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Abstract

The non-modal transient growth of disturbances in an isothermal viscous
mixing layer flow is studied for Reynolds numbers varying from 100 up to
5000 at different streamwise and spanwise wavenumbers. It is found that the
largest non-modal growth takes place at the wavenumbers for which the
mixing layer flow is stable. In linearly unstable configurations, the non-modal
growth can only slightly exceed the exponential growth at short times. Con-
trarily to the fastest exponential growth, which is two-dimensional, the most
profound non-modal growth is attained by oblique three—dimensional waves
propagating at an angle with respect to the base flow. By comparing the results
of several mathematical approaches, it is concluded that within the considered
mixing layer model with a tanh base velocity profile, the non-modal optimal
disturbances growth is governed only by eigenvectors that are decaying far
from the mixing zone. Finally, a full three-dimensional DNS with optimally
perturbed base flow confirms the presence of the structures determined by the
transient growth analysis. The time evolution of optimal perturbations is
presented. It exhibits a growth and a decay of flow structures that sometimes
become similar to those observed at the late stages of the time evolution of the
Kelvin—Helmholtz billows. It is shown that non-modal optimal disturbances
yield a strong mixing without a transition to turbulence.

(Some figures may appear in colour only in the online journal)

1. Introduction

In parallel shear flows, there can be a transient amplification (or growth) of a disturbance
energy even when all of the eigenvalues of the linearized problem indicate perturbation decay.
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This phenomenon, which occurs at relatively short times, is widely recognized as ‘transient’
or ‘non-modal’ growth. The growth is caused by a non-orthogonality of the flow eigenmodes,
and the result is independent of whether or not the shear flow is linearly unstable due to
exponentially growing disturbances (see, e.g., Ellingsen and Palm 1975, Landahl 1980).

The non-modal growth of disturbances is well studied for bounded shear flows, e.g., for
plane Couette and Poiseuille flows (Farrel 1987, 1988; Buttler and Farrell 1992; Reddy and
Henningson 1993; Schmid and Henningson 2001). The semi-unbounded Blasius boundary
layer flow has been extensively investigated as well (see, e.g., Andersson et al 1999,
Schmid 2000, Akervik er al 2008, Corbett and Bottaro 2000). However, the problem of non-
modal growth in fully unbounded flows, such as a mixing layer and a jet flow, is not
completely understood. In this paper, we consider the problem of the transient non-modal
growth of disturbances in a mixing layer flow with a hyperbolic tangent velocity profile. This
flow is unstable within the inviscid model, and becomes linearly unstable at a low Reynolds
number, if the viscous flow model is implied. The flow remains linearly stable for a
streamwise wavenumber larger than unity (Drazin and Reid 2001, Gaster et al 1985).
However, the instability development at early times still can be subjected to a non-modal
growth, so the issue should be studied for the mixing layer flow as well.

The initial growth in the inviscid mixing layer flow was studied by Bun and Criminale
(1994) and Criminale and Jackson (1995). They showed that a temporal perturbation growth
in a mixing layer is possible. Later Le Dizes (2003) examined the non-modal growth of two-
dimensional disturbances in inviscid and viscous mixing layer flows. It is shown in the
present paper that the growth of three-dimensional perturbations is expected to be larger.
Yecko et al (2002) and Yecko and Zaleski (2005) studied the non-modal growth in a two-
phase mixing layer for three-dimensional disturbances. They found that the largest non-modal
growth results from two-dimensional perturbations located in the spanwise plane and is
uniform in the streamwise direction. Recently, Arratia e al (2013) reported three-dimensional
non-modal growth in a viscous mixing layer with the tanh velocity profile at Re = 1000. Those
authors focused mainly on short times and wavenumbers relating to linearly unstable regimes.
In the present study we show that at short times a large non-modal growth can be attained by
optimal perturbations whose wavenumbers correspond to linearly stable configurations.

Heifetz and Methven (2005) interpreted the optimal perturbation growth in an inviscid
mixing layer in terms of the counter propagating Rossby waves. Bakas and Ioannou (2009)
studied the non-modal growth of two-dimensional disturbances in an inviscid mixing layer
with a free surface. Those papers focused on the early transient disturbances evolution in the
mixing layer flow. Surprisingly, the non-modal three-dimensional growth of a single-phase
viscous mixing had not been addressed until the above-cited study Arratia et al (2013) and
some preliminary results of Vitoshkin et al (2012). A rather strong initial growth was
observed in experimentsl of Gaster et al (1985) and Kit et al (2007), in which the initial
disturbance was excited externally with prescribed streamwise (Gaster et al 1985), and
streamwise and spanwise (Kit et al 2007), wavelengths. These experiments motivated the
presented work. In the course of this study, we did not discover any surprisingly large non-
modal transient growth that can be observed in the mixing layer flow. However, we believe
that the results reported below complement the common understanding of the mixing layer
flow’s properties and its behavior at early times. In addition to that, we show that if per-
turbation streamwise and spanwise wavelengths can be externally controlled as in, e.g.,
Gaster et al (1985), Gelfgat and Kit (2006) and Kit et al (2007), the non-modal growth can be
used as a means of effective mixing, keeping the flow fully laminar.

! Private communication with E Kit.
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In this work, a transient non-modal growth of disturbances in a mixing layer flow is studied
numerically. This flow is known to be linearly unstable either if the inviscid flow is considered,
or starting from rather low Reynolds numbers when the viscous flow model is implemented.
The numerical code, based on the finite difference discretization of the Orr—Sommerfeld and
Squire equations, is verified against well-known results on plane Poiseuille and Blasius
boundary flows. The results for non-modal disturbances growth in the mixing layer flow are
obtained for a Reynolds number varied from 100 to 5000. It is shown that, as expected and
explained by Vitoshkin (2013), at short times the largest growth is attained by three-dimensional
disturbances whose wavenumbers lie beyond the interval where the flow is linearly unstable.

Finally, we generated the initial data for three-dimensional direct numerical simulations
using calculated three-dimensional optimal perturbations. Fully non-linear 3D computations
allow us to confirm the previous findings, as well as to explore the non-linear evolution of
optimal disturbances into the viscous mixing layer flow. We show that an initially small-
amplitude optimal disturbance can grow so that non-linear terms become significant, which
leads to the formation of flow structures qualitatively different from the well-known Kel-
vin—Helmholtz (KH) billows at early stages of the instability onset. The optimal disturbances
grow and decay in time, yielding, in particular, a significant mixing inside the shear zone. It is
quite an exceptional case of mixing since it is not followed by any transition to turbulence,
which may be practically important.

Comparing the above flow structures with the experimental and numerical results on the
developing mixing layer flows, we have found that similar flow patterns are observed at late
stages of the non-linear development of the KH instability. We argue that at long times after the
onset of linear instability, the effective width of the mixing layer grows so that the wavelength
scaled by the width diminishes, while the corresponding wavenumber grows. As a result, the
stable mixing layer configuration is created. This configuration is necessarily perturbed by the
time-developing flow, which can trigger non-modal growth resulting in similar flow structures.

In the following, we give a brief formulation of the problem (section 2) and describe the
solution techniques applied and the test calculations made (section 3). In section 4 we discuss
the effect of discrete and continuous spectra on the non-modal growth in the considered flow.
The main results are presented in section 5. We start from the growth functions and the
optimal perturbation patterns yielded by the non-modal analysis. Then we study the time
evolution of the optimal disturbances within linear and non-linear and two- and three-
dimensional models. Our conclusions are summarized in section 6.

2. Problem formulation

We consider an isothermal incompressible mixing layer flow produced by two fluid layers
moving with opposite velocities +U,,,, in the x-direction. Assuming that the mixing layer
characteristic width is J,, the hyperbolic tangent velocity profile U(z) = U,,,.fanh(z/6,) is taken
as a base flow. We are interested in the temporal evolution of a small three-dimensional
disturbance v=(u,v,w)T, which is governed by the non-dimensional momentum and con-
tinuity equations

(2 + Ui)v + d—Uwex +(v-V)v=-Vp+ LAv,
ot 0x dz Re

V.v=0. (D

were v=(u, v, w) is the velocity with components in the streamwise (x), spanwise (y) and
vertical (z) directions; p is the pressure and A denotes the vector Laplacian operator. The
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equations are rendered dimensionless using the scales 6,, U,,4x, 6,/U,,4, and pU2 . for length,
velocity, time and pressure, respectively. The Reynolds number is defined by Re = U, ., 6,/v,
where v is the kinematic viscosity.

The flow is assumed to be periodic in the spanwise and streamwise directions, so that we
consider the normal mode expansion and study solutions with fixed wavenumbers « and £ in
the x- and y-directions. Since the temporal stability problem is considered, both wavenumbers
are real. Looking for the infinitesimal perturbations of the base flow in the form {u(z,?), v(z,1),
w(z,1), p(z,t) }exp(iox + iffy) and using the standard derivation procedure, we arrive at the set of
Orr—Sommerfeld (OS) and Squire equations:

2
22 =g d_({w — UAw| + 0w, )
ot dz Re
on dU 1 .
— = —if—w+ | —A — iaU 3
ot b dz (Re )’7 )

in which w and 5 are the vertical component of the velocity, w, and the vertical com-
ponent of the vorticity, respectively (see e.g., Schmid and Henningson 2001). Here, the
Laplacian operator reduces to A =09%/0z> - (a” + f%). The problem is considered for >0 and
-L<z< L, where L must be large enough to ensure results independence on further increase
of L. In order to make our analysis compatible with the previous numerical studies (e.g., Kit
et al 2010, Rogers and Moser 1992), we assume that all the perturbations vanish at z==+L.

In the following, we study the initial temporal growth of a perturbation in terms of the
kinetic energy norm, produced by the corresponding inner product (the star denotes the
complex conjugate):

E(t)=(v,v) = /V* - vdvV, where (uw, v) = /u* - vdV 4)
Vv \4
We define the optimal disturbance as one yielding the maximum possible amplification
of its initial energy norm. Following Farrell (1987, 1988) and Butler and Farrell (1992), the
maximal amplification is defined as the maximal possible growth of the perturbation norm at a
given time ¢, and is considered for a single particular set of stability parameters (a, f, Re). The
energy amplification, or growth function G(¢), is defined as:

E(1)

m. 4)

G(t) = MaXp g

Clearly, the above formulation remains meaningful only at relatively small times before
the viscosity effects widen the flow profile. To estimate these meaningful times for different
Reynolds numbers, a simple model of a time-dependent viscous dissipation was considered in
Vitoshkin (2013). It was concluded that for Re < 10, the layer thickness strongly depends on
the Reynolds number. For 10 < Re < 100, the linearized problem is meaningful only at very
short times, #<2; however, it already allows the consideration of the linear stability of the
flow. For Re > 100 the thickness remains almost unchanged until #=30. Note that the maximal
values of the growth functions reported below were reached within this time interval.

3. Solution technique and test calculations

Equations (2) and (3) were discretized using the second-order central finite difference
schemes. After discretization, the governing equations are reduced to a system of linear ODEs
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Table 1. Convergence of critical energetic Reynolds numbers Re.r and the growth
function G,,,,. Comparison with results of Reddy and Henningson (1993) and
Schmid (2000).

Poiseuille flow Blasius boundary layer
Number of RecrE Re(‘rE Gmax Gmax Gmax Gmax
grid a=0, a=3.2, a=1, a=0.5, a=0.1, a=0.2,
points, N p=19 p=3 p=0, p=2.5, $=0.26, p=047,

Re=3000 Re=1000 Re=1000 Re=1000

200 49.94 88.83 21.87 198.23 221.96 394.82
300 49.89 88.64 21.47 198.01 219.89 397.06
400 49.87 88.57 20.95 197.57 213.06 398.11
500 49.85 88.51 20.29 197.55 213.64 398.12
600 49.85 88.51 20.28 197.54 213.65 398.13
700 49.85 88.51 20.28 197.54 213.65 398.13
Reddy and 49.7 87.6 20.37 196
Henningson
Schmid ~200 ~400

governed by a matrix L. assembled from all the discretized equations. The spectrum and the
eigenvectors of L were computed using the QR algorithm. The transient growth is studied by
three different numerical approaches: (i) using the factorization of the Gram matrix (Reddy
and Henningson 1993, Schmid and Henningson 2001) and singular value decomposition
(SVD); (ii) applying the calculus of variations (Butler and Farrell 1992); (iii) by iterative
forward/backward integration of the governing/adjoint equations (Corbett and Bottaro 2000).
All three methods are implemented to cross-verify the results, as well as to support the
conclusions of section 4.

For the code verification, we calculated the critical energetic Reynolds number and
growth function for the plane Poiseuille flow and Blasius boundary layer profile (table 1). The
results are well compared with the published data (Reddy and Henningson 1993 and
Schmid 2000). In both cases, using a 600 nodes grid, we observed convergence up to at least
the fourth decimal place, and even slightly improved the previous results.

Calculations for the mixing layer flow appear to be significantly more difficult. We
observed, for example, that in spite of the well-known stable numerical properties of the QR
decomposition, calculations with the quadruple precision are needed to calculate the spectrum
accurately. Note that taking the complex conjugate of the eigenvalue problem together with
the transformation z——z, one can show that anti-symmetry of the base velocity profile implies
the appearance of complex eigenvalues in conjugated pairs (see, e.g., Vitoshkin 2013). The
corresponding eigenvectors are not complex conjugated, but are located in the opposite
midplanes z>0 or z<0. Use of the double precision instead of the quadruple one leads to
spurious numerical errors, which can be seen, for example, as the appearance of non-con-
jugated pairs of complex eigenvalues.

The computational grid was divided into two parts. A half of the grid points were located
inside the interval -2 <z <2 and were stretched towards the centerline z=0. The stretching
function used was fanh(sy)/tanh(s). The fastest convergence was observed for s=3.
Remaining parts of the grid above and below the interval —2 < z<2 were uniform. This grid
arrangement yields a strong stretching near the mixing zone, where the linearly most unstable
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Table 2. Results for varying lengths of the computational domain L. Re = 1000, and the
calculation is with 1000 stretched grid points.

Growth function, G

ls‘ mode, /li = Ov }‘realv (tmax)/tmux
a=0.7,

L a=1, =0 a=0.7, f=1 a=1, =0 p=1

5 —-0.0427 -0.1102 98.15/15.5  782.94/24.7
10 —-0.0425 -0.1102 98.41/15.7  784.52/24.7
15 —-0.0425 -0.1101 98.41/15.7  784.18/24.9
20 —-0.0424 -0.1101 98.41/15.7  784.04/24.9
30 -0.0424 -0.1101 98.41/15.7  784.04/24.9
50 —-0.0424 -0.1101 98.41/15.7  784.04/24.9
100 -0.0424 -0.1101 98.41/15.7  784.04/24.9

Table 3. Convergence of the four least stable eigenvalues belonging to the discrete
spectrum for ¢=0.7, f=1 and Re=1000 (tanh-stretching divided mesh).

Number Growth
of grid 1 mode ond function,
points, N ,, ;=0  mode Ar 3™ mode A, 4, 4™ mode 2, A; Gl yax
500 -0.1116 —0.2888 -0.3022 -0.1986 -0.3727 0.3068 786.43/25.0
600 -0.1102 -0.3138 -0.3231 -0.1952 -0.3452 0.3032  785.84/24.9
700 -0.1102 -0.3203 -0.3287 -0.1944 -0.3504 0.3025 786.96/24.9
800 -0.1102 -0.3260 -0.3339 -0.1922 -0.3551 0.3013 785.14/24.9
900 -0.1102 -0.3310 -0.3371 -0.1921 -0.3589 0.3001 784.55/24.9
1000 -0.1102 -0.3385 -0.3448 -0.1905 -0.3657 0.2987 784.04/24.9
1100 -0.1102 —-0.3385 —0.3445 -0.1902 -0.3653 0.2986 784.04/24.9
1200 -0.1102 -0.3384 -0.3444 —-0.1902 -0.3652 0.2986  784.04/24.9
1300 -0.1102 -0.3384 -0.3443 -0.1901 -0.3652 0.2985 784.04/24.9
1400 -0.1102 —-0.3383 —0.3441 —-0.1901 -0.3650 0.2985 784.04/24.9
1500 -0.1102 -0.3383 —-0.3441 -0.1901 -0.3650 0.2985 784.04/24.9

eigenvectors are located (see, e.g., Gelfgat and Kit 2006). Outside the mixing zone, the
discrete spectrum eigenvectors decay, so that there an unnecessary stretching is removed. It is
emphasized that only this grid arrangement allowed us to obtain grid-independent results with
the use of 1000-2000 grid points. The use of continuously stretched or uniform grids with the
same amount of grid nodes exhibited an unacceptable grid-dependence.

The computational domain for the mixing layer flow is defined as an interval of width 2L.
According to results of Healey (2009), an insufficiently large value of L can significantly alter
flow stability properties. A series of test calculations for L varying between 5 and 100 was
carried out together with the necessary convergence study. Dependence of the leading
eigenvalue and growth function value on the size of the computational domain L is presented
in table 2. Based on several similar calculations for different values of « and £, we concluded
that the flow linear stability properties can be described correctly starting from L=20. This
width of the computational domain corresponds also to the height of the experimental channel
(Kit er al (2007)), and has been chosen for further computations.
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Figure 1. Spectrum of the mixing layer flow at Re=1000, a=0.7 and =1 calculated
for different numbers of grid points. Labeled points correspond to the eigenmodes
shown in figure 2.

Table 3 shows an example of convergence of four leading eigenvalues belonging to the
discrete part of the spectrum. It is seen that the use of 1000 grid points yields four converged
decimal digits for the first mode; however the convergence slows down for the next modes.
This shows that the linear stability analysis (Gelfgat and Kit 2006) is less computationally
demanding than for the non-modal growth study, for which many leading eigenmodes must
be calculated within a good accuracy.

Another way to verify the calculated growth function is to calculate the solution to (2)
and (3) by integrating the ODEs with the optimal vector as the initial condition. In this case,
the norm of the time-dependent solution at time 7 must be equal to the calculated growth
function G(#). In the following, the solution of the initial value problem is used for verification
of the results, as well as to follow the time evolution of optimal vectors. For additional
verification, we consider a fully non-linear time-dependent problem taking the optimal vector
as an initial condition. The numerical technique used to solve the 3D problem is described in
Vitoshkin and Gelfgat (2013). Comparison of the kinetic energy evolution with the growth
function calculated via the three independent approaches is shown and discussed below.

4. The spectrum of a linearized problem

As with any flow in an unbounded domain, the mixing layer flow has two parts to the
spectrum: a finite number of discrete eigenmodes and an infinite number of eigenmodes
belonging to the continuous spectrum. Clearly, a numerical method, based on a discrete
model defined for a bounded domain, cannot reproduce accurately the continuous modes.
Grosh and Salven (1978) argued that continuous modes of the OS equation are either
oscillatory or decaying functions located in free stream regions, where U= const and U'=0,
and are zeroes in the regions where U’ #0. In our numerical results, we observe similar
modes that slowly decay or oscillate towards the ends of the computational interval [-L, L].
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Figure 2. Patterns of eigenvectors belonging to (a) discrete and (b) continuous parts of
the spectrum. Re=1000, =0.7, f=1. The number of each line corresponds to the
number of eigenvalues depicted in figure 1.

Their amount grows with mesh refinement; however, they are not exact zeroes in the shear
zone (figures 1 and 2). The corresponding Gram matrix contains non-diagonal elements close
to unity, which means that some modes are almost parallel with respect to the inner product
(4). The latter can be expected for modes corresponding to the continuous spectrum of the
unbounded problem. Furthermore, taking into account these almost parallel modes for
computation of the growth function via the Gram matrix decomposition (Reddy and Hen-
ningson 1993) results in a very large growth function reaching values of the order of 10%°,
with the corresponding optimal vector located inside the uniform flow. Apparently, such a
result is considered to be unphysical and incorrect. Applying the calculus of variations, which
is also based on the linearized problem spectrum, we arrive at a similar unphysical result. At
this point, we assume that the observed almost parallel modes are a non-accurate replication
of the continuous spectrum. Furthermore, we argue that the procedures described of Butler
and Farrell (1992) and Reddy and Henningson (1993) are applicable only to a finite number
of eigenmodes. Also, the continuous modes that do not decay far from the area of non-zero
shear cannot be included in the analysis of growth in the norm (4), since the integral does not
converge at L — o, thus making all the procedures based on the chosen inner product
meaningless, even if one assumes that a discrete approximation of the continuous spectrum is
sufficiently accurate. Therefore, the effect of the non-decaying at L — o continuous spectrum
on non-modal growth must be studied separately.

To account correctly for the problematic ‘continuous’ eigenmodes, we apply the third
approach, which is based on the forward/backward time integration of the governing/adjoint
equations, and therefore necessarily takes into account the entire spectrum (Corbett and
Bottaro 2000). It can be seen (table 4) that all three approaches cross-verify each other and
exhibit close results when applied to the Poiseuille flow, which is bounded and therefore has
only a discrete spectrum. At the same time, when using the first two methods for the whole
calculated spectrum of the mixing layer flow, we obtain a very large unphysical non-modal
growth of the order of 10'°~10?°. Note that the above observation disappears for the Blasius
boundary layer flow, for which we leave all modes without separating them into discrete and
continuous parts.

To apply the SVD approach, we extract the eigenvectors localized near the shear zone, as
is illustrated in the following example. Consider a certain set of parameters Re = 1000, a=0.7

8
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Table 4. The growth function, G(¢=15), calculated by different methods for Poiseuille
flow, a boundary layer Blasius profile and mixing layer flow.

Blasius boundary Mixing layer

Poiseuille flow layer a=0.125, a=1, =0,

a=1, =0, £=0.3, Re=800, Re =1000,

Number of grid Re =3000, (discrete and (extracted
points, N (only discrete) continuous) vectors)

using factorization of the Gram matrix—SVD

500 5.44 1.77 14.66
1000 5.45 1.77 14.66
1500 545 1.77 14.66

applying the calculus of variations

500 5.44 1.78 14.66
1000 5.45 1.77 14.66
1500 5.45 1.77 14.66

by iterative forward/backward integration of the governing/adjoint equations (the
whole spectrum)

500 5.44 1.76 14.66
1000 5.45 1.77 14.66
1500 5.45 1.77 14.66

and f=1, for which we have non-modal growth. The calculated spectrum and examples of the
eigenvector profiles are shown in figures 1 and 2. Three branches corresponding to the
non-decaying continuous spectrum are given by Imag(4) =0 and the branches arriving at Imag
(M)~ +a when Real(1)~0 (Grosch and Salwen 1978). As expected, these sets of eigen-
values do not converge and their number increases with the grid refinement, which is indi-
cative of their ‘continuous’ origin. Conversely, the eigenmodes localized near the shear
region can be recognized, primarily, by their fast convergence. Also, the number of these
eigenmodes remains constant with the grid refinement, indicating that they originate from the
discrete spectrum rather than the continuous one. For the following computations, we exclude
eigenmodes whose amplitudes remain large for Izl > 10. We observe that the growth functions,
as well as the number of extracted eigenvectors, do not change when boundaries of this
interval vary from +8 to +15, which shows that the procedure is consistent.

Following Mao and Sherwin (2012), we also performed the pseudospectrum analysis of
the calculated spectrum. Figure 3(a) illustrates a calculated spectrum with the e-pseudos-
pectrum computed as the minimal singular value of the matrix J-AL, where J is the Jacobian
matrix of the discretized equations system and 4 is the current eigenvalue. We observe that the
eigenmodes whose e-pseudospectrum is relatively large, £> 107", do not decay in the free-
stream region. The corresponding eigenvalues are characterized by Imag(l) =~ + a, which is
also indicative of their ‘continuous’ origin, therefore those modes are excluded from calcu-
lations. At the same time, the eigenmodes whose e-pseudospectrum is bounded by &> 107>
coincide with the modes extracted according to the above arguments. An example of the
growth functions calculated for only those modes whose pseudospectrum is bounded by
either 107>, 107 or 1077, or is extracted as described above and corresponds to £>107%, is
presented in figure 3(b). It is seen that modes corresponding to 10> <e< 107" do not

9
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Figure 3. (a) The spectrum and pseudospectrum of the mixing layer flow at a=0.7,
p=1 and Re=1000. (b) Growth functions calculated for reduced parts of the spectrum
corresponding to different values of the e-pseudospectrum. (c) Comparison of the
growth function Gg(#) (solid line) with evolution of the kinetic energy of the optimal
initial vector obtained as a solution of the ODEs IVP (dashed line) and as a solution of
fully non-linear 3D problem (symbols). (d) Comparison of the growth function
corresponding to a stable configuration at @=0.5, f=0.8, Re=1000 (red line and
circles) with the growth function calculated for the mean optimal growth rate reported by
Arratia et al (2013) (blue line and squares).

contribute to the optimal growth, while the modes whose pseudospectrum £<107° do
influence it. Therefore, we can conclude that the eigenmodes corresponding to &< 107° are
those to be accounted for. It is, however, emphasized that we still have no clear criteria to
separate continuous and discrete parts of the spectrum.

The far right column of table 4 shows the results of the Gram matrix factorization/SVD
approach of Reddy and Henningson (1993) and of the calculus of the variations method of
Butler and Farrell (1992), both applied to the extracted eigenmodes only. It is clearly seen that
these results are identical and are very close to those obtained by the iterative time-integra-
tion-based method, which accounts for the whole spectrum.

We also verified the behavior of the forward/backward time-integration-based method,
starting the iterations from two different initial vectors. The initial profiles were chosen as a
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wide parabola spreading into the uniform flow and with the Gaussian function located inside
the mixing zone. In both cases, the same optimal vector was obtained after 5-6 iterations. We
examined whether this observation remains valid for different values of Re, o and f, and
concluded that even when the free stream area is artificially perturbed, the optimal vector
remains located within the shear zone. Thus, we can restrict the non-modal analysis to only
those eigenvectors that vanish outside the shear zone. It should be emphasized that having the
spectrum computed, the Gram matrix factorization/SVD approach consumes significantly less
CPU time than the one based on the forward/backward time integration, or than the com-
putation of an inverse energetic matrix needed for the variational method. This is an
advantage when, for example, optimal growth at different target times is studied.

For an additional verification of our conclusion, we used the calculated optimal vectors as
the initial conditions for the ODE system (equations (2) and (3)), as well as fully 3D equation
(1), and integrated them in time, monitoring the kinetic energy norm of the solution. We
observed that at a chosen target time, the solution norm reaches the calculated value of the
growth function. Clearly, if parts of to-be-continuous modes were perturbed inside the mixing
zone and were contributing to non-modal growth, it would be impossible to obtain such a
good agreement. In case a significant mode was mistakenly excluded, the real non-modal
growth would be larger than the growth function calculated here. An example is shown in
figure 3(c), where we compare the growth function calculated on the basis of the extracted
discrete spectrum with the kinetic energy norm evolution yielded by time integration of the
initial value ODEs and fully non-linear 3D problems. The equality of the maximal values of
the norm and the growth function makes us confident in the results obtained, including the
exclusion of the continuous spectrum.

Figure 3(d) compares the result of Arratia et al (2013) at Re=1000 with the growth
function calculated for «=0.5 and f=0.8. As mentioned above, these wavenumbers corre-
spond to the largest non-modal growth we observe for a linearly stable configuration at
Re=1000. The growth function of Arratia et al (2013) is calculated using the values of o,ax
reported in their figure 1(c) and their equation (3.6) as G(f)=exp (2 omax f). It should be
stressed that in both studies, the optimal growth at small times, < 10, is found to be caused by
a three-dimensional disturbances. However, as follows from figure 3(d), the non-modal
growth found in the present work for 7 <20 is larger than that reported by Arratia et al (2013).
Moreover, the optimal growth computed by Arratia et al (2013) for 10<¢<20 relates to
linearly unstable configurations. As follows from our figure 3(d), in this time interval the non-
modal growth still may exceed the exponential one. Clearly, the exponential growth exceeds
the non-modal one at larger times.

5. Non-modal growth in the isothermal mixing layer flow

5.1. Growth function

The study of non-modal growth was started for two-dimensional disturbances (f =0), which,
due to the Squire transformation, are mostly linearly unstable. Growth functions were cal-
culated for Re =100, 1000 and 5000. Several examples are shown in figure 4. At large times,
t>10, in all of the cases considered, the exponential growth of linearly unstable modes
prevails over the non-modal growth. At short times, < 10, the non-modal growth of linearly
stable modes with the streamwise wavenumber a > 0.9 can slightly exceed the exponential
growth of linearly unstable modes. As is shown below, this faster non-modal growth can lead
to noticeable non-linear effects. An interesting observation is that among all two-dimensional
modes exhibiting non-modal growth, the maximal one is attained by modes whose
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Figure 4. Growth functions of two-dimensional disturbances (f=0) with 0.2<a <3 and
three-dimensional disturbances (##0) for fixed a=0.7.

streamwise wavenumber a lays between values 0.9 and 1, i.e. the values that correspond to
linearly stable modes in viscous (0.9 <a<1) and neutral modes in inviscid (@=1) mixing
layers (Gelfgat and Kit 2006). It should be emphasized that non-linear numerical modeling
and experimental studies are usually done at the values of a corresponding to linear
instability, preferably with the largest time increment. The present results show that the non-
linear evolution of stable and close—to-being-neutral modes is also worth exploring
(see section 5.3).

Growth functions of three-dimensional disturbance modes at fixed values of the
streamwise wavenumber a=0.5, 0.7, 1 and the varying spanwise wavenumber f are shown in
figure 5. Note that the two-dimensional mode corresponding to f=0 is linearly unstable in
this case as well. The growth functions related to linearly unstable values of § are depicted by
dashed lines, while we focus on the non-modal growth possible in linearly stable cases. As
before, the calculations were performed for Re =100, 1000 and 5000. Also in these cases, we
observe that for Re > 100 the non-modal growth can slightly exceed the linear one at short
times, while at longer times, the linear exponential growth always prevails. We observe also
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Figure 5. Values of G,,,, at t=t,,, for different a, f and Re (the dashed line depicts
linearly unstable flow).

that the three-dimensional perturbations become stable when the spanwise wavenumber
exceeds a certain value close to 0.5. The most noticeable three-dimensional non-modal
growth can be attributed to the values of f close to the linearly neutral configuration, when at
least one eigenmode attains a small decay rate and slowly decays in time. This observation is
maintained when we consider other fixed values of @ and different values of j, as in figure 4.
Table 5 summarizes the maximal values of the growth function, G,,,,, and the times at which
the maximum is attained, t,,,,, over all wave numbers for 2D and 3D cases. The values of
G,.ax at different a, f and Re are plotted in figure 5.

We observe here that the largest non-modal growth is three dimensional and is attained
by oblique waves propagating at (@=0.5, #=0.8), with respect to the base flow. The well-
known non-modal growth studies for Couette flow, Poiseuille flow (Butler and Farrell 1992,
Reddy and Henningson 1993) and Blasius flow (Schmid 2000) also show that 3D pertur-
bations exhibit the largest non-modal growth. This seems to be a common property of plane-
parallel shear flows, which was discussed in detail in a recent paper by Vitoshkin et al (2012).

5.2. Optimal vector

For illustrative purposes, we chose characteristic parameters for 3D transient growth, namely
Re=1000, a=0.7 and f=0.8. At these parameters the flow is linearly stable, while non-
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Table 5. Maximal values G,,,, and t,,,, and corresponding wave numbers.

Re=100 Re=500 Re=1000 Re=5000

a [3 Gmax tmax o ﬁ Gmax Lmax a ﬁ Gmax Lnax a ﬁ Gmax bnax
0.9 0 5.7 7.7 0.9 0 25.3 11.7 1.0 0 102.1 15.5 1.0 0 428.4 24.9
0.5 0.7 14.6 13.0 0.5 0.8 3.8e3 27.8 0.5 0.8 1.6e4 26.8 0.5 0.8 9.9e4 42.9
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Figure 6. Amplitudes and phases of the optimal disturbance vector for a=0.7, #=0.8
and Re=1000 for times yielding the maximal values of growth functions (t,,,,=27.2).

modal growth functions attain a maximal value that is close to the largest value over all
possible spanwise wavenumbers. This choice allows us also to follow the time evolution of
optimal vectors that will not be altered by an exponentially growing perturbation. Amplitudes
and phases of the optimal vector are illustrated in figure 6. The optimal vectors are calculated
for the target time t,,,,=27.2, at which corresponding growth functions attain their maximal
values. For an additional verification of our results, we used the optimal vector as an initial
condition for equations (2) and (3), and ensured that the time integration arrives to the final
vector, as predicted by the first left singular vector of the corresponding SVD. The growth of
amplitude yielded by the IVP solution also coincides with the predicted growth func-
tion value.

Comparing profiles of the optimal vectors with those of the leading eigenvectors (see,
e.g., figure 3 in Gelfgat and Kit 2006) we observe that the optimal disturbance profiles are
narrower and steeper. Contrarily to some of the eigenvectors, the optimal disturbance
amplitudes are symmetric with respect to the mixing layer midplane.

5.3. Non-linear effect on evolution of the optimal vector

To gather a better insight into the time evolution of optimal disturbances, we also consider
their fully non-linear development in time. It is emphasized that the following three-dimen-
sional computations are aimed only to examine the development of optimal non-modal dis-
turbances over long times, as it was done by Cherubini et al (2010) for boundary layer flow.
Clearly, such results are irrelevant to a general problem of mixing layer flow, in which all
possible disturbances are present.

Apparently, if the amplitude of optimal initial vector is small enough, the non-linear
terms remain negligibly small during the whole time integration, so that the calculated flow
resembles the predicted linear behavior. The growth of the initial perturbation kinetic energy
coincides with one yielded by the IVP ODEs’ solution, as well as with the growth function
calculated by the SVD-based approach. This observation completes our verification of the
non-modal growth results (see figure 3(c)).

To visualize the mixing layer flow, we follow Rogers and Moser (1992) and Kit er al
(2010), and add a passively advected dimensionless temperature, 7, to our model. Initially,
the temperature is the same as the velocity tanh profile. Figure 7(a) illustrates the kinetic
energy growth of the optimal vector within the 2D mixing layer flow starting from an
optimally perturbed base flow at parameters corresponding to the linearly stable case: Re=
1000, a=1.5 and #=0. The two cases presented in figure 7(a) correspond to two different
amplitudes of the optimal disturbance vector. The optimal vector, whose kinetic energy norm
is unity, appears to be small enough, compared to the base flow, and exhibits fully linear
behavior over the whole time interval considered. It is shown by the solid line in figure 7(a).
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Figure 7. Kinetic energy growth of the optimal vectors with (dashed line) and without
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Figure 8. Snapshots of the passively advected temperature (heated flow above) in cases
of the (a) linear and (b) non-linear time evolution of the optimal disturbance. a=1.5,
$=0, Re=1000. The initial amplitude in case (b) is 10 times larger than that of case (a).
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Figure 9. Snapshots of the spanwise vorticity during the non-linear time evolution of
the optimal disturbance (solid and dashed lines indicate positive and negative contours,
respectively) for a=1.5, =0 and Re=1000.

Increasing the initial amplitude by a factor of 10 (dashed line in figure 7(a)), we observe linear
behavior at the early times < 4. At later times, the increased amplitude makes the non-linear
terms non-negligible, which leads to a qualitatively different flow evolution that also includes
a considerably smaller growth of kinetic energy, which, conversely to the linear predictions,
attains several minima and maxima.

To illustrate the qualitatively different flow patterns, we compare the snapshots of the
passively advected temperature 7 and the spanwise vorticity component in figure 8 and
figure 9, respectively. The evolution of 7 in the fully linear case (figure 8(a)) exhibits zigzag
wavy structures that disappear at longer times. The area where the passive scalar is com-
pletely mixed corresponds to the green color. An interesting observation is a wider zone of
mixed T at large times compared to that in the initial state. A relatively fast mixing is achieved
here together with the complete disappearance of the initial perturbation and laminarization of
the perturbed flow.

When the evolution of the non-modal disturbance switches on the non-linear terms
(figure 8(b)), one observes the appearance of the mushroom-shaped structures at =7 and 10.
These structures look similar to the patterns of concentration reported in figures 13 and 14 of
Lin and Corcos (1984) for a non-linearly developing mixing layer. Similar non-regular
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structures were also observed in the streamwise plane experimentally by Bernal and Roshko
(1986). At a later time, 7= 14, the pattern becomes similar to the one reported by Smyth and
Peltier (1991) in their figure 8. At a later time, r=17, we observe the patterns with elongated
borders, which resemble classical experimental observations of Thorpe (1971) at long times
(see his figures 8 and 9). Obviously, after the optimal disturbance decays, the passive scalar
appears to be mixed even more than in the previous case, while the flow attains the plane-
parallel velocity profile.

Snapshots of the spanwise vorticity are shown in figure 9. At early times, the vorticity
pattern consists of structures tilted against the main shear, whose optimal growth is based on
the Orr mechanism (Orr 1907). At a later time we observe that vorticity patterns are rotated,
apparently by the base flow, around their centers located at the midplane. Again, we see some
similarities of the vorticity behavior with the fully non-linear results reported, e.g., by Rogers
and Moser (1992) and Smyth and Peltier (1991).

It should be noted that we are examining the transient growth of optimal disturbance in
order to discover the transition of a parametrically stable flow to an unstable regime. To do
this, we increase the amplitude of the initial optimal perturbation so that non-linear terms will
be triggered at later stages of the time evolution. The present calculations show that these non-
linear effects do not lead to a noticeable subcritical transition. However, the optimal per-
turbation evaluates in a different way than that observed for a non-linear evolution of the most
unstable linear eigenmode. As a calculation test, we performed non-linear computations using
the KH mode as the initial vector and observed the well-known evolution of the spanwise
vortices described, e.g., in Ho and Huerre (1984). As is seen from figure 9, the evolution of
the optimal vector is governed mainly by the Orr mechanism and differs qualitatively from
the evolution of the leading linearly unstable mode.

Comparing the vorticity perturbation pattern with the change of the growth function (cf
figure 9 and figure 7(a)), we observe that when the kinetic energy norm reaches the minimum,
the vorticity isolines are elongated along the shear slope. At later times they turn against the
shear, which leads to the next temporal growth. The maximal values of the kinetic energy
norm correspond to the vorticity patterns elongated vertically, exactly as was observed for the
linearized problem.

Similarities between the computed flow structures and those observed in previous
experimental and numerical studies allow us to make the following assumption. At late stages
of time-development, the actual width of the mixing layer grows, thus leading to the growth
of the dimensional streamwise wavenumber, a. This necessarily results in a stabilization of
the mixing layer flow. However, at this stage the flow is already strongly perturbed. There-
fore, it is possible that the development of the mixing layer flow at late stages is governed or
strongly affected by the non-modal growth. The latter results in the flow structures similar to
the ones observed here.

The time dependence of the kinetic energy norm for the 3D optimal disturbance is shown
in figure 7(b). Similarly to the 2D case, the disturbance with the unity kinetic energy norm
exhibits a completely linear behavior, and non-linear mechanisms switch on when the
amplitude is increased by a factor of 10. However, in the 3D case the maximal growth of
kinetic energy is attained at a considerably longer time (cf figure 4), as predicted by the above
non-modal analysis. Note that in the 3D case, we do not observe several maxima and minima
in the kinetic energy time history. Time evolution of the passively advected temperature is
shown in figure 10. It generally resembles the structures observed in the 2D case; however the
whole pattern is aligned along the disturbance vector (2a/a, 27/f). After the perturbation
decays, the width of the mixed temperature zone is even larger than that observed in the 2D
case. The qualitative difference of the 2D and 3D non-modal growth can be seen by
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Figure 10. Snapshots of the passively advected temperature (heated flow above) during
the non-linear time evolution of a 3D optimal disturbance, with a=0.7, f=0.8
and Re =1000.

comparison of figures 9 and 11. Figure 11 shows the snapshots of spanwise vorticity in the
spanwise midplane. Similarly to the 2D case, the 3D growth starts from the optimal pertur-
bation aligned against the shear slope. However, when the perturbation becomes aligned
along the shear (r> 15 in figure 11), the kinetic energy continues to grow, thus leading to a
larger growth at a longer time. This phenomenon seems to be common for all plane parallel
shear flows and has been addressed by Vitoshkin et al (2012).
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Figure 11. Snapshots of the spanwise vorticity in the spanwise midplane during the
non-linear time evolution of the optimal disturbance, with a=0.7, £=0.8
and Re=1000.

6. Conclusions

In the current study, transient perturbation dynamics in isothermal viscous mixing layers was
investigated numerically. The convergence studies showed that an acceptable convergence
can be reached by applying very fine and densely stretched grids with more than 1000 nodes
in the cross-stream direction, which results in a large eigenvalue problem. To establish
confidence in the obtained results on non-modal growth, the computations were performed
using (i) the procedure offered by Reddy and Henningson (1993); (ii) the variational method
offered by Butler and Farrell 1992; and (iii) the iterative forward/backward integration of
governing/adjoint equations (Corbett and Bottaro 2000). Since the numerical model is
bounded and its dimension is always finite, its spectrum is discrete. Analyzing the computed
eigenvectors, we observed a part of them localized near the mixing zone, while the other part
exhibits non-decaying oscillations toward the computational boundaries. The number of
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localized eigenmodes remains constant independent of the grid refinement, which allows us to
assume that they belong to the discrete part of the spectrum rather than to the continuous part.
Approaches (i) and (ii) were applied for the localized part of the spectrum only, while
approach (iii) included the entire spectrum. Since all three approaches yielded the same
growth functions, we concluded that the non-localized part of the spectrum plays no role in
the non-modal growth of the mixing layer flow. This conclusion was also supported by
calculations of the e-pseudospectrum (Trefethen and Embree 2005, Mao and Sherwin 2012),
and was verified additionally by monitoring of the energy growth calculated via the ODEs’
IVP problem, and the fully 3D time-dependent Navier—Stokes solution, both of which do not
make any assumptions about the spectrum.

A series of numerical tests performed revealed that the mixing layer flow appears to be a
more numerically challenging problem for non-modal growth analysis than for problems
considering bounded (e.g., plane Couette and Poiseuille flows) or semi-inbounded (e.g.,
Blasius boundary layer profile) flows. The correct numerical modeling of the non-modal
growth for the tanh-velocity profile requires much better resolution in the cross-flow direction
than other plane-parallel flows.

The flow of interest exhibits significant transient growth, typically with streamwise and
spanwise wavenumbers, for which the flow is asymptotically stable. It is emphasized that
viscous mixing layer flow is linearly unstable starting from Re,., < 100 (Gelfgat and Kit 2006),
so that if all possible perturbations are present, the linear instability will prevail starting from
rather early times. According to Arratia et al (2013) and the present results, a considerable
non-modal growth can be observed at small times, even in the linearly unstable mixing layer
flow. The large non-modal growth reported here can be observed if a perturbation with certain
streamwise and spanwise periodicities is excited externally, like was done, e.g., in the
experiments of Kit e al (2007). Arratia et al (2013) argued also that owing to the non-modal
growth, linearly unstable modes can gain some additional energy at early times. This pos-
sibility was not explored in the present study.

Comparing the calculated flow structures with those observed in several previous
experimental and numerical studies, we speculate that the mixing layer flow at late stages of
the linear instability development can be strongly affected by the non-modal disturbances
growth. The optimal perturbation is always localized inside the shear zone.

An issue that may need attention is the separation of the discrete and continuous parts of
the spectrum. We offered several arguments on why and how the spatially localized part of
the spectrum can be extracted and why only this part should be taken into account when the
non-modal growth of disturbances in the isothermal mixing layer flow is studied. Since the
number of spatially localized eigenmodes remained unchanged with the grid refinement, we
assumed that all these eigenmodes belong to the discrete part of the spectrum. The corre-
sponding results are verified by the three independent approaches for calculation of the
growth function. An additional verification is supplied by the time-dependent calculations
applied to the ODE system resulting from the discretized Orr—Sommerfeld and Squire
equations, as well as to the fully 3D non-linear time-dependent flow model.

A three-dimensional direct numerical simulation of the mixing layer flow, which starts
from the optimally perturbed base flow, was conducted to investigate the non-linear evolution
of optimal perturbation and possibility for a by-pass transition. Following the time non-linear
evolution of the optimal disturbances, we observe qualitatively different development in 2D
and 3D cases. In the 2D case, the non-linear effects lead to the appearance of several maxima
and minima in the kinetic energy time history. Evolution of the spanwise vorticity pattern
reveals that the minima are observed when the iso-vorticity lines are tilted along the shear
slope. The temporal growth starts when the isolines become tilted against the shear, and the
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maxima are reached when they are rotated by the base flow until they become vertically
aligned. No several minima or maxima are observed in the non-linear development of the 3D
optimal disturbances. The maximum of the kinetic energy in the 3D case is attained sig-
nificantly later, compared to the 2D case, after the patterns had turned in the base flow
direction. It should be noted that Arratia et al (2013) reported a faster growth of linearly
unstable modes owing to the non-modal mechanism. In the course of the fully nonlinear 3D
modelling of this study, all the optimal perturbations decayed at sufficiently long times, and
did not trigger linear instability with smaller wavenumbers, i.e., larger spatial periods, pos-
sibly because the computational domain was too short. At the same time, our results show a
possibility of obtaining a significant mixing without making the flow turbulent. This obser-
vation is based on the advection of passive temperature and is observed during both 2D and
3D, linear and non-linear, evolution of an optimally disturbed mixing layer flow.
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