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a b s t r a c t

A parametric experimental study of the cold plume instability that appears in the large-Prandtl-number
Czochralski melt flows is reported. The critical temperature difference (the critical Grashof number) and
the frequency of appearing oscillations were measured for varying Prandtl numbers, aspect ratios of the
melt, and crystal/crucible radii ratio. The measurements were carried out by two independent and fully

parametric dependences, and then are joined into relatively simple empirical relations showing how the
critical Grashof number and the frequency of emerging oscillations depend on other parameters.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Cold plume instability in the Czochralski model flow was
observed first by Munakata and Tanasawa [1], and later by Ozoe
et al. [2] in silicone oils with very large Prandtl number, PrZ1000.
Since liquids with so large Prandtl numbers are not common for
crystal growth from melts, these results were not very relevant
from a technological point of view. However later, Teitel et al. [3]
observed this instability in silicon oils with significantly lower
Prandtl numbers, varying from 10 to 100. This range of the Prandtl
number is already relevant for growth of different dielectric and
optical materials [4], meaning that this type of instability deserves
a more detailed experimental and theoretical exploration. The
theoretical study of the cold plume instability [9] showed that it
can be expected in large-Prandtl number (Pr41) buoyancy con-
vection flows when convective mixing forms an unstable stratifi-
cation below a cold upper boundary (the crystal). The instability
sets in as oscillations at which the cold liquid first accumulates
below the cold crystal and then, when unstable stratification
exceeds the critical limit, quickly descends along the symmetry
axis. At large supercriticalities this instability results in rather large
descending cold liquid volumes called “cold plumes” in [3]. Such
instability can appear in melt flow during Czochralski growth of
optical and dielectric crystalline materials, whose Prandtl number
varies between 5 and 20 for high melting point oxides [4] and
reaches the value of 87 for Bismuth Germanate (BGO) crystals [5].

Our recent experimental and theoretical results on stability of
the Czochralski model flow considered all possible instabilities and
examined such issues as effect of crystal rotation [6,7], and pos-
sibility of non-modal perturbation growth that may lead to an
earlier transition from steady to time-dependent flows [8]. In
particular, we studied destabilization of the Czochralski model
flow by slow crystal rotation, which was explained theoretically in
[9]. In most of our previous studies the instability results in cold
plumes descending from the crystal surface towards the crucible
bottom, but we had no enough experimental data to present a
meaningful parametric dependence of critical temperature differ-
ence (the Grashof number) on other problem parameters. This
issue is addressed in the series of experiments described below.

In the present paper we study how the critical temperature
difference of the cold plume instability depends on the Prandtl
number, the melt aspect ratio, and the crystal/crucible radii ratio.
No rotation effects were included. The experiments are conducted
in the facility originally designed by Schwabe [10–12], which was
modified by our group to have fully non-intrusive measurements
and better control of the system parameters (Fig. 1). Having several
tens of measured “critical points”, comprised of the critical tem-
perature difference at which the instability sets in, and oscillation
frequency with which the flow starts to oscillate, we follow our
recent representation of results as scaling dependences [7].
Namely, we find scaling equations that allow us to combine all the
results in two dependences: Grashof number and dimensionless
oscillations frequency as functions of the Prandtl number, aspect
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Fig. 1. (a) Sketch of the optical non-intrusive measurements system. (b) Comparison of the frequency power spectra measured by the single laser beam (green) and Schlieren
images (red) for the following parameters: A¼ 1:5; R¼ 0:7; Pr ¼ 57:9, ΔT¼35.4 °C. (c) Cold crystal dummies of different diameter. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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and radii ratios. These dependences can be interpreted as scaling
laws, which can be used as “rules of thumb” for estimation of
presence or absence of instabilities that can result in appearance of
cold plumes in Czochralski growth devices.
2. Experimental setup

The experimental setup is mainly the same as in [3,10–12], to
which the reader is referred for more details. The sapphire
cylindrical crucible with the radius 20 mm and height 40 mm is
placed in the running hot water. The copper crystal dummies
(Fig. 1c) of different radii are attached to a copper rod, which is
cooled by running cold water. The water temperatures are con-
trolled by the isothermal bathes that provide the temperature
resolution of 0.1 °C, and additionally by thermocouples placed
inside the hot and cold water chambers. In the present experi-
ments the crystal and the crucible do not rotate, so that the flow is
governed mainly by buoyancy convection appearing due to the
temperature difference between the cold crystal dummy and the
hot crucible wall and bottom. The experimental liquids are three
silicone oils whose viscosity is 2, 5 and 10 cSt. Their other physical
properties are listed in [3].

Compared to the former experimental studies, two main
modifications were made. First the special care was taken to
measure and control height of the capillary meniscus. For this
purpose, we produced a microcontroller-based device with the
integrated ADC and digital display. The vertical movement of the
axial rod with the attached crystal dummy is monitored by a linear
potentiometer whose resistance is converted to millimeters. In all
the experiments the meniscus height was kept 1.25 mm, so that
the variable meniscus height effect was excluded from the current
results. Exploration of this effect requires even more extended set
of experimental runs, which we plan to complete in future.

The second modification was completely non-intrusive mea-
surements of the instability onset made by two independent and
self-cross-verifying optical techniques. The whole optical system is
sketched in Fig. 1. Basing on the comparison between the inter-
ferometer and the thermocouple readings reported in [6] and [8],
we removed all the thermocouples from the flow under study,
thus eliminating any potential obstacle within the container. Then,
taking into account that only frequency of flow oscillations was
extracted from the interferometric fringes (see [6,8]), we removed
the interferometric setup and replaced it by a single laser beam,
deflection of which is monitored as a function of time. The beam
passes through the flow and produces a spot on the screen 1. The
spot position is stationary when the flow is steady, and oscillates
when the flow is time-periodic. Thus, the temperature difference
at which the spot starts to oscillate is the critical one. The
cylindrical shape of the crucible and the working fluid produce an
additional lens effect, increasing additionally the spot deviation in
the horizontal direction. The spot position in the horizontal
direction is recorded during the whole experiment, so that spec-
tral analysis of its oscillation yields the main frequency and its
higher harmonics as is illustrated in Fig. 1b.

For another independent measurement the Schlieren image is
created by the light source and black/white screen 2. The varying
in time Schlieren images is recorded by the camera and is stored in
computer memory with the sampling frequency of 10 fps (frames
per second). These images usually are not very informative for the
purposes of the flow visualization, however, allow for an inde-
pendent frequency measurement. Fixing a control window of the
size 100�100 pixels, and counting the number of black pixels in
it, we obtain an independent, varying in time signal, whose fre-
quency coincides with the frequency of flow oscillations. As is
illustrated in Fig. 1b, both measurements yield exactly the same
values of the frequency and its higher harmonics.

The measurements were carried out as follows. After a new
temperature difference was imposed, we waited 30 min to allow
damping of all the transient processes. Then the recording of the
beam deflection and Schlieren images started and was done dur-
ing next 30 min. Data of the last oscillation period was used for
calculation of the frequency spectrum. To obtain the critical tem-
perature difference we perform a series of experiments gradually
raising the temperature difference by 0.1 °C. The critical tem-
perature difference is obtained after the whole series is post-
processed with the obvious accuracy of 0.1 °C. The conclusions
below are derived on the basis of approximately 50 measured
critical points. On the average, time duration to determine each
critical point was 2–3 days.
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3. Results

Measured critical temperature differences and critical oscilla-
tion frequencies are plotted in Fig. 2 as functions of the crystal
dummy radius, for different oils and different oil heights. It is seen
that most (but not all) of the dependences are smooth and
monotonic, as is illustrated by several dash curves. This allows us
to seek for a more general dependence that will join most of the
results in a single empirical formula.

Since we are looking for scaling laws connecting the critical
temperature difference and critical oscillations frequency with
other parameters of the problem, the following analysis is done
and the results are reported in the dimensionless form. Since the
only characteristic size, which is not varied in the experiments, is
crucible radius Rcrucible, it is taken as the characteristic length. The
characteristic time, velocity, and pressure are defined as R2

crucible=ν,
ν=Rcrucible, and ρν2=R2

crucible, respectively, where ρ and ν are density
and kinematic viscosity of the working liquid. Then the flow is
described by the following parameters: the aspect ratio
A¼H=Rcrucible, the radii ratio R¼ Rcrystal=Rcrucible, the Prandtl num-
ber Pr¼ ν=α, the Grashof number Gr ¼ gβΔTR3

crucible=ν
2, and the

Marangoni number Ma¼MnPr, where Mn¼ �γΔTRcrucible=ρν2.
Here H is height of the oil in the crucible, Rcrystal is radius of the
crystal dummy, α is the thermal diffusivity, g is the gravity accel-
eration, β is the thermal expansion coefficient, and γ ¼ dσ=dT –

the parameter describing the dependence of the surface tension
coefficient σ on the temperature. The thermophysical parameters
of silicone oils, as provided by vendor, can be found in [3].

As it was already discussed in [3] the most problematic is the
value of γ. Since the surface tension dependence on the tem-
perature is rather weak, to measure the first significant digit of γ,
one needs an accurate measurement of two, and sometimes three,
significant digits of the surface tension coefficient σ, which does
not seem always affordable. Basing on the data of [3], the ratio
Mn=Gr (¼Ma=Ra, where Ra¼ GrPr is the Rayleigh number) varies
between 0.01 and 0.02. Basing on these data, for the analysis done
here we assume that the thermocapillary effect can be neglected.
Under this assumption, the Grashof number plays a role of
dimensionless temperature difference. For the three oils used in
the experiments, the Prandtl and Grashof numbers are Pr¼ 23:9;
Gr ¼ 23540ΔT for 2 cSt oil, Pr ¼ 57:9;Gr¼ 3450ΔT for 5 cSt oil,
and Pr¼ 99:2;Gr¼ 785ΔT for 10 cSt oil.

Assuming that the capillary meniscus is attached to the sharp
edge of the crystal dummy (as it is observed in the experiments),
its shape is defined by three parameters: its height, wetting angle
at the crucible wall, and the Bond number Bo¼ ρgR2

crucible=σ. Since
the silicone oils density varies between 910 and 950 kg/m3, and
surface tension between 19.7 and 19.9 N/m, the Bond number does
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Fig. 2. Measured critical temperature difference (a) and critical frequency (b) versus t
bottom.
not vary noticeably. Thus, keeping height of the meniscus con-
stant, we ensure that the meniscus shape remains almost
unchanged in all the experiments. Unfortunately, nothing is
known about wetting angle at the three-phase point of a silicone
oil, sapphire and air. Our plausible assumption is that this para-
meter either changes insignificantly for different silicone oils, or
does not noticeably affect the instability.

The dimensional experimental data of Fig. 2 is rendered
dimensionless and presented in Fig. 3. Placed in the logarithmic
scale, most of the dependences tend to be straight lines, as is
illustrated in the figure. The dash lines in Fig. 3a and b show power
fit of the curves plotted in Fig. 2. Similar exercises with the power
fit was made for the dependences of the critical Grashof number
and the critical frequency on the other parameters, and most of
the results were summarized in the following empirical formula

Grcr � 20500Pr�1þ600
� �

R0:02Pr�5:8A
Pr
110 ð1Þ

f cr � 0:011Pr�0:1Grcr
0:75 ð2Þ

Note that in spite of only two governing parameters, the
Prandtl number and the critical Grashof number appear in Eq. (2),
the critical Grashof number depends on all other parameters via
Eq. (1), so that the critical frequency is also a function of all the
governing parameters. We observe also that the dependence on
the aspect ratio is weaker than on the Prandtl number and the
radii ratio. This also can be expected, since cold plume instability
arises owing to formation of an unstable thermal stratification
below the cold crystal [9], so that the distance from the crystal to
the bottom plays a weaker role, at least at the aspect ratios used in
the current study.

In Fig. 4 we plot the critical Grashof numbers and critical fre-
quencies divided by the scaling functions (1) and (2) to see how
the result deviates from unity. Taking into account experimental
uncertainty that always exists, and all the assumptions made, we
conclude that above empirical formula yields a good approxima-
tion of the results. In particular, we can conclude that the critical
oscillations frequency scales as Pr�0:1Grcr

3
4. Clearly, some of the

points, like the points in the left part of the diagram corresponding
to the 10 cSt oil, can deviate from unity simply because they
belong to another type of instability, e.g., spoke patterns [13] or
oscillating jet [3]. This can be easier checked by computational
simulation, rather than experimentally. Results of several previous
experimental studies [1,3,6,7] are shown in Fig. 4b by the filled
symbols. The critical Grashof numbers obtained ion our previous
works [3,6,7] fall not very far from Eq. (1) (Fig. 4a). The larger
deviation can be due to unknown meniscus height, which was not
controlled in those experiments. The critical Grashof number
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measured in [1] is altered by the crystal rotation and necessarily
differs from those described by Eq. (1). Surprisingly, the oscilla-
tions frequencies reported in all the four papers [1,3,6,7] fit very
well to Eq. (2) (Fig. 4b), thus indicating that this relation might be
of more general nature. It can be very interesting also to verify the
empirical formula by a series of numerical runs, providing that
numerically obtained critical values are sufficiently close to the
experimental ones.

An empirical equation for the critical Marangoni number can
also be derived. To do that we use definition of the Grashof
number to extract the parametric dependence of ΔTcr from Eq. (1),
and substitute it into definition of the Marangoni number. This
results into

Mncr ¼ Grcr
Bo

�γ
� �
βσ

; Macr ¼MncrPr ð3Þ

This relation shows that in the case of a weak thermocapillary
effect, the critical Marangoni number is the function of the critical
Grashof number, the Bond number and the Prandtl numbers, and
another dimensionless parameter γ=βσ that depends only on the
physical properties of the working liquid. In the case of a strong
thermocapillary effect, the empiric relation (1), if exists, should
involve also the ratio Gr=Mn¼ Ra=Ma, which, in its turn, is defined
by the Bond number and the parameter γ=βσ.
4. Conclusions

This experimental study focused on parametric investigation of
cold plume instability that appears in the model of large-Prandtl-
number Czochralski melt flows. The critical temperature difference
(the critical Grashof number) and the frequency of appearing
oscillations were measured for the Prandtl numbers varied
between 20 and 100, aspect ratios of the melt varied between 0.75
and 1.5, and crystal/crucible radii ratios varied between 0.3 and
0.8. In all the experiments the meniscus height was kept 1.25 mm.
The measurements were carried out by two independent and fully
non-intrusive experimental techniques.

The results are presented as dependences of either dimensional
or dimensionless parameters. It was found that the dimensionless
parameter dependences can be approximated by a two relatively
simple empirical relations. These relations may serve as a “rules of
thumb” for estimation of sub- or supercriticality of flows in Czo-
chralski crystal growth devices.

The results reported can be used also as the experimental
benchmark data for computational simulations. The numerical
results, in their turn, can validate correctness of the proposed
empirical relations and, possibly, improve them.

Apparently, the obtained relations (1) and (2) are applicable
only within the considered parameter ranges. They are also
incomplete, since they do not account for the dimensionless
meniscus height, as well as for possible effects of the Bond number
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and the wetting angle at the crucible. It should be stressed that
existence of such simple relations is shown for the first time. The
extension to other governing parameters and more accurate
definition of the applicability ranges can be an objective of future
experimental and numerical studies.
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