power, development of
numerical methods and experimental techniques dealing with
fully developed three-dimensional flows the importance of flow
visualization becomes obvious. While two-dimensional flows can
be easily described by streamline or vector plots, there is no com-
monly accepted methodology for representation of three-dimen-
sional flows on a 2D plot. Streamlines can be defined also for a
general 3D flow, however cannot be represented by a single stream
function. Other textbook techniques, such as streak lines, trajecto-
ries and arrow fields, are widely used but become unhelpful with
increase of flow complexity. Same can be said about plotting of iso-
surfaces and isolines of velocity or vorticity components, which
produce beautiful pictures, however, do not allow one to find out
velocity direction at a certain point. Basic and more advanced
recent state-of-the-art visualization techniques are discussed in
review papers [1–3] where reader is referred for the details. Here
we develop another visualization technique, applicable only to
incompressible flows, and related to the surface-based techniques
discussed in [2]. Our technique considers projections of 3D velocity
field onto coordinate planes and allows one to compute a set of
surfaces to which the projected flow is tangent. Thus, the flow is
visualized in all three sets of coordinate planes (surfaces). The
axes can be directed along ‘‘most interesting’’ directions, e.g. direc-
tions parallel and orthogonal to dominating velocity or vorticity.

The goal of this study is to visualize a three-dimensional incom-
pressible flow computed numerically at some grid nodes. The visu-
alization described below is independent on the method used for
flow calculation. It is based on divergence-free projections of a
computed 3D velocity field on two-dimensional coordinate planes.
Initially, this study was motivated by a need to visualize three-
dimensional benchmark flows, which are direct extensions of
well-known two-dimensional benchmarks, e.g., lid-driven cavity
and convection in laterally heated rectangular cavities. Thus, we
seek for a visualization that is capable to show clearly both similar-
ities and differences of flows considered in 2D and 3D formula-
tions. It seems, however, that the technique proposed can have
significantly wider area of applications and can be applied for visu-
alization of different divergence free vector functions, e.g., vorticity
and magnetic field. The last example below illustrates that the
technique allows one to visualize along or perpendicular to an
arbitrarily chosen direction that can differ from coordinate axes.

Consider a given velocity field, which can be a result of compu-
tation or experimental measurement. Note, that modern means of
flow measurement, like PIV and PTV, allow one to measure three
velocity components on quite representative grids, which leads
to the same problem of visualization of results. Here we observe
that a three-dimensional divergence-free velocity field can be rep-
resented as a superposition of two vector fields that describe the
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motion in two sets of coordinate planes, say (x–z) and (y–z), with-
out a need to consider the (x–y) planes. These fields allow for def-
inition of vector potential of velocity, whose two independent
components have properties of two-dimensional stream function.
The two parts of velocity field are tangent to isosurfaces of the vec-
tor potential components, which allows one to visualize the flow in
two sets of orthogonal coordinate planes. This approach, however,
does not allow one to preserve the velocity boundary conditions in
each of the fields separately, so that some of the boundary condi-
tions are satisfied only after both fields are superimposed. The lat-
ter is not good for visualization purposes. We argue further, that it
is possible to define divergence-free projections of the flow on the
three sets of coordinate planes, so that (i) the projections are
unique, (ii) each projection is described by a single component of
its vector potential, and (iii) the projection vectors are tangent to
isosurfaces of the corresponding non-zero vector potential compo-
nent. This allows us to visualize the flow in three orthogonal sets of
coordinate planes. In particular, it helps to understand how the
three-dimensional model flows differ from their two-dimensional
likenesses. To calculate the projections we propose to use diver-
gence-free Galerkin bases, on which the initial flow can be orthog-
onally projected. Clearly, these projections can be calculated by
other numerical approaches.

For a representative example, we choose convection in a later-
ally heated square cavity with perfectly thermally insulated hori-
zontal boundaries, and the corresponding three-dimensional
extension, i.e., convection in a laterally heated cube with perfectly
insulated horizontal and spanwise boundaries. The most represen-
tative solutions for steady states in these model flows can be found
in [4] for the 2D benchmark, and in [5,6] for the 3D one. In these
benchmarks the pressure p, velocity v = (u,v,w) and temperature
T are obtained as a solution of Boussinesq equations
Fig. 1. Streamlines of two-dimensional buoyancy convection flow in a laterally heated
circulation is clockwise.
@T
@t
þ ðv � rÞT ¼ DT ð1Þ

@v
@t
þ ðv � rÞv ¼ �rpþ PrDv þ RaPrTez ð2Þ

div ½v� ¼ 0 ð3Þ

defined in a square 0 6 x, z 6 1 or in a cube 0 6 x,y,z 6 1, with the
no-slip boundary conditions on all the boundaries. The boundaries
x = 0, 1 are isothermal and all the other boundaries are thermally
insulated, which in the dimensionless formulation reads

Tðx ¼ 0Þ ¼ 1; Tðx ¼ 1Þ ¼ 0;
@T
@y

� �
y¼0;1

¼ 0;
@T
@z

� �
z¼0;1

¼ 0:

ð4Þ

Ra and Pr are the Rayleigh and Prandtl numbers. The reader is
referred to the above cited papers for more details. Here we focus
only on visualization of solutions of 3D problem and comparison
with the corresponding 2D flows. All the flows reported below
are calculated on 1002 and 1003 stretched finite volume grids,
which is accurate enough for present visualization purposes (for
convergence studies see also [7]).

Apparently, the 2D flow v = (u,0,w) is best visualized by the
streamlines, which are the isolines of the stream function w
defined as u ¼ @w

@z ;w ¼ �
@w
@x . In each point the velocity vector is

tangent to a streamline passing through the same point, so that
plot of streamlines and schematic indication of the flow direction
is sufficient to visualize a two-dimensional flow. This is illustrated
in Fig. 1, where streamlines of flows calculated for Pr = 0.71, and Ra
varied from 103 to 108 are shown. Note how the streamline pat-
terns get more complex with the increase of Rayleigh number.
Our further purpose is to visualize three-dimensional flows at
square cavity at Pr = 0.71 and different Rayleigh numbers. The direction of main
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the same Rayleigh numbers, so that it will be possible to see
similarities and differences between 2D and 3D flows.

2. Preliminary considerations

We consider an incompressible flow in a rectangular box
0 6 x 6 X, 0 6 y 6 Y, 0 6 z 6 Z, satisfying the no-slip conditions on
all boundaries. The continuity equation @u/@x + @v/@y + @w/@z = 0
makes one velocity component dependent on two others, so that
to describe the velocity field we need two scalar three-dimensional
functions, while the third one can be found via continuity. This
observation allows us to decompose the velocity field in the fol-
lowing way

v ¼
u

v
w

2
64

3
75¼

u

0
w1

2
64

3
75þ

0
v

w2

2
64

3
75; w1 ¼�

Z z

0

@u
@x

dz; w2 ¼�
Z z

0

@v
@y

dz

ð5Þ

This decomposition shows that the divergence-free velocity
field can be represented as superposition of two fields having com-
ponents only in the (x,z) or (y,z) planes. Moreover, we can easily
define the vector potential of velocity field as

W ¼
Wx

Wy

0

2
64

3
75 ¼

R z
0 vdz

�
R z

0 udz

0

2
64

3
75; v ¼ rot½W� ð6Þ
Fig. 2. Calculation for Ra = 103. Vector potentials Wy and Wx defined in Eq. (6) superp
isosurface for Wy = 0.16; (b) max jWxj = 0.053, isosurfaces for Wx = ±0.008. Frames (c) and
Thus, W is the vector potential of velocity field v, and its two
non-zero components have properties of the stream function:

u ¼ � @Wy

@z
; w1 ¼

@Wy

@x
; v ¼ @Wx

@z
; w2 ¼ �

@Wx

@y
: ð7Þ

This means, in particular, that vectors of the two components of
decomposition (5), i.e., (u,0,w1) and (0,v,w2), are tangent to isosur-
faces of Wy and Wx, and the vectors are located in the planes (x–z)
and (y–z), respectively. Thus, it seems that the isosurfaces of Wy and
Wx, which can be easily calculated from numerical or experimental
(e.g., PIV) data, can be a good means for visualization of the velocity
field. Unfortunately, there is a drawback, which can make such visu-
alization meaningless. Namely, only the sum of vectors w1 and w2,
calculated via the integrals in (5), vanish at z = Z, while each vector
separately does not. Thus, visualization of flow via the decomposi-
tion (5) in a straight-forward way will result in two fields that vio-
late no-penetration boundary conditions at one of the boundaries,
which would make the whole result quite meaningless. The latter
is illustrated in Fig. 2, where isosurfaces of the two components
of vector potentials are superimposed with the (u, 0,w1) and
(0,v,w2) vectors. It is clearly seen that the vector arrows are tangent
to the isosurfaces, however the velocities w1 and w2 do not vanish
at the upper boundary. The latter is illustrated additionally by iso-
lines of w1 and w2 plotted at the upper boundary (Fig. 2c and d).
One can see also that the sum of functions plotted in Fig. 2c and d
yields zero. Furthermore, the choice of integration boundaries in
(5) is arbitrary, so that the whole decomposition (5) is not unique.
osed with the vector fields (u,0,w1) and (0,v,w2). (a) max Wy = 1.066, min Wy = 0,
(d) show isolines of the vectors w1 and w2 defined in Eq. (5) on the boundary z = 1.



Fig. 3. Visualization of a three-dimensional flow at Ra = 103. (a) Two flow trajectories starting at the points (0.1,0.1,0.1) and (0.9,0.9,0.9). The trajectories are colored due to
the temperature values at the points they pass. The temperature color map is shown aside. (b), (c), (d) Isosurfaces of WðyÞy , WðxÞx and WðzÞz superimposed with the vector plots of
the fields ûðyÞ; ûðxÞ and ûðzÞ , respectively. The isosurfaces are plotted for WðyÞy ¼ 0:28;WðxÞx ¼ �0:063, and WðzÞz ¼ �0:080. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Maximal values of the calculated vector potentials of the three velocity projections
and their locations.

Ra 103 104 105 106 107 108

WðxÞx
0.144 0.602 1.408 2.925 5.988 15.200

xmax 0.812 0.867 0.926 0.956 0.0272 0.176
ymax 0.159 0.118 0.0702 0.0419 0.0969 0.0921
zmax 0.465 0.414 0.364 0.315 0.745 0.877

WðyÞy
1.127 4.993 9.954 17.863 32.854 61.465

xmax 0.509 0.509 0.693 0.841 0.0844 0.0521
ymax 0.500 0.653 0.812 0.912 0.0444 0.0236
zmax 0.500 0.483 0.414 0.431 0.535 0.535

WðzÞz
0.148 0.768 1.915 3.983 14.793 33.272

xmax 0.517 0.586 0.535 0.154 0.133 0.960
ymax 0.154 0.154 0.143 0.176 0.176 0.980
zmax 0.805 0.805 0.841 0.936 0.963 0.254
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Clearly, one would prefer to visualize unique properties of the flow
rather than non-unique ones.

To define unique flow properties similar to those shown in Fig. 2
we observe that decomposition (5) can be interpreted as represen-
tation of a three-dimensional divergence-free vector into two
divergence free vector fields located in orthogonal coordinate
planes, i.e., having only two non-zero components. Consider a vec-
tor built from only two components of the initial field, say
u = (u,v,0). It is located in the (x,y,z = const) planes, satisfies all
the boundary conditions for u and v, however, is not divergence-
free. We can apply the Helmholtz–Leray decomposition [8] that
decomposes this vector into solenoidal and potential part,

u ¼ ruþ û; r � û ¼ 0 ð8Þ

As is shown in [8], together with the boundary conditions

û � n ¼ 0; and
@u
@n
¼ u � n ð9Þ

where n is a normal to the boundary, the decomposition (8) is
unique. For the following, we consider (8) in the (x,y,z = const) planes
and seek for a decomposition of u = (u,v,0) in a (x,y,z = const) plane

u ¼ rðx;yÞuþ û; rðx;yÞ � û ¼ 0; rðx;yÞ ¼ ex
@

@x
þ ey

@

@y
: ð10Þ
We represent the divergence-free two-dimensional vector
û ¼ ðû; v̂ ;0Þ as

û ¼ rot½W�; W ¼ ð0;0;WzÞ ) û ¼ @Wz

@y
; v̂ ¼ � @Wz

@x
ð11Þ



Fig. 4. Visualization of a three-dimensional flow at Ra = 105. (a) Two flow trajectories starting at the points (0.1,0.1, 0.1) (0.9,0.9,0.9) and (0.4,0.5,0.5). The trajectories are
colored due to the temperature values at the points they pass. The temperature color map is shown aside. (b), (c), (d) Isosurfaces of WðyÞy , WðxÞx and WðzÞz superimposed with the
vector plots of the fields ûðyÞ; ûðxÞ and ûðzÞ , respectively. The isosurfaces are plotted for WðyÞy ¼ 4:0;WðxÞx ¼ �0:46, and WðzÞz ¼ �0:8. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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which yields for the z-component of rot[u]:

ez � rot½u� ¼ ez � rot½û� ¼ ez � rot½rot½W�� ¼ �ez � DW ¼ �DWz ð12Þ

This shows that Wz is an analog of the two-dimensional stream
function, so that in each plane (x,y,z = const) vector û is tangent
to an isoline of Wz. To satisfy the no-slip boundary conditions for
û and v̂ , Wz and its normal derivative must vanish on the boundary,
which makes the definition of both Wz and û unique. Note, that con-
trary to the boundary conditions (9), to make vector û in the decom-
position (10) unique and satisfying all the boundary conditions of u,
we do not need to define any boundary conditions for the scalar
potential u.

To conclude, the resulting solenoidal part û of vector u = (u,v,0)
(i) is unique, (ii) is defined by a single non-zero z-component Wz of
its vector potential, and (iii) in each (x,y,z = const) plane vectors of
û are tangent to the isosurfaces of Wz. Defining same solenoidal
fields for two other sets of coordinate planes we arrive to three
quasi-two-dimensional divergence-free projections of the initial
velocity field. Each projection is described by a single scalar
three-dimensional function, which, in fact, is a single non-zero
component of the corresponding vector potential.
In the following we use the three above quasi-two-dimensional
divergence-free projections for visualization of convective flow in a
laterally heated cube, and offer a way to calculate them. In
particular, to compare a three-dimensional result with the corre-
sponding two-dimensional one, we need to compare one of the
projections. Thus, if the 2D convective flow was considered in
the plane (x,z), we compare it with the corresponding projections
of the 3D flow on the (x,y = const,z) planes, which are tangent to
isosurfaces of the non-zero y-component of the corresponding
vector potential.
3. Numerical realization

A direct numerical implementation of the Helmholtz–Leray
decomposition to an arbitrary velocity field is known in CFD as
Chorin projection. This procedure is well-known, uses the bound-
ary conditions (9), but does not preserve all the velocity boundary
conditions. Therefore, it is not applicable for our purposes. Alterna-
tively, we propose orthogonal projections of the initial velocity
field on divergence-free Galerkin bases used previously for compu-
tations of different two-dimensional flows.



Fig. 5. Visualization of a three-dimensional flow at Ra = 107. (a) Two flow trajectories starting at the points (0.1,0.1,0.1), (0.9,0.9,0.9) and (0.1,0.5,0.5). The trajectories are
colored due to the temperature values at the points they pass. The temperature color map is shown aside. (b), (c), (d) Isosurfaces of WðyÞy ;WðxÞx and WðzÞz superimposed with the
vector plots of the fields u(y),u(x) and u(z), respectively. The isosurfaces are plotted for WðyÞy ¼ 20:2, WðxÞx ¼ �1:94, and WðzÞz ¼ �2:2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Divergence-free basis functions that satisfy all the linear
homogeneous boundary conditions were introduced in [9] for
two-dimensional flows and were then extended in [10,11] to
three-dimensional cases. To make the numerical process clear we
briefly describe these bases below. The bases are built from shifted
Chebyshev polynomials of the 1st and 2nd kind, Tn(x) and Un(x),
that are defined as

TnðxÞ ¼ cos½n � arccosð2x� 1Þ�; UnðxÞ ¼
sin½ðnþ 1Þarccosð2x� 1Þ�

sin½arccosð2x� 1Þ�
ð13Þ

and are connected via derivative of Tn(x) as T 0nðxÞ ¼ 2nUn�1ðxÞ. Each
system of polynomials forms basis in the space of continuous func-
tions defined on the interval 0 6 x 6 1. It is easy to see that vectors

q̂2D
ij ¼

X
2i Ti

x
X

� �
Uj�1

y
Y

� �
� Y

2j Ui�1
x
X

� �
Tj

y
Y

� �
" #

ð14Þ

form a divergence-free basis in the space of divergence-free func-
tions defined on a rectangle 0 6 x 6 X, 0 6 y 6 Y. Assume that a
two-dimensional problem is defined with two linear and homoge-
neous boundary conditions for velocity at each boundary, e.g., the
no-slip conditions. This yields four boundary conditions in either
x- or y-direction for the two velocity components. To satisfy the
boundary conditions we extend components of the vectors (14) into
linear superpositions as

q2D
ij ¼

X
2

P4
l¼0

ail
ðiþlÞ Tiþl

x
X

� �P4
m¼0bjmUjþm�1

y
Y

� �
� Y

2

P4
l¼0ailUiþl�1

x
X

� �P4
m¼0

bjm

ðjþmÞ Tjþm
y
Y

� �
2
4

3
5 ð15Þ

For each i a substitution of (15) into the boundary conditions yields
four linear homogeneous equations for five coefficients ail, l = 0, 1, 2,
3, 4. Fixing ai0 = 1, allows one to define all the other coefficients,
whose dependence on i and l can be derived analytically. The coef-
ficients bjm are evaluated in the same way. Expressions for these
coefficients for the no-slip boundary conditions can be found in
[9,11]. Since the basis functions q2D

ij are divergence-free in the plane

ðx; yÞ; @ q2D
ij

� �
x
=@xþ @ q2D

ij

� �
y
=@y ¼ 0, and satisfy the non-penetration

conditions through all the boundaries x = 0, X and y = 0, Y, they are
orthogonal to every two-dimensional potential vector field, i.e.,Z Y

0

Z X

0
r2Dp �q2D

ij dxdy¼
Z Y

0

Z X

0

@p
@x

exþ
@p
@y

ey

� �
�q2D

ij dxdy¼0; ð16Þ

which is an important point for further evaluations.



Fig. 6. Visualization of a three-dimensional flow at Ra = 108. (a) Two flow trajectories starting at the points (0.1,0.1, 0.1) (0.9,0.9,0.9) and (0.1,0.5,0.5). The trajectories are
colored due to the temperature values at the points they pass. The temperature color map is shown aside. (b), (c), (d) Isosurfaces of WðyÞy ;WðxÞx and WðzÞz superimposed with the
vector plots of the fields u(y),u(x) and u(z), respectively. The isosurfaces are plotted for WðyÞy ¼ 39:3;WðxÞx ¼ �4:3, and WðzÞz ¼ �6:8. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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For extension of the two-dimensional basis to the three dimen-
sional case we recall that for a divergence-free vector field we have
to define independent three-dimensional bases for two compo-
nents only. Representing the flow in the form (5) and using the
same idea as in the two-dimensional basis (15) we arrive to a set
of three-dimensional basis functions formed from two following
subsets

qðyÞijk ðx;y;zÞ¼

X
2

P4
l¼0

âil
ðiþlÞTiþl

x
X

� �P4
m¼0b̂jmTjþm

y
Y

� �P4
n¼0ĉknUkþn�1

z
Z

� �
0

� Z
2

P4
l¼0âilUiþl�1

x
X

� �P4
m¼0b̂jmTjþm

y
Y

� �P4
n¼0

ĉkn
ðkþnÞTkþn

z
Z

� �
2
664

3
775

ð17Þ

qðxÞijk ðx;y;zÞ¼

0
Y
2

P4
l¼0~ailTiþl

x
X

� �P4
m¼0

~bjm

ðjþmÞTjþm
y
Y

� �P4
n¼0~cknUkþn�1

z
Z

� �
� Z

2

P4
l¼0~ailTiþl

x
X

� �P4
m¼0

~bjmUjþm�1
y
Y

� �P4
n¼0

~ckn
ðkþnÞTkþn

z
Z

� �
2
664

3
775

ð18Þ

where coefficients âil, b̂jm, ĉkn, ~ail, ~bjm, ~ckn are defined from the
boundary conditions. Their derivation for no-slip boundary condi-
tions is explained in Appendix A. Expressions for these coefficients
in the case of a slip-free condition on the upper boundary can be
found in [11]. The velocity field is projected on truncated series

ûðxÞ ¼
XNx

i¼0

XNy

j¼0

XNz

k¼0

AijkqðxÞijk ; ûðyÞ ¼
XNx

i¼0

XNy

j¼0

XNz

k¼0

BijkqðyÞijk ð19Þ

Here one must be cautious with the boundary conditions in z-direc-
tion since, as it was explained above, the two parts of representa-
tion (6) satisfy the boundary condition for w at z = Z only as a
sum. Therefore we must exclude this condition from definition of
basis functions (17) and (18) and set ĉk4 ¼ ~ck4 ¼ 0. The correspond-
ing boundary condition should be included in the resulting system
of equations for Aijk and Bijk as an additional algebraic constraint.
Note that this fact was overlooked in [10] that could lead to missing
of some important three-dimensional Rayleigh–Bénard modes. On
the other hand, comparison of 3D basis functions (17) and (18) with
the 2D ones (15) shows that with all the boundary conditions
included, the functions qðyÞijk ðx; y; zÞ and qðxÞijk ðx; y; zÞ form the complete
two-dimensional bases in the (x,y = const,z) and (x = const,y,z)
planes, respectively. The coefficients b̂jm and ~ail are used to satisfy
the boundary conditions in the third direction. For the basis in the
(x,y,z = const) planes we add



Fig. 7. Isosurfaces of WðyÞy at different Rayleigh numbers. The isosurfaces are plotted at levels (a) 0.53, 4.0, 8.8; (b) 2.5, 10.9, 16.0; (c) 5.4, 17.3, 26.6; (d) 12.6, 33.7, 50.6.
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qðzÞijk ðx; y; zÞ ¼
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ð20Þ

Together with the third projection of the velocity

ûðzÞ ¼
XNx

i¼0

XNy

j¼0

XNz

k¼0

CijkqðzÞijk ð21Þ

Now, we define an inner product as

hu;vi ¼
Z

V
u � vdV ð22Þ

and compute projections of the velocity vector V, to be visualized,
on each of the three basis systems separately. To do that, we need
to calculate Gram matrices Gx,Gy, and Gz for each of the three bases
systems q(x), q(y), and q(z), respectively. This does not require much
CPU time since inner products in each spatial direction can be cal-
culated separately. The coefficients Aijk, Bijk, and Cijk in the decompo-
sitions (19) and (21) are calculated as a product of inversed Gram
matrices with vectors composed of the inner products of the veloc-
ity field V with basis functions q(x), q(y), and q(z). The latter can be
expressed as

fAijkg ¼ G�1
x V ;qðxÞijk

D En o
; fBijkg ¼ G�1

y V ;qðyÞijk

D En o
;

fCijkg ¼ G�1
z V ;qðzÞijk

D En o
ð23Þ

where brackets {} denote assembling of a 3D array into a vector,
which is done by assignment of a single index I = Nz[Ny

(i � 1) + j � 1] + k to each three-dimensional array, e.g., Aijk or

V ;qðxÞijk

D E
, described by the indices i, j, k that vary from 1 to Nx,Ny,

and Nz, respectively. Adding the definition J = Nz[Ny

(l � 1) + m � 1] + n, the (I, J) element of the Gram matrices is defined

as GðI;JÞx ¼ qðxÞI ;qðxÞJ

D E
¼ qðxÞijk ;q

ðxÞ
lmn

D E
;GðI;JÞy ¼ qðyÞI ;qðyÞJ

D E
¼ qðyÞijk ; q

ðyÞ
lmn

D E
,

and GðI;JÞz ¼ qðzÞI ; qðzÞJ

D E
¼ qðzÞijk ;q

ðzÞ
lmn

D E
. Above integrals must be evalu-

ated numerically using an appropriate quadrature formula. For
example, for the finite volume solution defined on staggered grids
we used summation of the function values in finite volumes centers
multiplied by the corresponding volumes. More details are given in
Appendix B. The Gram matrices are symmetric by definition. Their



Fig. 8. Isolines of WðyÞy in the midplane y = 0.5 at different Rayleigh numbers. The direction of main circulation is clockwise.
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inverse is the most CPU time consuming operation for the whole
computational process described. For the results described below
we used 30 and 40 basis functions in each spatial direction. The
obtained results were visually undistinguishable, which is the only
type of truncation number independence we need for visualization.
The whole computational process was carried out with the double
precision arithmetic, and for 303 basis functions never consumed
more than 20 min for a 2.9 GHz PC. Note, however, that application
of the Galerkin method based on above bases for calculation of
three-dimensional flows will not be effective because of a very long
CPU time needed for evaluation of the non-linear terms.

Since the basis vectors qðxÞijk ;q
ðyÞ
ijk and qðzÞijk satisfy all the boundary

conditions and are divergence-free not only in the 3D space, but
also into the corresponding coordinate planes, the potential parts
of projections on these planes are excluded by (16), and resulting
vectors ûðxÞ; ûðyÞ; ûðzÞ satisfy the boundary conditions and are diver-
gence free in the planes where they are located. Therefore, they
approximate the quasi-two-dimensional divergence-free projec-
tion vectors we are looking for. Note, however, that the superposi-
tion ûðxÞ þ ûðyÞ þ ûðzÞ does not approximate the initial vector v. To
complete the visualization we have to derive the corresponding
approximation of vector potentials. The vector potential of each
of ûðxÞ; ûðyÞ; ûðzÞ has only one non-zero component, as is defined
below

ûðxÞ ¼ rot½WðxÞ�; WðxÞ ¼ WðxÞx ;0; 0
� �

; WðxÞx �
XNx

i¼0

XNy

j¼0

XNz

k¼0

Aijku
ðxÞ
ijk ;

ûðyÞ ¼ rot½WðyÞ�; WðyÞ ¼ 0;WðyÞy ; 0
� �

; WðyÞy �
XNx

i¼0

XNy

j¼0

XNz

k¼0

Bijku
ðyÞ
ijk ;

ûðzÞ ¼ rot½WðzÞ�; WðzÞ ¼ 0;0;WðzÞz

� �
; WðzÞz �

XNx

i¼0

XNy

j¼0

XNz

k¼0

Cijku
ðzÞ
ijk

ð24Þ
where

uðxÞijk ðx; y; zÞ ¼ �
X4

l¼0

~ailTiþl
x
X

� �X4

m¼0

~bjm

ðjþmÞ Tjþm
y
Y

� �X4

n¼0

~ckn

ðkþ nÞ Tkþm
z
Z

� �

uðyÞijk ðx; y; zÞ ¼
X4

l¼0

âil

ðiþ lÞ Tiþl
x
X

� �X4

m¼0

b̂jmTjþm
y
Y

� �X4

n¼0

ĉkn

ðkþ nÞ Tkþm
z
Z

� �

uðzÞijk ðx; y; zÞ ¼
X4

l¼0

�ail

ðiþ lÞ Tiþl
x
X

� �X4

m¼0

�bjm

ðjþmÞ Tjþm
y
Y

� �X4

n¼0

�cknTkþm
z
Z

� �
ð25Þ

As stated above, the vectors ûðxÞ; ûðyÞ; ûðzÞ are tangent to the isosur-
faces of WðxÞx ;WðyÞy and WðzÞz , respectively.
4. Visualization results

We start from the flow at Ra = 103, that has the simplest pattern
(Fig. 3). Fig. 3a shows two trajectories starting at points
(0.1,0.1,0.1) and (0.9,0.9,0.9). The trajectories are colored accord-
ing to the values of temperature they pass, so that it is clearly seen
that the fluid rises near the hot wall and descends near the cold
one. Looking only at the trajectories, one can mistakenly conclude
that convective circulation weakens toward the center plane
y = 0.5. Frames 3b–3d show that this impression is misleading. In
these frames we plot three vector potentials defined in Eqs. (23),
together with the divergence-free velocity projections (shown by
arrows) on the corresponding coordinate planes. First, it is clearly
seen that the projection vectors are tangent to the isolines of the
vector potentials. Then we observe that projections on the
y = const. planes (Fig. 3b) represent the simple convective two-
dimensional circulation shown in Fig. 1a. Contrary to the impres-
sion of Fig. 3a, the circulations in (x,z) are almost y-independent



Fig. 9. Visualization of a three-dimensional flow in a lid-driven cubic cavity at Re = 103. (a) Two flow trajectories starting at the points (0.4,0.4,0.9) and (0.6,0.6,0.9). The
trajectories are colored due to values of spanwise velocity. (b), (c), (d) Isosurfaces of WðyÞy ;WðxÞx and WðzÞz superimposed with the vector plots of the fields u(y), u(x) and u(z),
respectively. The isosurfaces are plotted for WðyÞy ¼ �0:0032 and +0.0008; WðxÞx ¼ �0:0044, and +0.0033; WðzÞz ¼ �0:0028. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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near the center plane y = 0.5 and steeply decay near the boundaries
y = 0 and y = 1. The three-dimensional effects are rather clearly
seen from the two remaining frames. The flow contains two pairs
of diagonally symmetric rolls in the (y,z) planes (Fig. 3c), and
two other diagonally symmetric rolls in the (x,y) planes (Fig. 3d).
Motion along these rolls deforms trajectories shown in Fig. 3a.

It is intuitively clear that the motion in the frames of Fig. 3 c and
d is noticeably weaker than that in Fig. 3b. For the 2D flows the
integral intensity of convective circulation can be estimated by
the maximal value of the stream function. Similarly, here we can
estimate the intensity of motion in two-dimensional planes by
maximal values of the corresponding vector potential. Since these
values can be used also for comparison of results obtained by dif-
ferent methods we report all of them, together with their locations,
in Table 1. As expected, we observe that at Ra = 103 the maximal
value of WðyÞy is larger than that of two other potentials in almost
an order of magnitude. With the increase of Rayleigh number the
ratio of maximal values of WðxÞx ;WðzÞz and WðyÞy grows reaching
approximately one half at Ra = 107, which indicates the growing
importance of motion in the third direction.

Figs. 4–6 illustrate flows at Ra = 105, 107 and 108, respectively,
in the same way as in Fig. 3. It is seen that the isosurfaces of WðyÞy

resemble the shapes of two-dimensional streamlines (Fig. 1) rather
closely. At the same time we see that the ‘‘three-dimensional addi-
tions’’ to the flow, represented by WðxÞx and WðzÞz , remain located near
the no-slip boundaries and are weak in the central region of the
cavity. This means, in particular, that spanwise directed motion
in the midplane y = 0.5 is weak, which justifies use of two-dimen-
sional model for description of the main convective circulation.

To show how the isosurfaces of WðyÞy represent patterns of two-
dimensional flow we show their several isosurfaces in Fig. 7 and
isolines in the center plane y = 0.5 in Fig. 8. The isosurfaces of
WðyÞy in Fig. 7 show pattern of the main convective circulation in
the (x,y = const,z) planes. The isolines in Fig. 8 can be directly com-
pared with the streamlines shown in Fig. 1. This comparison
should be accompanied with the comparison of the maximal val-
ues of the stream functions of Fig. 1 and the maximal values of
WðyÞy , all shown in the figures. We observe that the patterns in Figs. 1
and 8 remain similar, however the similarity diminishes with the
increase of Ra. The maximal values of WðyÞy for Ra 6 105 are smaller
than that of the stream function, which can be easily explained by
additional friction losses due to the spanwise boundaries added to
the three-dimensional formulation. At Ra > 106 we observe that
together with the deviation of the isolines pattern from the 2D
one, the maximal values of WðyÞy become larger than those of the
two-dimensional stream function. Ensuring, that this is not an



Fig. 10. Visualization of a three-dimensional flow in a lid-driven cubic cavity with a lid moving along a diagonal, at Re = 10 3. (a) Two flow trajectories starting at the points
(0.1,0.1,0.9) and (0.9,0.9, 0.9). The trajectories are colored due to values of vertical velocity. (b), (c), (d) Isosurfaces of WðyÞy , WðxÞx and WðzÞz superimposed with the vector plots of
the fields u(y), u(x) and u(z), respectively. The isosurfaces are plotted for WðyÞy ¼ �0:015 and +0.0015; WðxÞx ¼ �0:015, and +0.0015; WðzÞz ¼ �0:0024. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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effect of truncation in the sums (23), we explain this by strong
three-dimensional effects, in which motion along the y-axis start
to affect the motion in the (x,y = const,z) planes.

As an example of arbitrary choice of projection planes we con-
sider another well-known benchmark problem of flow in a lid-
driven cubic cavity. We consider it in two different formulations:
a classical configuration where the lid moves parallel to a side wall,
and a modified configuration with the lid moving along the diago-
nal of the upper boundary [12,13]. Obviously, three-dimensional
effects are significantly stronger in the second case. Both flows
are depicted in Figs. 9 and 10 in the same way as convective flows
were represented above. Comparing the flow pattern shown in
Fig. 9, one can see clear similarities with the well-known two-
dimensional flow in a lid-driven cavity. The main vortex and
reverse recirculation in the lower corner are clearly seen in
Fig. 9b. Fig. 9c and d show additional three-dimensional recircula-
tions in the (x,y,z = const) and (x = const,y,z) planes. The same rep-
resentation of the second configuration in Fig. 10 exhibits similar
patterns of WðxÞx and WðyÞy together with the similar patterns of corre-
sponding projection vectors. This is an obvious consequence of the
problem configuration, where main motion is located in the diago-
nal plane and the planes parallel to it. To illustrate motion in these
planes we project the flow on planes orthogonal to the diagonal
plane (or parallel to the second diagonal plane). The result is shown
in Fig. 11. The isosurfaces belong to the corresponding vector
potential, so that the divergence-free projection of velocity on the
diagonal and parallel planes is tangent to these and other isosurfac-
es. Arrows in the diagonal plane depict this projection and illustrate
the main vortex, as well as small recirculation vortices in lower cor-
ners. It is seen that the arrows are tangent to both isosurfaces.

5. Conclusions

We proposed to visualize three-dimensional incompressible
flows by divergence-free projections of velocity field on three coor-
dinate planes. We presented the arguments showing that such a
representation allows, in particular, for a better understanding of
similarities and differences between three-dimensional bench-
mark flow models and their two-dimensional counter parts. We
argued also that the choice of projection planes is arbitrary, so that
they can be fitted to the flow pattern.

To approximate the divergence-free projections numerically we
calculated orthogonal projections on divergence-free Galerkin
velocity bases. Obviously, there are other ways of doing that,



Fig. 11. Visualization of a three-dimensional flow in a lid-driven cubic cavity with a
lid moving along a diagonal, at Re = 103. Isosurfaces of vector potential of velocity
projection on the diagonal planes, and the vector plot of the corresponding
projected velocity field. The isosurfaces are plotted for the levels �0.017 and +0.004,
while the minimal and maximal values of the calculated vector potential are �0.083
and +0.012.
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among which we can mention inverse of the Stokes operator dis-
cussed in [14]. We believe also that the proposed method of visu-
alization is suitable for a significantly wider class of incompressible
flows, and can be applied not only to numerical, but also to exper-
imental data.
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Appendix A. Derivation of coefficients âil; b̂jm,
ĉkn; ~ail;

~bjm; ~ckn; �ail;
�bjm; �ckn of the basis functions (17) and (18) for

no-slip boundary conditions

As mentioned above, the coefficients âil, b̂jm; ĉkn; ~ail,
~bjm; ~ckn; �ail;

�bjm; �ckn are obtained after substitution of the basis
functions in the boundary conditions. The values of the shifted
Chebyshev polynomials at the boundary points are

Tnð0Þ ¼ ð�1Þn; Tnð1Þ ¼ 1; Unð0Þ ¼ ð�1Þnðnþ 1Þ;
Unð1Þ ¼ nþ 1 ð25Þ

Thus, for the coefficients âil we obtain the following system of four
linear equations

ð�1Þi

i
âi;0þ

ð�1Þiþ1

iþ1
âi;1þ

ð�1Þiþ2

iþ2
âi;2þ

ð�1Þiþ3

iþ3
âi;3þ

ð�1Þiþ4

iþ4
âi;4¼ 0 ð26:1Þ

1
i

âi;0þ
1

iþ1
âi;1þ

1
iþ2

âi;2þ
1

iþ3
âi;3þ

1
iþ4

âi;4¼ 0 ð26:2Þ

ð�1Þiðiþ1Þâi;0þð�1Þiþ1ðiþ2Þâi;1þð�1Þiþ2ðiþ2Þâi;2

þð�1Þiþ3ðiþ4Þâi;3þð�1Þiþ4ðiþ5Þâi;4 ¼0 ð26:3Þ
ðiþ1Þâi;0þðiþ2Þâi;1þðiþ2Þâi;2þðiþ4Þâi;3þðiþ5Þâi;4 ¼0 ð26:4Þ
for five unknown coefficients. To make the system definite, we
assign âi;0 ¼ 1, and assuming i – 0 obtain

âi;1 ¼ âi;3 ¼ 0; âi;2 ¼ �
i

iþ 2
� ðiþ 1Þðiþ 4Þ2

iðiþ 2Þðiþ 3Þ ;

âi;4 ¼
ðiþ 1Þðiþ 4Þ

iðiþ 3Þ ð27Þ

For the first basis function corresponding to i = 0 we define addi-
tionally U�1(x) = 0 and for the zero Chebyshev polynomial replace
the coefficient âi;0=i by â0;0. This yields

â0;1 ¼ â0;3 ¼ 0; â0;2 ¼ �
16
3
; â0;4 ¼

8
3

ð28Þ

Now we notice that the coefficients �ail, ~bjm;
�bjm; ĉkn and ~ckn are

obtained from same systems of equations where index i should be
replaced by either j or k. Therefore,

�ail ¼ ~bil ¼ �bil ¼ ĉil ¼ ~cil ¼ âil; i ¼ 0;1;2;3; . . . ;

l ¼ 0;1;2;3;4 ð29Þ

The remaining coefficients b̂jm; ~ail, and �ckn must be defined so that
the basis functions vanish on all the boundaries. It is easy to see that

b̂j;0 ¼ ~ai;0 ¼ �ck;0 ¼ 1; b̂j;2 ¼ ~ai;2 ¼ �ck;2 ¼ �1 ð30Þ
b̂j;1 ¼ ~ai;1 ¼ �ck;1 ¼ b̂j;3 ¼ ~ai;3 ¼ �ck;3 ¼ b̂j;4 ¼ ~ai;4 ¼ �ck;4 ¼ 0 ð31Þ
Appendix B. Numerical evaluation of divergence free
orthogonal projections on a staggered grid

Here we present more details on numerical evaluation of Eqs.
(14)–(25) assuming that the flow is calculated on a staggered grid
defined in the following way. First, for the grid size (Mx + 1)
(My + 1)(Mz + 1) we define uniformly distributed grid nodes xi, yj,
and zk as

xi ¼
X
Nx

i; yj ¼
Y
Ny

j; zk ¼
Z

Nz
k ð32Þ

where i, j, k are integers varying from 0 to Mx, My, Mz, respectively.
The uniformly distributed nodes can be stretched near the bound-
aries, or redistributed in any other way that does not alter their
numbering in the sense x0 < x1 < � � � < xMx , etc. To cluster the grid
nodes near the boundaries we use the same mapping as in [11]

xi  X
xi

X
� a sin 2p xi

X

� �h i
; yj  Z

yj

Y
� b sin 2p

yj

Y

� �� 	
;

zk  Z
zk

Z
� c sin 2p zk

Z

� �h i
ð33Þ

where a, b, and c can vary from 0 to 0.12. The steepest stretching is
obtained for a = b = c = 0.12, the values used in the current study.
After the stretching is completed we define the shifted nodes

xiþ1=2 ¼
1
2
ðxi þ xiþ1Þ; yjþ1=2 ¼

1
2
ðyj þ yjþ1Þ;

zkþ1=2 ¼
1
2
ðzk þ zkþ1Þ ð34Þ

and the corresponding grid steps

hðxÞiþ1=2¼ xiþ1�xi; hðyÞjþ1=2¼ yjþ1�yj; hðzÞkþ1=2¼ zkþ1�zk ð35Þ

ĥðxÞi ¼ xiþ1=2�xi�1=2; ĥðyÞj ¼ yjþ1=2�yj�1=2; ĥðzÞk ¼ zkþ1=2�zk�1=2 ð36Þ

The numerical solution is obtained on the staggered grids. The sca-
lar variables, i.e., temperature, pressure and velocity divergence, are
defined in the nodes (xi,yj,zk). The x-, y-, and z-velocity components
are defined in the nodes (xi+1/2,yj,zk), (xi,yj+1/2,zk), and (xi,yj,zk+1/2),
respectively. For the following we define the node values of



Table 2
CPU times consumed using 2.9 GHz PC for computation of the Gram matrices,
solution of the linear algebraic equations problem with a Gram matrix by the
Cholesky decomposition and computation of the final sums.

Number
of basis
functions

Computing a
single Gram
matrix (s)

Solution of a linear
problem with a
Gram matrix (s)

Calculations
of sums (24)
(s)

Absolute error in
solution of the
linear system

203 0.895 10.6 0.099 1.4 � 10�16

303 9.0 380 0.17 4.6 � 10�16

403 61.8 5700 0.286 5.0 � 10�16
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numerically calculated functions as pijk, Tijk, ui+1/2,j,k, vi,j+1/2,k, wi,j,k+1/2.
The velocity divergence is approximated in the nodes (xi,yj,zk) as

½divðvÞ�ijk ¼
uiþ1=2;j;k � ui�1=2;j;k

ĥðxÞi

þ v i;jþ1=2;k � v i;j�1=2;k

ĥðyÞj

þwi;j;kþ1=2 �wi;j;k�1=2

ĥðzÞk

ð37Þ

The finite volume method combined with the fractional step time
integration yields zero values of the numerical divergence (37) in
the corresponding nodes. To calculate the divergence free projec-
tions described above, we prefer to keep these values equal to zero,
rather than the exact differential operator div. To do that we define
node values of the Chebyshev polynomials of the first kind T

Tn;iðxiÞ ¼ cos½n � arccosð2xi � 1Þ�;
Tn;iþ1=2ðxiþ1=2Þ ¼ cos½n � arccosð2xiþ1=2 � 1Þ� ð38Þ

The node values of second kind polynomial U are defined in the way
that makes the numerical approximation of the relation
T 0nðxÞ ¼ 2nUn�1ðxÞ valid. Therefore, in all the inner points we define

Un�1;iðxiÞ ¼
1

2nĥðxÞi

½Tn;iþ1=2ðxiþ1=2Þ � Tn;i�1=2ðxi�1=2Þ� ð39:1Þ

Un�1;iþ1=2ðxiþ1=2Þ ¼
1

2nhðxÞiþ1=2

½Tn;iþ1ðxiþ1Þ � Tn;iðxiÞ� ð39:2Þ

and add the analytical values of Un in all the boundary points. The
polynomials grid values in the y- and z-direction are defined in
the same way. After the polynomials in Eqs. (14)–(20) are replaced
by their grid values, the approximate divergence (37) of the basis
functions remains an analytic zero. Since boundary values of the
grid-defined polynomials are the same as those of the analytical
ones, the coefficients found as described in Appendix A remain
unchanged. Clearly, redefinition of the polynomials U (39) is not
necessary for the visualization purposes, however it yields better
comparison with the two-dimensional results that were calculated
keeping the 2D version of the divergence approximation (37) equal
to zero.

Now, the inner product of two vectors u = (u(x),u(y),u(z)) and w =
(w(x),w(y),w(z)) defined by Eq. (22) is replaced by the following
quadrature formula

hu;wi ¼
XMx�2

i¼1

XMy�1

j¼1

XMz�1

k¼1

uðxÞiþ1=2;j;kwðxÞiþ1=2;j;kĥðxÞi hðyÞjþ1=2hðzÞkþ1=2

h i

þ
XMx�1

i¼1

XMy�2

j¼1

XMz�1

k¼1

uðyÞi;jþ1=2;kwðyÞi;jþ1=2;khðxÞiþ1=2ĥðyÞj hðzÞkþ1=2

h i

þ
XMx�1

i¼1

XMy�1

j¼1

XMz�2

k¼1

uðzÞi;j;kþ1=2wðzÞi;j;kþ1=2hðxÞiþ1=2hðyÞjþ1=2ĥðzÞk

h i
ð40Þ

The Gram matrices and the inner products of Eqs. (23) are
computed using the quadrature (40). Since the Gram matrices are
symmetric and positive defined, they can be effectively inverted
by the Cholesky decomposition.

The characteristic CPU times needed for computing of the Gram
matrices, their inverse and further summation of the series (24) are
shown in Table 2. The last row of Table 2 displays the maximal
absolute residual over all rows of the linear equations systems,
which shows that no numerical difficulties connected to a possible
ill-conditioning of the linear systems are observed. Clearly, the
most computationally demanding is the Gram matrix inverse. It
should be stressed, however, that these matrices depend only on
the geometry and boundary conditions, so that they can be calcu-
lated once for a series of visualizations, say, at different Reynolds or
Grashof numbers. For visualization purposes we usually do not
need too demanding convergence. Thus, in the present study the
results obtained with 303 and 403 basis functions, were visually
indistinguishable.
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