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a b s t r a c t

Effect of the capillary meniscus on the instability of large Prandtl number Czochralski melt flow is stu-
died experimentally. The measurements are conducted in two experimental facilities by two in-
dependent non-intrusive optical techniques. The quantitative results are presented as dependencies of
the critical Grashof number (critical temperature difference) on the meniscus height for different Prandtl
numbers, radii and aspect ratios. The results show that with increase of the meniscus height the critical
temperature difference noticeably grows and sometimes doubles. Recently reported parametric relations
for the critical Grashof number and oscillations frequency are extended to include parameters of the
meniscus.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Effect of the capillary meniscus on the Czochralski and similar
crystal growth processes is well-known. The most recent review of
the relevant issues is given in book [1]. Additionally, recent study
[2] discusses effect of the meniscus on spiral growth of oxide
crystals, whose Prandtl number is large and sometimes exceeds
the value of 10. One of important factors that can be affected by
the meniscus shape is pattern of the Czochralski melt flow and,
especially, it stability. The latter is the main object of the present
experimental study.

Laboratory modeling of instabilities in Czochralski melt flow is
performed for more than 30 years starting from experiments of
Jones [3], however most of them do not mention parameters of the
meniscus or its effect. In 2001, Hintz et al. [4,5] stated that me-
niscus effects on Czochralski melt flow have not been studied
experimentally and showed that after onset of flow instability the
oscillation frequency depends on the meniscus height. To the best
of our knowledge this issue was not addressed since then. To avoid
discussion of these effects, in our recent experiments [6] the me-
niscus height was always fixed at 1.25 mm.

In the current study we extend previous model experiments
[4–8] to an examination of the meniscus height effect on the in-
stability in large Prandtl number Czochralski melt flow. The ex-
periments are performed on two experimental setups designed to
keep all the characteristic lengths at a ratio 1:1.9. We show that
with the increase of the meniscus height the critical temperature
difference (the critical Grashof number) tends to grow. Depending
on other system parameters the growth is sometimes slow, but in
other cases the critical temperature differences double. At large
heights, just before the meniscus breaks, the critical temperature
difference decrease, which can be attributed to an abrupt change
of the meniscus shape. We observe that the frequency of flow
oscillations, which develop after the instability onset, also grows
with the increase of the meniscus height.

Further examination of results shows that in spite all the
characteristic lengths in the two setups scaled geometrically as
1:1.9, the critical temperature difference does not scale as 1:1.93,
as could follow from the definition of the Grashof number. Also,
the dimensionless oscillations frequencies do not scale as 1:1.92 as
one could expect basing on the viscous or thermal diffusive time
scales. Absence of the expected scaling shows that the results are
possibly affected by the parameters related to the capillary phe-
nomena: the Marangoni and Bond numbers, the dimensionless
meniscus height, and the wetting angle. Effects of these para-
meters, as well as other possible reasons, are discussed. Finally, we
extend the scaling relations of [6] to include the Bond number and
the dimensionless meniscus height.
2. Experimental setups

Measurements were carried out on two experimental setups, in

www.sciencedirect.com/science/journal/00220248
www.elsevier.com/locate/jcrysgro
http://dx.doi.org/10.1016/j.jcrysgro.2016.07.041
http://dx.doi.org/10.1016/j.jcrysgro.2016.07.041
http://dx.doi.org/10.1016/j.jcrysgro.2016.07.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2016.07.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2016.07.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrysgro.2016.07.041&domain=pdf
mailto:gelfgat@tau.ac.il
http://dx.doi.org/10.1016/j.jcrysgro.2016.07.041


E. Miroshnichenko et al. / Journal of Crystal Growth 453 (2016) 20–26 21
which two sapphire crucibles with the radii of 20 and 38 mmwere
installed. In both setups the crucibles are heated by running hot
water. The smaller experimental setup has copper crystal dum-
mies of different radii attached to a copper rod, which is cooled by
running cold water, and resembles one used in our recent study
[6]. In the larger setup, cold water runs inside the dummy as it was
implemented in [8]. The water temperatures are controlled by the
isothermal bathes that provide the temperature resolution of
0.1 °C, and additionally by the thermocouples placed inside the hot
and cold water chambers. The experimental liquids are four sili-
cone oils whose viscosity is 2, 5, 10, and 20 cSt. Their Prandtl
numbers are 23.9, 57.9, 99.3, and 206, respectively, and the other
physical properties are listed in [9]. In both setups the meniscus
height was controlled by a specially constructed microcontroller-
based device with the analog-to-digital converter integrated in the
microcontroller, and the digital display. The vertical movement of
the cupper rods with the attached crystal dummies was monitored
by a linear potentiometer whose resistance is converted to milli-
meters. The meniscus height was varied between 0 and 1.75 mm
in the smaller setup and between 0 and 2.25 mm in the larger one.
This variation allowed us to obtain four qualitatively different
meniscus positions of the crystal dummy, as is sketched in Fig. 1.
The meniscus can be attached to the crystal side (curve 1), which
apparently happens at zero meniscus height and in the top-seeded
solution growth (TSSG) [10]. It can be attached to the crystal
Fig. 1. Sketch of possible meniscus shapes: 1 – attached to the side of the crystal
dummy, 2 – attached to the edge of the crystal dummy described by a single-valued
function ( )z r , 3 – attached to the edge of the crystal dummy described by a double-
valued function ( )z r , and 4 – attached to the bottom of the crystal dummy.
dummy edge (curves 2 and 3), where the curve 2 describes the
meniscus shape for a stable Czochralski process. When the height
is larger the meniscus is attached to the bottom surface of the
dummy (curve 4). This may happen in the case of the spiraling
growth, as is described in [2].

As in our previous study [6], the measurements of instability
onset were completely non-intrusive and made by two in-
dependent and self-cross-verifying optical techniques. The tech-
niques are based on digital post-processing of the time-dependent
Schlieren images and monitoring of the time-dependent laser
beam deflection, as described in [6], to where the reader is re-
ferred for further details.
3. Menisci shape numerical modeling

To get a qualitative impression of how the menisci shape
changes, we carried out several numerical calculations. Calculation
of the meniscus for all three cases of Fig. 1 is rather difficult pro-
blem, as described and discussed in [1]. However, for the case of
curve 2 the meniscus can be computed relatively easy. Assuming
that Rcrystal, Rcrucible, H , and hm are the crystal and the crucible radii,
the height of the melt without crystal, and the height of the me-
niscus above H , respectively, we look for a meniscus shape func-
tion ( )z r that satisfies the Laplace-Young equation (all the lengths
are scaled by the crucible radius Rcrucible)
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Here =A H R/ crucible is the melt aspect ratio, =R R R/crystal crucible is the
crystal/crucible radii ratio, =h h R/m crucible is the relative meniscus
height, α is the wetting angle at the crucible wall, ρ σ=Bo gR /crucible

2

is the Bond number, σ , ρ, and g are the surface tension coefficient,
the density and the gravity acceleration respectively. An additional
parameter z0 plays a role of Lagrange multiplier and is used to
satisfy the restriction (2).

According to the vendor provided data, the surface tension
coefficient of all four oils is approximately 0.02 N/m, and their
density varies between 860 and 960 kg/m3 [9]. Therefore, the va-
lues of the Bond number change mainly due to the characteristic
length, and are estimated as E170 and E666 for the smaller and
larger setups, respectively. We conducted several experiments to
estimate wetting angle of silicone oils on a sapphire surface and
found that the angle varies between 8° and 12°.

The problem (1)–(4) is discretized using central finite differ-
ences, after which the set of unknowns consists of N values of z at
the grid points = …r i N, 1,2, ,i and the unknown value of z0. The
resulting system of non-linear algebraic equations is solved by the
Newton method that converges within 40 iterations.

Examples of the calculated meniscus shapes are shown in
Fig. 2a,b for the case of smaller crucible and radius of the crystal
dummy 10 mm. The Bond number value was 170. The wetting
angle on the crucible wall was varied to see its influence on the



Fig. 2. (a) Shapes of the capillary menisci calculated for a smaller crucible at different heights and wetting angles at the crucible wall, A¼0.75, Bo¼170. The horizontal color
lines show position of the crystal dummy bottom corresponding to the shape of the same color. (b) Shapes of the frame (a) zoomed in the z–direction. (c) Comparison of the
menisci scaled by Rcrucible and calculated at Bo¼170 and 680. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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meniscus shape. Fig. 2a shows the menisci in the proportional
scaling in radial and axial coordinates. The colored horizontal lines
indicate position of the dummy lower surface at three different
meniscus heights. In Fig. 2b the axial coordinate is zoomed in to
distinguish better between different cases. This allows us to see
the meniscus shape changes when the wetting angle is decreased
from 90° to 10°.

At the height of the meniscus of 1.5 mm ( =h 0.075) we could
obtain a smooth solution only for wetting angle at the crucible
wall equal to 90°. This means that the meniscus already attains
shapes sketched by the curves 3 and 4 in Fig. 1, which cannot be
computed using above procedure.

The effect of the Bond number is illustrated in Fig. 2c. The two
curves there are calculated for parameters of the smaller and the
larger setups and then are scaled by Rcrucible. The relative meniscus
height, radii ratio and the aspect ratio in both cases are 0.025,
0.5 and 0.75, respectively. The wetting angle was 10°. We observe
that at larger Bond number the central part of the meniscus tends
to a horizontal surface, while its end parts change steeper. Such a
difference in the upper surface shape can affect the flow pattern,
as well as its stability properties.
4. Results

4.1. Main experimental results

In addition to the dimensionless parameters introduced above,
the flow is governed by the Prandtl number ν χ=Pr / , the Grashof
number β ν= ΔGr g TR /crucible

3 2, and the Marangoni number
=Ma MnPr , where γ ρν= − ΔMn TR /crucible

2. Here χ is the thermal
diffusivity, g is the gravity acceleration, β is the thermal expansion
coefficient, and γ σ= d dT/ – the parameter describing the depen-
dence of the surface tension coefficient σ on the temperature. As it
was done in our previous studies [6–8], the crucible radius is
chosen as the length scale. It is a convenient choice because the
crucible radius is the only length that remains constant for all the
experiments in a certain setup. The thermophysical parameters of
silicone oils, as provided by vendor, can be found in [9]. As was
already argued in [6], for our experimental setups ≪Mn Gr , the
ratio Mn Gr/ is of the order 10�2–10�3, so that the thermocapillary
effect is assumed to be negligibly small. At the same time, the
effect of the meniscus height is expected to be noticeable, as it was
already reported in [4,5]. Also, judging by the menisci shape at
different Bond numbers, the effect of the latter should be ex-
amined. In particular, different Bond numbers can be a reason of



Fig. 3. Results for the smaller setup: measured critical points via dimensionless
parameters: the Grashof number (a) and the dimensionless critical frequency
(b) versus the relative meniscus heights for different silicone oils and aspect ratios.
R¼0.5. The results for silicone oils with 2, 5, and 10 cSt viscosity are shown by
circles, triangles (Δ) and diamonds, respectively. The results for the melt aspect
ratios 0.5, 0.75, 1, and 1.5 are colored by black, red, blue, and green, respectively.
Radii ratio is R¼0.5. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Results for the larger setup: measured critical points via dimensionless
parameters: the Grashof number (a) and the dimensionless critical frequency
(b) versus the relative meniscus heights for different silicone oils, aspect and radii
ratios. The results for silicone oils with 5, 10, and 20 cSt viscosity are shown by
triangles (Δ), diamonds and squares, and triangles (∇), respectively. The results for
the melt aspect ratios 0.5, 0.75, 1, and 1.5 are colored by black, red, blue, and green,
respectively. The diamonds and squares show results for, respectively, R¼0.5 and
0.375. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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the absence of exact scaling of critical parameters measured in the
two setups.

The results of all the measurements are collected in Figs. 3 and
4 for the smaller and larger setup, respectively. To distinguish
between different silicone oils and different aspect ratios, the
symbols on these and other graphs are organized as follows. The
results for silicone oils with 2, 5, 10, and 20 cSt viscosity are shown
by circles, delta-triangles (Δ), diamonds/squares, and gradient-
triangles (∇), respectively. The results for the aspect ratios =A 0.5,
0.75, 1, and 1.5 are colored as black, red, blue and green, respec-
tively. When the results obtained on both setups are shown in the
same graph (Figs. 5 and 6), the symbols corresponding to the small
setup are hollow, while those corresponding to the large setup are
filled. To collect all the experimental points on the same graph, in
Fig. 4 the Grashof number and the oscillations frequency are ad-
ditionally multiplied by R5. In Fig. 3 we also show the left vertical
axis for GrR5 to allow for comparison between the two setups, as
well as the right axis for Gr , to illustrate range of the critical values.
We observe that with the increase of the meniscus height h from
the zero level, the critical Grashof number (the critical tempera-
ture difference ∆Tcr), as well as the oscillation frequencies increase.
For a very viscous working liquid (20 cSt, Pr¼206), the increase is
within 20%, however, for less viscous one (e.g., 2 cSt, Pr¼23.9), and
more relevant for molten optical materials, the difference can
reach 100%. This happens, for example, in the smaller crucible
setup with =A 1 (Fig. 5a). The reason of this increase will be
discussed below.
4.2. Similitude of the two experimental setups

The initial idea of measurements in two independent setups,
whose geometrical parameters scale exactly as 1:1.9, was ver-
ification of the results via the similitude theory. Thus, assuming
that the effects of the thermocapillarity and the menisci shape are
negligibly small, and all the other parameters except the Grashof
number are exactly equal and do not depend on the temperature,
one would expect that the instability in both setups will set in at
the same Grashof number. Since the Grashof number is propor-
tional to Rcrucible

3 , and viscous and heat diffusive time scales are
ν R/ crucible

2 and χ R/ crucible
2 , respectively, this means that for the two

setups the critical temperature differences between the crucible
and the crystal dummy is expected to relate as 1:1.93, and the
corresponding oscillation frequencies as 1:1.92. In fact, only part of
our results can be compared in this way. In the smaller setup we
cannot conduct measurements with very viscous oils because the
critical temperature difference exceeds 50 °C, so that the oil starts
to evaporate. In larger setup we have an opposite problem with
less viscous oils: the critical temperature difference becomes
smaller than 1 °C, which makes it impossible to carry out accurate
measurements (see [11] for the details). Also, in the larger setup
we were able to increase the relative meniscus height only to

=h 0.06, while in the smaller one the menisci remained stable up
to almost =h 0.1. This is why the only comparison available



Fig. 5. Comparison of critical parameters measured for = =Pr R99.3, 0.5 in smaller
(solid lines) and larger (dash lines) setups: the Grashof number (a) and the di-
mensionless critical frequency (b) versus the relative meniscus heights for different
aspect ratios. The shapes and the colors of symbols correspond to Figs. 3 and 4.
Symbols denoting the smaller setup are hollow. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Scaled critical Grashof number (a) and dimensionless critical frequency
(b) versus the relative meniscus height with varied aspect and radii ratios, Bond
and Prandtl numbers. The symbols and the colors are same as in Figs. 3 and 4. The
results for small crucible are shown by hollow symbols. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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corresponds to the fixed values of =Pr 99.3 and =R 0.5. For these
two fixed values we expected to observe same or close de-
pendencies ( )Gr h A,cr in both setups. The comparison is shown in
Fig. 5. Curves and symbols of the same color correspond to the
same aspect ratio and should be compared.

We start to discuss the comparison from the zero meniscus
height ( =h 0), at which the meniscus is attached to the crystal
dummy side, as is sketched by the curve 1 of Fig. 1. The cylindrical
surface of the crystal dummy affects the meniscus as a plane wall if
the liquid capillary length σ ρg/ is much smaller than the cylinder
radius [12]. In our case the capillary length can be estimated as
1.5 mm for all the oils, so that the inequality σ ρ ≪g R/ crystal is not
too accurate, especially for the smaller setup, where the crystal
radius corresponding to Fig. 5 is 10 mm. This means that the re-
sults we intend to compare are altered not only by the Bond
number, but also by the different meniscus shapes at the crystal/
meniscus contact line. The critical Grashof numbers and the di-
mensionless critical frequencies measured on the larger setup are
20–40% larger than those measured on the smaller setup, which
may be a result of the meniscus effect. Another possible reason of
the difference is the temperature dependence of the thermo-
physical parameters, whose effect is noticeably stronger in the
smaller setup where approximately 7 times larger temperature
differences are needed to arrive to the instability threshold. Effect
of the temperature dependence can be an objective of a thorough
computational modeling, but is out of the scope of this study.

Apparently, difference of the menisci shape is not a single
reason that can cause the difference of critical parameters. The
ratio Mn Gr/ decreases as −Rcrucible

2 , so that it is 3.61 times smaller for
the larger setup. The main circulation of the melt flow is due to the
buoyancy forces. The flow rises near the hot crucible wall and
descends below the cold crystal. At the capillary surface the flow
direction is from the crucible wall to the crystal dummy. The
thermocapillary force drives the flow from the hot crucible to the
cold crystal, thus intensifying the main buoyant circulation. If this
intensification is stronger in the smaller setup, it is expected to
have a destabilizing effect, so that the critical temperature differ-
ence together with the critical Grashof number will decrease. As a
result, the critical Grashof numbers measured on the smaller setup
will be smaller. The latter is observed in Fig. 5 for the zero me-
niscus height. As mentioned above, another reason can be related
to the temperature dependence of all the thermophysical
properties.

With the increase of the meniscus height from zero the critical
Grashof number and the dimensionless oscillation frequency grow
in both experimental facilities, while the values measured using
the smaller setup remain smaller. The average slopes of the in-
crease of the Grcr and fcr at A¼1 and 1.5 are apparently close to
each other for both facilities, small and large, in the same range of
dimensionless variations of the meniscus height, 0oho0.06. At
A¼0.75 the behavior of the slope is essentially non-monotonic and
it is difficult to define the average slope. This indicates on a certain
qualitative similarity, however the results for two setups remain
different and continue to exhibit the absence of definite similitude.
Apparently, all the reasons for that, discussed above, can be



Fig. 7. Sketch of the model experiment with a PVC tube attached to the crystal
dummy. All the sizes are given in millimeters.
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repeated for the non-zero meniscus height.
In the smaller setup, for the smallest melt aspect ratio =A 0.75

and >h 0.06, we observe decrease in both values. A similar de-
crease is observed for the 2 cSt oil at =A 1.5 (green circles in
Fig. 3). Since the meniscus shape is independent of the melt depth,
this decrease can be a combined effect of all the phenomena in-
volved, and probably can be related to a change of the meniscus
from the shape 2 to the shapes 3 or 4 sketched in Fig. 1. Un-
fortunately, we were unable to make precise measurements of the
meniscus shape.

4.3. Scaling of the critical parameters

Using the above experimental data we made an attempt to
extend the scaling functions reported recently in [6], and to add
there new dimensionless values of the meniscus height and the
Bond number. We have found, however, that out present data for
the critical Grashof number (critical temperature difference)
scatters stronger than that of [6], probably because of slight dif-
ferences of the surface tension and the wetting angles corre-
sponding to different oils. It is emphasized that the scaling below
is found only for those parameters at which we can assume the
meniscus of shape 2. Therefore, we take into account only ex-
perimental points of Figs. 3 and 4, for which >h 0, and increase of
the Grashof number with the meniscus height is observed. The
best fit we could find is described by the following relation
(Fig. 6a)

≈ +
( )

− −⎛
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⎞
⎠⎟
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At the same time, scaling of the oscillations frequency is not
explicitly dependent on the capillarity parameters and as in [6] is
described by (Fig. 6b)

≈ ( )−f Pr Gr0. 011 6cr cr
0.1 0.75

Note that in spite of only two governing parameters involved in
the above equation, the critical Grashof number depends on all
other parameters via Eq. (5), so that the critical frequency is also a
function of all the governing parameters. Clearly, all the conclu-
sions and discussion of [6] related to the scaling relations remain
correct also for the present results. In particular, the critical Mar-
angoni number Macr , that describes the thermocapillary effect, is
scaled by [6]

γ
βσ
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( − )

=
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4.4. Discussion and additional model experiments

Basing on our previous results [6–9], for the following discus-
sion we assume that in the most cases the instability sets in due to
formation of cold plumes at the crystal dummy cold surface. As
explained in [13], the instability sets in due to accumulation of
cold liquid below the cold crystal dummy until an unstable vertical
temperature gradient reaches its critical value, after which the
Rayleigh-Bénard instability mechanism sets in. In view of this
explanation, growth of the critical Grashof number with the in-
creasing meniscus height can be explained as follows. Inside the
meniscus the flow is very weak, which leads to a weaker con-
vective mixing of the cold liquid attached to the dummy and
bounded by the meniscus with the hot liquid advected from the
crucible wall. The mixing is weakened further when the meniscus
height is increased. A weaker mixing results in a smoother tem-
perature profile, so that change of the temperature along the
vertical axis becomes less steep. Therefore, higher temperature
difference is necessary to generate appropriate conditions for de-
velopment of instability in the melt. As a result, the instability
threshold takes place at larger difference ∆Tcr of the hot and cold
boundaries temperature. We can speculate further that when the
meniscus attains the shapes 3 or 4 (Fig. 1), the liquid volume inside
the meniscus decreases. Since a smaller liquid volume should be
mixed, the mixing inside the meniscus can be intensified leading
to a decrease of the critical temperature difference. This might
explain the saturation of the dependence of the critical Grashof
number on dimensionless meniscus height that occurs at higher
values of h.

To verify the above explanation, we performed another model
experiment, in which a PVC tube was attached to the crystal
dummy, as is shown in Fig. 7. This experiment was carried out in a
smaller facility with 10 cSt oil, keeping the radii and aspect ratios
at =R 0.5 and =A 1. In this experiment a column of oil inside the
PVC tube replaces the meniscus. When the height of the column
was 1.75 mm, the temperature oscillations appeared at the tem-
perature difference of 11 °C, while with the meniscus of the same
height the critical temperature difference was 17.7 °C. This quite
surprising reduction of ∆Tcr can be caused by a better mixing in-
side the PVC tube. Really, inside a tube with no-slip boundaries
one can expect appearance of reversed circulations, as is shown
schematically in Fig. 7. Flow inside these circulations is faster than
that inside the meniscus, which yields better mixing and reduction
of the critical temperature difference.

In the next experiment we sharply increased the height of the
oil column inside the tube to 4 mm, which resulted in a steep
increase of the critical temperature difference to 33.5 °C. Clearly,
the inverse circulations in a taller column inside the PVC tube
become slower, which slows down the mixing. As a result the oil
column inside a tube produces an effect of a solid body with heat
conductivity sharply reduced compared to that of the copper. This
flattens the temperature gradient along the vertical axis, which
leads to a sharp increase of ∆Tcr .
5. Conclusions

This experimental study was focused on the capillary meniscus
effect on the instability of the model large-Prandtl-number Czo-
chralski melt flows. The measurements were carried out by two
independent and fully non-intrusive experimental techniques on
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two experimental facilities whose sizes scaled as 1:1.9. The results
are presented as dependencies of the critical Grashof number and
the melt oscillations frequency on the meniscus height scaled by
the crucible radius.

The results show that the critical Grashof number (the critical
temperature difference) tends to increase with the increase of the
meniscus height. The difference between results obtained for
“short” and “tall” menisci is noticeable and sometimes can reach
100%. We argued that the flow stabilization at taller menisci takes
place owing to a less intensive mixing of the cold liquid located
below the cold dummy and the hot liquid advected from the
crucible wall towards the cylindrical axis. This argument was
supported by an additional qualitative experiment.

Finally, we extended the empirical relations for the critical
Grashof number and oscillation frequency, reported in [6], to
variable relative meniscus heights and Bond numbers.
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