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In this study we present a numerical investigation of steady states, onset of oscillatory instability,
and slightly supercritical oscillatory states of an axisymmetric swirling flow of a Newtonian
incompressible fluid in a cylinder, with independently rotating top and bottom. The first part of the
study is devoted to the influence of co- and counter-rotation of the bottom on the steady vortex
breakdown, which takes place in the well-known problem of flow in a cylinder with a rotating top.

It is shown that weak counter-rotation of the bottom may suppress the vortex breakdown. Stronger
counter-rotation may induce a stable steady vortex breakdown at relatively large Reynolds numbers
for which a vortex breakdown does not appear in the case of the stationary bottom. Weak corotation
may promote the vortex breakdown at lower Reynolds numbers than in the cylinder with the
stationary bottom. Stronger corotation leads to the detachment of the recirculation zone from the
axis and the formation of an additional vortex ring. The second part of the study is devoted to the
investigation of the onset of oscillatory instability of steady flows. It is shown that the oscillatory
instability sets in due to a Hopf bifurcation. The critical Reynolds number and the critical frequency
of oscillations were calculated as a function of the rotation re#(y o 2iop) for a fixed value

of the aspect ratigy (height/radiug of the cylindery=1.5. The stability analysis showed that there

are several most unstable linear modes of the perturbation that become successively dominant with
a continuous change ¢f It is shown that the oscillatory instability may lead to an appearance and
coexistence of more than one oscillating separation vortex bubblel99 American Institute of
Physics[S1070-663196)00110-9

I. INTRODUCTION bottom corotate with the same angular velocity. It was
showrt® that such corotation leads to the detachment of the

Vortex breakdown in a cylinder with a rotating top was recirculation zone from the axis and the formation of up to
discovered experimentally by Vodeand has been inten- four vortex rings, two above and two below the plane of
sively studied experimentafly> and numerically.”** The  symmetry. This result is in agreement with the experiments
vortex breakdown observed in this system is characterizedf Spohnet al,'® who investigated the flow in a cylinder
by the sudden appearance of a weak meridional recirculatiowith rotating bottom and a stress—free surface at the top. To
(also called “separation vortex bubblghear the axis of the compare both results one should associate the stress—free
cylinder. It was shown by Gelfgat al'* that the appearance boundary of the experimental seffipwith the horizontal
of the vortex breakdown in this flow is not caused by insta-plane of symmetry of the mathematical modfeLopeZ? in-
bility, and that with the increase of the Reynolds number thevestigated the transition from the steady to the oscillatory
separation vortex bubble appears and disappears along a caftate fory=3 in the case when the top and the bottom coro-
tinuous branch of the steady solution. tate with the same angular velocity=1). Parametric inves-

The influence of weak co- and counter-rotation of thetigation of the oscillatory instability in this case for the in-
bottom of the cylinder on the vortex breakdown was studiederval 1<y=<3 was done recently by Gelfgat al?!
experimentally by Roesnémnd Bar-Yoseptet al* It was The independent rotation of the bottom is characterized
shown that weak corotation of the bottom may promote &by the ratio of angular velocitie§=Qp,yon{Qsop (rotation
separation vortex bubble in a flow without meridional recir-ratio). If [(yp=|Qpoond, £ Varies in the interval-1<¢<1.
culation. Conversely, weak counter-rotation of the bottomOtherwise, the cylinder may be turned over such that top and
may suppress an existing separation vortex bubble anBottom replace each other, implying that Re anhdre re-
change the meridional flow to a single-vortex state. A similarplaced by Re and 1£. The experiments of Roesrérwere
effect of the co- and counter-rotation on the vortex breakdone for|¢<0.1. The numerical analysis of Valentine and
down was observed by Bar-Yosephal,'® Bar-Yoseph;*™®  jahnke® Lopez?® and Gelfgatet al?* was carried out
and Bar-Yoseph and Kryzhanov&ki’ in the polar region mainly for é&=1. Flows corresponding to other values §€f
between rotating spheres. were not studied.

A numerical study by Valentine and Jahhkevas de- The stability of steady flows in the cylinder with rotating
voted to a particular symmetric case when the top and théop and stationary bottonté=0) was studied by Gelfgat
et al!! for aspect ratio £y=<3.5. It was shown that the ap-

aCorresponding author. Fax: 972-4-8324533; pearance and disappearance of the vortex breakdown is not
electronic mail: merbygr@cmlp.technion.ac.il connected with the stability of the flow. It was also shown
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that for y=<3 the oscillatory instability sets in as a result of an 5, v, v, Ui
axisymmetric supercritical Hopf bifurcation, and that the 0S- tu, ar tuv, Zz T
cillatory instability may promote the oscillatory vortex
breakdown in cases for which thsteadyvortex breakdown op 1 [é*v, 1ov, v, v,
is not found. :_EJFR_e(W T ?—r—z),
The present study is devoted to the analysis of the effect 1)
of co- and counter-rotation on steady flows and on the onsetv,, v, gy U,

of oscillatory instability. The analysis is carried out for the WJ”’V W’va E”L r
whole interval—1<¢<1.

. . . . 2 2
An investigation of the suppression of the vortex break- — _ i IV, n E %Jr IV, v,
down by the counter-rotation of the bottom shows that the Rel| ar? " r or 922 r?)

higher the cylinder(the larger the aspect rajithe weaker

the counter-rotation necessary to eliminate a recirculatimﬂJr Ly, =
zone from the flow. It is also shown that the counter-rotation Jt ar 0z

may stabilize the steady flow and induce a stable steady vor- p 1 (0202 1 dv, 8202)

v, Ju,

tex breakdown at relatively large Reynolds numbers, for = =t -+ —
which in the case of stationary bottom there exists an un- gz Re\oJre 1 ar  Jz
stable steady state without a vortex breakdown. w, v, v, 2
In the case of corotation it is shown that the separation—+ — + —=0.
vortex bubble, characteristic faf=0, and the vortex ring, o v oz
characteristic fof=1, continuously transform one into the At the axis of the cylindef0<z=<+, r=0) the boundary
other when¢ is continuously varied between 0 and 1. It is conditions of an axisymmetric flow are
also shown that weak corotation induces the vortex break-
down at lower Reynolds numbers than #+0. vr:%:&:o’ (3)
The stability of steady states was studied for a fixed ar
value of the aspect ratip=1.5. The steady flows considered g the cylindrical walll0<z<1y, r=1),
remain stable up to the onset of the oscillatory instability,
which takes place due to the Hopf bifurcation. The instability ~ vr=v,=v;=0, (4)
may set in with the increase of the Reynolds number Re op, the rotating top of the cylinddd<r<1, z=1y),
with the change of the rotation ratié The main results of
the stability analysis are presented in stability diagrams plot- v =v,=0, v =T, )
ted in the planeé,Re. The dependence of the critical fre- 5y o the rotating bottom of the cylind@<r <1, z=0),
guency of oscillations on the rotation ratio is also reported. It
is shown that the oscillatory instability may be caused by v,=v,=0, v,=§r. (6)
different most unstable linear modes that become dominal * D2 %
for different parameter values. Examples of patterns of thlﬁerg* Rec(f“’p.R v 'S the . Reynolijs . nu*m_ber,g
. ) = Ofoonf{iop IS the rotation ratio, andy=H"/R* is the
most unstable linear modes are reported, together with thgspect ratio of the cylindefNote that some authors define
patterns of the flow at critical values of parameters. Possible _ H*/(2R*) ]
reasons that may cause the onset of the instability are dis '
cussed.
Slightly supercritical states of the flow were calculated
using the finite volume method for the solution of the full

unsteady Navier—Stokes equations. A num'encal solution he Galerkin method is formulated for globally defined basis
the full un;tgady probilem was u§ed tq verify results' of thefunctions that satisfy all the boundary conditions and the
linear stability analysis and to investigate the OSCIII"J‘torycontinuity equation. The basis functions are constructed as
states of the flow. linear superpositions of Chebyshev polynomials with the
help of symbolic computations. The finite volume method is
of the second order in space and time. It is based on the
sIMPLE algorithn?? and three-levels approximation of the
time derivative?® The finite volume grids are stretched such
The axisymmetric flow of an incompressible Newtonianthat the nodes are condensed near the axis, the top, the bot-
fluid with kinematic viscosity/* in a cylinder of radiuR* tom, and the sidewall of the cylinder. A detailed description
and heightH*, with top and bottom rotating with angular of the numerical algorithms and test calculations is reported
velocities O, and Qoo is considered. The flow is de- in Refs. 11 and 12.
scribed by the momentum and continuity equations in a cy- The spectral Galerkin method allows a sufficient de-
lindrical system of coordinates (¢,z). Using the scaleR*, crease of the number of degrees of freedom used by a nu-
R*2[v* Q;"OpR*, andp*(Q;*opR*)2 for length, time, veloc- merical method, which makes it possible to calculate steady
ity, and pressure, respectively, the dimensionless equatiorstates and to analyze their stability within the framework of
are the same numerical model. To analyze the linear stability of

The problem(1)—(6) was solved numerically using the

Galerkin spectral method for the calculation of steady states

and linear stability analysis, and using the finite volume
ethod for the calculation of steady and oscillatory states.

Il. FORMULATION OF THE PROBLEM AND
NUMERICAL TECHNIQUE

Phys. Fluids, Vol. 8, No. 10, October 1996 Gelfgat, Bar-Yoseph, and Solan 2615

Downloaded-03-Feb-2002-t0-132.68.1.29.-Redistribution—subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



steady states the governing equations were linearized in the
vicinity of a steady solution and the spectrum of the linear-
ized problem was calculated and analyzed. The instability of
the flow was indicated by the change of sign of the real part
of the dominant eigenvalu& (the eigenvalue with the larg-
est real pajt The change of the sign takes place with the
increase of the Reynolds number or with the change of the
rotation ratio. The critical values of the Reynolds number
Re,, and of the rotation ratid,,, for which RealA)=0, were
calculated. In all the cases considered it was found that at the
critical  values of  parameters (h)#0 and

_((9/(9 Re)[Rea(A)]a_&O, WhiCh indicates that the instability S_ets FIG. 1. Counter-rotating bottom. Streamlines. Here=RB00, y=1.5,

in due to Hopf bifurcatior(see Refs. 24 and 25 for details o=¢=-1.

This means that the circular frequency of the flow oscilla-

tions in the vicinity of Re=Re, may be estimated as

w,=Im(A). The eigenvector corresponding to the dominant!!l- MAIN RESULTS

e_igenval_ueA=iwCr describes the_ most_ _domir_1ant pertu_rba— A. Steady states

tion, which causes the onset of instability. Since the eigen-

vector is a complex function and is defined within multipli- 1. Counter-rotating bottom

cation by a complex constant, its modulus is used to describe The change of the meridional flow with the continuous
the dominant perturbations. Note that for slightly supercriti-increase of the counter-rotatiqdecrease of from £=0 to

cal oscillatory flows the isolines of the amplitude of oscilla- £&=—1) is shown in Fig. 1 for the cas¢=1.5, Re=1500.
tions coincide with the isolines of the modulus of the pertur-One can see that weak counter-rotation eliminates the sepa-
bation. The dominant perturbation of the considered flow igation vortex bubble that exists &=0. The separation
described by the perturbations of the meridional streamfunddubble disappears when the angular velocity of the counter-
tion ¢ [v,=(1/r)(dyl9z), v,=— (1) (dylor)] and of the rotating bottom exceeds 3% of the angular velocity of the top
azimuthal moment/, =ruv,,. In the following text these (§=—0.03-0.09. This is in qualitative agreement with the
perturbations are called perturbation of the meridional com&xperimental results of Roesnt A further increase of the

ponent of the flow and perturbation of the azimuthal compo-counter-rotation(decrease of) up to §=—0.2 leads to the
nent of the flow, respectively. appearance of a meridional vortex in the lower corner of the

The numerical technique was completely verified incylinder(§=—0.2). Another recirculation region attached to

Refs. 11 and 12 for the cage=0, for which a large amount the bottom appears with an additional decreasez o

of experimental and numerical data is available for = ~0-4. When the rotation ratio reaches the vafiie—0.5

comparisorf % In the caset#0 only the experimental re- the two regions attached to the bottom join and form one

. ) nterclockwise recirculation regidg=—0.5). This region
sults of Roesnérand the numerical results of Valentine and counte C.OC S? ecirculation regidg=—0.5 . S eg.o
Jahnké® and Lope3° may be used for qualitative compari grows with the increase of the counter-rotation, while the

) : . upper clockwise recirculation region becomes smallér
son with the results obtained here. The results obtained fqygfying from —0.7 to —1). Both ?:Iockwise and coun('ir-

¢#0 were validated in three way$l) it was ensured that  ¢jocrwise recirculation regions become antisymmetric when
further increase of the number of the Galerkin modes doeg reaches the valug=—1.

not lead to significant quantitative changes in steady flows or Figures 2 and 3 illustrate the suppression of the vortex
critical parameters(2) the steady solutions obtained with the preakdown by counter-rotation in cylinders with aspect ratio
Galerkin method were compared with those obtained by th%:z and 2.5 and for the same value of the Reyn0|ds number
finite volume method using stretched grids up to X000  Re=2000. In the case of rotating top and stationary bottom
nodes; and3) the numerical solution of the full unsteady (¢£=0), both meridional flows contain two separation vortex
problem allowed us to localize the critical Reynolds numbersubbles(Figs. 2 and 3£=0). Weak counter-rotation of the
and to estimate critical frequencies, and then the critical pa-
rameters obtained by the two independent numerical ap-
proaches were compared. The steady states discussed in Sec.
Il A were calculated using 3830 basis functions for the
Galerkin method and a 3575 stretched grid for the finite
volume method. The stretching was the same as in Gelfgat
et al!! The stability analysis was done with the number of
basis functions varying from 3030 to 40x40. The number

of nodes for the unsteady calculations varied fronx75 to

200x200. The details of the test calculations and of the de- =0 be-00

pendence of the critical parameters on the discretization afgg . counter-rotating bottom. Streamlines. Here=R800, y=2.0
discussed in the Appendix. 0=¢=-0.04.
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£=0 £=-0.002 £=-0005 E=-001

FIG. 3. Counter-rotating bottom. Streamlines. Here=R800, y=2.5,
0=¢=-0.01.

FIG. 5. Corotating bottom. Streamlines. Here=R880, y=1.5, 0<¢<1.
bottom eliminates both bubbles. In the caseyef2 (Fig. 2
the upper separation bubble disappears wheeaches the breakdown and the flow is unstable, a moderate counter-

value —0.02, and the lower one IS suppressed when rotation (é=—0.13 induces a vortex breakdown and stabi-
=—0.04. When the aspect ratio is larger, even Weake[izeS the flow
counter-rotation is sufficient to eliminate the separation vor- '
tex bubbles. Thus, in the case=2.5 the upper and the lower )
separation bubbles disappear &t —0.005 and—0.01, re- 2 Corotating bottom
spectively (Fig. 3. The patterns of meridional flows for a The effect of increasing corotation of the bottom is illus-
further increase of the counter-rotation are similar to thoserated in Figs. 5-7 fory=1.5 and different values of Re.
illustrated in Fig. 1 fory=1.5. Figure 5(Re=800 shows that with a rotating top and sta-
When the Reynolds number is high®e=3800,y=1.5; tionary bottom(¢=0) there is no vortex breakdown. Corota-
Fig. 4) the influence of the counter-rotation on steady flowstion of the bottom leads to the appearance of a separation
is different. In the case of rotating top and stationary bottomvortex bubble in the flow whei reaches the valué=0.2.
(¢€=0) the steady state does not contain the separation vortekhis is also in qualitative agreement with the experimental
bubble and it becomes unstable at much lower Reynoldgesults of Roesnet? The size of the separation bubble in-
number Rg~2700. The counter-rotation of the bottom leadscreases with the increase of the corotatién0.2—0.5. The
to the appearance of a separation vortex bubbfe-at0.1in  increasing corotation of the bottom induces a counterclock-
an unstable steady flogFig. 4, £&=—0.13. The size of the wise recirculation region that appears in the lower corner of
separation bubble increases with the increase of the countehe cylinder(é=0.1) and grows with the increase gf(from
rotation up toé~—0.3(é=—-0.13,-0.17, and—-0.3). Witha 0.1 to 0.5. When & becomes close to 1, the meridional flow
further decrease of the size of the separation bubble in- tends to become antisymmetric with respect to the midplane
creasegé=—0.3 and—0.4), and it merges with the counter- of the cylinder. This leads to the appearance of the second
clockwise recirculation region. Referring to the stability dia- separation vortex bubblg=0.8, 0.9. The meridional flow
gram in Fig. 1Qa) below, one can see that at R8800 the becomes antisymmetric g=1 and contains two antisym-
steady states-0.134<¢<-0.127 and—0.350<¢£<—-0.225 metric separation bubbles that are attached to the axis.
are stable, while other states are unstable. Thus in Fig. 4 the Strong corotation may promote the vortex breakdown,
steady states af=—0.13 and—0.3 are stable, the other even at significantly lower Reynolds numbers. This is illus-
states are unstable. This shows that at this Reynolds numberated in Fig. 6 fory=1.5 and Re=400. The separation vor-
at which without counter-rotatiofi¢=0) there is no vortex tex bubble appears whefireaches the value af=0.9. At
&=1 the meridional flow contains the antisymmetric vortex
breakdown similar to that shown in Fig. 5 fée=1.
The influence of corotation on a flow that has a vortex
breakdown at¢=0 is slightly different(Fig. 7). With the
increase of the separation vortex bubble grows and moves

|

E=-04

£=09 g=1

FIG. 4. Counter-rotating bottom. Streamlines. Here=R800, y=1.5,
0=¢=-0.6. FIG. 6. Corotating bottom. Streamlines. Here=R®O0, y=1.5, 0<¢<1.
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FIG. 9. Streamlines of meridional flow for R&000, y=2.5, 0<¢<1.
FIG. 7. Corotating bottom. Streamlines. Here=R&00, y=1.5, 0<é<1.
merge(£=0.03 and form a relatively large single separation

downward, such that @=0.4 the boundary of the recircula- vortex bubble(§=0._1). The_ recirculation region initiated in
tion zone is attached to the bottom. Two separation bubblef'® corner grows with the increase of the corotatignary-

in the antisymmetric flow ag=1 are detached from the axis N9 from 0.1 to 0.4 until it merges with the vortex break-
and form two antisymmetric vortex rings. The continuousdown bubble, resulting in the existence of two recirculation

change of shape of the recirculation zone in Fig. 7 shows thd{€!ds (=0.5. With a further increase of the flow is finally

the “usual” vortex breakdown a¢=0 and the vortex break- dpformed, at=1, into four fields, two of which are symmet-

down that is detached from the axisét1 are the results of 'iC detached bubbles. . . _

the same vortex breakdown phenomenon and continuously 1he flows calculated fog=1 (Figs. 5-9 are in qualita-

transform one into another with the continuous change of Uve ggreement with the experimental results of Spohn
The appearance and evolution of the antisymmetric vor€t al: gnd with the numerical results of Valentine and

tex breakdown for different Re in the case when the top anc]ah”kel'

the bottom rotate with the same angular velocifigs1) is _ _ N

shown in Fig. 8 fory=1.5. Two antisymmetric separation B- Onset of oscillatory instability

vortex bubbles appear when the Reynolds number reaches a The oscillatory instability was investigated far=1.5

certain valugRe=400. With the increase of Re the size of and —1<¢<1. It was found that the instability sets in as a

the separation bubbles grouRe=600). With a further in-  result of a Hopf bifurcatioff for all values ofé. The direc-

crease of Re, the upper and the lower stagnation points ofion of bifurcatiorf®> was checked foé=—1, 0, and 1 and
the axis of the cylinder move toward the middle stagnationyas found to be supercritical.

point atr=0, z=vy/2 (Re=600, 700, and 800 When the
Reynolds number becomes larger, the three stagnation poin{s
coincide and the recirculation zones detach from the axis The influence of counter-rotation on the transition from
(Re=1000. steady to oscillatory flow was studied for=1.5. The depen-
Figure 9 shows the effect of corotation on the steadydence of the critical Reynolds number Ren the rotation
flow that contains two separation vortex bubbleséat0.  ratio £ is shown in Fig. 10a). Steady flows are stable below
With a weak increase of the corotation both separatiorthe solid curve and unstable above it. The corresponding

bubbles grow(£=0.02 until the two recirculation zones dependence of the circular frequency of oscillatiagson &
is shown in Fig. 1(b). The curves Rg(¢) and w(§) consist

of four continuous branches corresponding to different domi-
nant perturbationgdifferent most unstable eigenmodes of
the linearized probleim These eigenmodes become domi-
nant at different values of the control parameters and
abruptly replace each other at the points where the neutral
curve Reg(é) has discontinuities in the slope. The almost
vertical branch of the neutral curve Ré) located in the
neighborhood ot~ —0.63 corresponds to the onset of insta-
bility with a change of¢ rather than with the change of Re.

Figure 1@a) shows that the critical Reynolds number
may be noticeably increased by a moderate counter-rotation.
Thus, the critical Reynolds number increases from
Re,=2724 at (=0 to Re,=3957 at £&=—0.27. Stronger
counter-rotation leads to nonmonotonic decrease of the criti-
FIG. 8. Same corotation of the top and the bottom. Hgrel, y=1.5,  Cal Reynolds number, which reaches the valug-RE646 at
300<Re<1000. &=-1.

Counter-rotating bottom

2618 Phys. Fluids, Vol. 8, No. 10, October 1996 Gelfgat, Bar-Yoseph, and Solan

Downloaded-03-Feb-2002-t0-132.68.1.29.-Redistribution—subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



4500.0

Y\ m

3500.0

Re
cr
>r O
3
]

2500.0

1500.0
106 -09 08 -07 -06 -05 -04 -03 -02 -01 0.0

0.35

m /2/—!\,\‘
\ 111§

‘II

G)Cr

0.25

0.20
1.0 -09 -08 -07 -6 -05 -04 -03 -02 -01 0.0

(b) :

3300

2800

cr

©
c
11
2300
_______,_’———\(
1800
0.7 -0.68 -0.66 -0.64 -0.62 0.6
(© &
0.35
111
0.33
5
3° 0.31
fae "
%
0.29
0.27
0.7 -0.68 -0.66 -0.64 -0.62 06
(d) 3

FIG. 10. Stability diagrams corresponding to the onset of oscillatory instability in a cylinder with rotating top and counter-rotating bottoys-er&olid
lines—results of the linear stability analy<iGalerkin methogl Steady and unsteady states obtained by the solution of the full unsteady problem using the
finite volume method are shown kY, A, for a 75x75 grid; O, @, for a 150<150 grid; [, W, for a 200<200 grid.(a) Re, vs &; (b) o, vs & (¢) Re, vs &,

blowup of () for —0.6<¢<—0.7; (d) wg Vs & blowup of (b) for —0.6<¢<-0.7.

Figure 10 also shows that the dependencg(Beand

ponent of the flow The axis of the cylinder is shown by a

wy(¢€) may be nonmonotonic and very sensitive to a smallvertical line in the middle of each plot.

change of a control parameter, even along a continuous

Figure 11a) corresponds to the branch of the neutral

branch of the neutral curve. This behavior of the criticalcurve that starts af=—1 and ends af~—0.63 (branch ).
parameters was verified by straightforward solution of theThe perturbations ofy and. 7, have a global maximum on

full unsteady problem using the finite volume method with
75X75, 150<150, and 208200 stretched gridg-igs. 1da)
and 1@b)]. It is seen that the nonmonotonic behavior of the
curves Rg(¢) andw.(¢) can be reproduced also by the finite
volume method. Results of both numerical methods are close
whené&>—0.7. In the interval-1<¢<—0.7 the frequency of
oscillations calculated by the finite volume method con-
verges slowly, but with the refinement of the mesh becomes
closer to the result of the spectral method.

The four branches of the curves Ré) and w(¢) (la-
beled I1-1V in Fig. 10 correspond to four different modes of
the perturbation. Examples of steady flows at the critical val-
ues of parameters and corresponding perturbations are shown
in Fig. 11. Each plot in Fig. 11 is arranged in the following
way: solid curves show isolines of the streamfunctipand
the azimuthal moment/7 ,; dashed lines show isolines of
the modulus of the most unstable linear modes of perturba-
tions of the functions) and. 7. The left part of each plot
corresponds to the azimuthal moment,, and its perturba-
tion (perturbation of the azimuthal component of the flow

FIG. 11. Isolines of the rotational moment,, (the left part of each plgt
and the streamfunctiogy (the right part of each plptat the critical point
(solid lineg and isolines of the corresponding perturbatigdashed lines

The right part of each plot corresponds to the streamfunctiogounter-rotationy=1.5. () £&=—1, Re,=1646: (b) é=—0.64, Re,=2905;
¢ and its perturbatiorfperturbation of the meridional com- (c) é&=-0.49, Rg,=3158;(d) £&=—0.05, Rg,=2585.
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I curve[é=—0.7, branch | in Fig. 1@&)] shows only a weak
7 pulsation of both recirculation regions, without an instanta-
neous separation bubble.

2. Corotating bottom

The influence of corotation on the onset of the oscilla-
tory instability was studied for the same aspect ratiol.5.
The corresponding relations R&) and w.(£) are shown in
Figs. 13a) and 13b). In some aspects the influence of coro-
tation is similar to that of counter-rotation.

(i) There is a part of the neutral curve, located at
£~0.55, which corresponds to the onset of instability with
increasing of¢ rather than with increasing of Rgranches
VI and VIII). This part of the neutral curve and the corre-
sponding part of the relatiom(¢) are expanded in Figs.
13(c) and 13d).

_ . (i) A certain corotation may significantly increase the
FIG. 12. Instantaneous streamlines of the meridional flow plotted for equal_ ...
time intervals 0.1 T covering the complete peridd=19.21. y=1.5, cr!t!cal Reynolds number. On the whole, all the values of the
&=—0.6, and Re=3200. Calculation with the finite volume method using a Critical Reynolds number fo§>0 are larger than the value of
75X75 stretched grid. Re, at ¢£&=0. The neutral curve Rgé has two sharp
maxima. The first maximum corresponds to the rapid in-
crease of Rg from Re,=2724 até(=0 to Re,=3847 at
the isolines corresponding =0 and. 7 ,=0. In the case ¢=0.09. The second maximum Re4575 is located at
¢=-—1, shown in Fig. 1(a), the isolines.7Z,=0 and =0  ¢=0.56. This is the largest value of R& the whole interval
coincide with the midplane of the cylinder; for other values —1<¢<1.
of ¢ they do not. Similar patterns of the perturbation are ~ The nonmonotonous behavior of the curves, &gand
obtained at the next, almost vertical, branch of the neutraly(¢) was reproduced by the solution of the full unsteady
curve (branch 1). The example is shown in Fig. @d. The  problem using the finite volume method. The number of
perturbations of both functions have a global maximum omodes of the stretched grid varied from>7B5 to 200<200
the isolines. 7 ,=0 and y=0. Generally, one can say that [Figs. 13a) and 13b)]. Details of these calculations are de-
these branches of the neutral curve correspond to an instabaeribed in the Appendix.
ity that sets in at the boundary separating two distinct re- There exist several branches of the curves(Reand
gions: the region of positive rotation of the fluid with its w(¢) corresponding to different most unstable linear modes
clockwise recirculation region and the region of negative ro-of the steady flow(Fig. 13. Examples of the patterns of the
tation of the fluid with its counterclockwise recirculation re- most dominant perturbations and flows at the critical values
gion. of parameters are shown in Fig. 14. The flows and the per-

Examples of the perturbations characteristic for the nexturbations are shown in Fig. 14 in the same way as for the
two branches of the neutral curyEig. 10a)], which corre-  counter-rotation in Fig. 11.
spond to the intervals-0.64<¢<-0.13 (branch Il and The patterns of the perturbations corresponding to the
—0.13<¢<0 (branch I\) are shown in Figs. 1t) and 11d). two branches located in the intervals:8<0.05 (branch IV}

In the case{=—0.49 [Fig. 11(c)] the perturbation of 7Z,  and 0.05<£<0.09 (branch \j are similar to those obtained
still has a global maximum on the isolingZ ,=0, but the for =0 and described by Gelfgat al!! Figures 14a) and
largest value of the perturbation @f is located inside the 14(b) correspond to the next branch of the neutral curve
largest recirculation region. The pattern of the perturbatiolbranch V), which starts até~0.1 and continues until
of .72, becomes completely different on the next branch ofé~0.56, with a short break in the interval 63<0.31
the neutral curvéFig. 11(d)]. The onset of instability along (branch VI)) [Fig. 13a)]. The maximum of the perturbations
these two branches is characterized by a rapid growth of thef ¢ is located in the lower part of the main clockwise recir-
perturbation of 7, along the sidewall and the bottom of the culation region while the maxima of the perturbation &f,
cylinder. Similar patterns of perturbations were reported byare located in the area where rotation is relatively weak.
Gelfgatet al! in the case o&=0 and varyingy. Comparison of Figs. 14) and 14b) shows that with the

Oscillations of the meridional flow in a slightly super- growth of ¢ the maxima of the perturbation ofZ, are
critical state are illustrated in Fig. 12 fé=—0.6. The pul-  shifted upward, together with the region where the axial dis-
sations of the meridional flow in this caflaranch Il in Fig.  tributions of. 7, for a fixed radius reach their minimum.
10(a)] lead to the appearance of a weak separation vortex Figures 14c)—14(e) illustrate flows and perturbations
bubble that exists during approximately one-half of a periodthat are characteristic for strong corotation, which corre-
During the other half of a period the separation bubblesponds to the branch of the neutral curve located in the in-
merges with the region of counterclockwise meridional cir-terval 0.585<¢<1 [branch X in Fig. 183)]. At the beginning
culation. A similar plot(not shown hergof instantaneous of this brancHFig. 14(c), £=0.6] the perturbations of and
streamlines for a case on a different branch of the neutralZ, are strongest in the region where rotation is wthle
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FIG. 13. Stability diagrams corresponding to the onset of oscillatory instability in a cylinder with a rotating top and a corotating bottoys IHer&olid
lines—results of the linear stability analygiGalerkin methodl Steady and unsteady states obtained by the solution of the full unsteady problem using the
finite volume method are shown kY, A, for a 75x75 grid; ¥, ¥, for a 100<100 grid; O, @, for a 150<150 grid; ], W, for a 200<200 grid.(a) Re, vs

& (b) o vs & (©) Re, vs & blowup of (a) for 0.5<£<0.6; (d) w, vs & blowup of (b) for 0.5<£<0.6.

left part of Fig. 14c)] and where the isoling=0, separating seen that the patterns of the flow and the perturbations in
clockwise and counterclockwise meridional circulations, isFigs. 14d) and 14e) are similar. However, it is clear that the
located. This is analogou®ut not identicgl to the case of spatial resolution of the numerical method is much better in
strong counter-rotation shown in Figs.(&land 11b). With  the symmetric case, where only one-half of the flow region is
the increase of up to é=1, the perturbation of is charac- taken into consideration.
terized by two maxima located in the clockwise and the  The abrupt changes of the perturbations when one domi-
counterclockwise recirculation regions. The pattern of thenant mode is replaced by another one are illustrated in Figs.
perturbation of 7, is very different from the previous cases 15 and 16. Figure 15 corresponds to the changes of the domi-
and has a global maximum in the same place where the sepaant mode in the neighborhood 6£0.3, which is seen in
ration vortex bubbles are located. The whole structure of th&ig. 13b) as the sudden jump of the critical frequency from
flow and the perturbation become reflection symmetric withw,=0.239 to w,=0.362 at £&=0.3 and then back to
respect to the plane= y/2 até=1. This leads to the conclu- .,=0.243 at{=0.32. Figure 15 shows that patterns of the
sion that the oscillatory instability al=1 sets in without a perturbations at=0.29 and¢é=0.32 are similar, but are no-
break of the reflection symmetry, which is in agreement withticeably different até=0.3. The instability in most of the
the result of Lope? obtained for é&=1 and y=3 interval 0.5£<0.56 is caused by the same mode of the per-
(YLope=¥2=1.5). The solution of the unsteady problem by turbation[also see Figs. 14) and 14b)], except the short
the finite volume methodsee Fig. 18 also shows that the interval 0.3<£<0.32 where the characteristics of the insta-
reflection symmetry is preserved in a slightly supercriticalbility (amplitude and frequency of oscillatiorare different.
state. Note that até=0.54 there exist three distinct critical
The symmetric structure of the flow and the perturbationpoints with different critical frequencies,,, as indicated by
at ¢=1 allowed us to verify the result by taking into consid- A, B, and C in Figs. 1&) and 13d). The isolines of pertur-
eration one-half of the cylinder and imposing the boundarybations corresponding to these three points are shown in Fig.
conditions of symmetry at the lower horizontal boundary.16. With the increase of Riesee Fig. 1&)] the steady flow
Close values of Reandw,, were obtained for both nonsym- loses its stability at Re3463, then becomes stable at Re
metric and symmetric modelgor details see the Appendix =4326 and finally loses the stability at R4632. Compari-
and Table ). The patterns of the flow and perturbations ob-son of the perturbations plotted in Fig. 16 shows that two
tained for the symmetric model are shown in Fig(€4ltis  critical points illustrated in Figs. 168) and 16b) belong to
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FIG. 15. Changes in the patterns of the perturbations/f (the left part of

each plot and of ¢ (the right part of each plptin the neighborhood of

: £&=0.3. (8 ¢=0.29, Re=3278; (h) ¢=0.3, Re=3265; (c) ¢=0.32,
© Re,=3228.

FIG. 14. The same as Fig. 11. Corotatign; 1.5.(a) £=0.2, Re,=3249;(b)
£=0.4, Rg,=2905; (c) £=0.6, Re,=4493; (d) £&=1, Re,=3843; () é=1,
Re,=3845, symmetric case. for all other points, where the neutral curve R® has dis-
continuities in the slope, and where the relatiog(é) has
abrupt jumps.

the same branch of the neutral cufieanch | in Figs. 1&) Since the critical values on the branch of the neutral

and 13d)], while the third point belongs to another branch curve 0.5&&<1 showed the slowest convergensee the
[branch Il in Figs. 1&) and 13d)]. Similar examples of the Appendix and Table)| the results were verified by the solu-
abrupt changes in the patterns of perturbations can be madien of the full unsteady problem using the finite volume

TABLE |. Convergence study for the critical parameters. Herel 5.

30x30 32x32 34x34 36x36 38%38 40x40
basis basis basis basis basis basis

y=1.5 functions functions functions functions functions functions
&=-1 Re, 1700 1669 1656 1649 1646 1644

Wy 0.2887 0.2859 0.2848 0.2842 0.2839 0.2837
&=-0.6 Re, 3096 3107 3105 3105 3105 3105

Wy 0.3300 0.3295 0.3293 0.3291 0.3290 0.328 95
£&=-0.27 Re, 3957 3957 3957 3957 3957 3957

W 0.323 86 0.32385 0.323 85 0.323 86 0.323 86 0.323 86
&=0 Re, 2724 2724 2724 2724 2724 2724

Wy 0.236 748 0.236 749 0.236 752 0.236 754 0.236 753 0.236 754 5
£=0.29 Re, 3279 3278 3278 3278 3278 3278

W 0.239 09 0.239 09 0.239 09 0.239 10 0.239 10 0.239 10
£=0.6 Re, 4532 4544 4557 4549 4522 4493

W 0.4822 0.4805 0.4798 0.3878 0.3824 0.3806
£=0.8 Re, 4247 4176 4265 4398 4452 4191

W 0.5645 0.3776 0.3845 0.5550 0.5511 0.4148
&=1 Re, 3218 3369 3528 3731 3837 3845
non-symmetric Wy 0.6018 0.5936 0.5877 0.5814 0.4527 0.4603
&=1 Re, 3846 3843 3843 3842 3843 3845
symmetric Wy 0.4845 0.4842 0.4840 0.4840 0.4840 0.4840
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FIG. 18. Instantaneous streamlines of the meridional flow plotted for equal
time intervals 0.T covering the complete perioi=13.01. y=1.5, (=1,

and Re=3845. Calculation with the finite volume method using a X360
stretched grid.

FIG. 16. Changes in the patterns of the perturbations/qf (the left part of
each plot and of ¢ (the right part of each ploptat £=0.54 corresponding to
three values of Rg. (8) Re,,=3463;(b) Re,,=4326;(c) Re,=4632.

. R seen. It should be noticed that the simultaneous coexistence
rr;}ethot(r:i] V}":E a 1b5t&'153 stretﬁhed g_rld. Figs. 3 ?Ed t#{fb) . t.of the detached and attached vortex breakdowns was not ob-
S IOWI a fetr? ;me Irgsu S abre n agzﬁemgtp lc; Of CMlserved in steady states. This leads to the conclusion that such
cal values ol the Reynolds numbuer and Ine criicalrequency, .o istence is a feature of the oscillatory states only.

Examples of the calculated slightly supercritical flows are
shown in Figs. 17 and 18.

In the caseé=0.8 (Fig. 17) the oscillations of the two
main meridional recirculation regions are followed by a A weak counter-rotation of the bottom may suppress the
rapid change of the vortical structure near the axis of thevortex breakdown that exists in a cylinder with a rotating top
cylinder. During one period of oscillations one can see theand a stationary bottom. The larger the aspect ratio of the
appearance and disappearance of different separation vorteylinder the weaker the counter-rotation necessary to sup-
bubbles. Some of these are attached to the axis and others gaess the vortex breakdown. On the other hand, a certain
detached. The structure becomes more regular in the synsounter-rotation may induce the vortex breakdown and sta-
metric casef=1 (Fig. 18, symmetry was not imposedpri-  bilize steady flows at relatively large values of the Reynolds
ori in the computations In this case two pulsating pairs of number for which, in the case of the stationary bottom, no
attached and detached separation vortex bubbles are cleamgrtex breakdown exists in unstable steady states.

Weak corotation of the bottom of the cylinder leads to
the appearance of vortex breakdown at lower values of the
Reynolds number than in the case of a stationary bottom.
Stronger corotation may lead to the detachment of the sepa-
ration vortex bubble from the axis of the cylinder and for-
mation of two vortex rings. It was shown that the meridional
flow with a single separation bubble, characteristic for the
case of a stationary bottom, and the meridional flow with
antisymmetric separation vortex rings, characteristic for
corotation of the top and the bottom with the same angular
velocity, continuously transform one into the other with a
continuous change of the rotation ratio.

The stability of steady flows, onset of the oscillatory
instability, and slightly supercritical oscillatory states were
studied for a fixed aspect ratio of the cylindgr1.5. It was
found that the oscillatory instability sets in due to a Hopf
bifurcation in all the possible cases of co- and counter-
rotation. It was shown that the oscillatory instability may set
in, either with an increase of the Reynolds number or with a

FIG. 17. Instantaneous streamlines of the meridional flow plotted for equal ; ; : e o
ime intervals 0.T covering the complete perioti— 15.25.y— 1.5, £~0.8, Ehange of the rotation ratio. The corresponding stability dia

and Re=4200. Calculation with the finite volume method using ax60 ~ 9rams in the Plane of the control parametéRe$) were
stretched grid. obtained vyielding also the dependence of the critical fre-

IV. CONCLUSIONS
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guencyw,, on the rotation ratio. It was shown that the neutral 5000

curve Re(¢) and the curven.(§) consist of several continu- g

ous branches corresponding to several different dominant ~ *% 8

perturbations of the flow, which are defined by distinct 4000 -

eigenmodes of the linearized problem. Characteristic patterns "] VRVI 3

of the most dominant perturbations were reported and dis- @ | N Ji j&..ﬂg& “

cussed. It was found that both co- and counter-rotation of the 2000 / B

bottom may stabilize the steady flow and significantly in- 2500 X&

crease the critical Reynolds number. The strongest stabiliza- !

tion takes place when the rotation ratio reaches the values 7 »

£=0.56 andé=-0.27 for co- and counter-rotation, respec- 1500 |
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Investigation of the slightly supercritical states showed
good agreement between the results of the linear stability 0.7
analysis(using the spectral Galerkin methoahd the results

vir

of the numerical solution of the full unsteady problénsing 06 £ i
the finite volume method It was found that in the case of @,'*
strong corotation the vortex breakdowns attached to and de- _°° Fi

tached from the axis may exist simultaneously in slightly @

np ﬁ&/@/

supercritical oscillatory states. o4 e | | &
PARST AW 1 >?§ ® x
0.3 beeﬂ“’“ -~ ki Vil
ACKNOWLEDGMENTS L " w""”‘f
IR
This research was supported by the Center for Absorp- 024 P ”@:‘2‘ o ol
tion in Science, Ministry of Immigrant Absorption, State to ®w e

Israel (to A. Gelfga), by the Y. Winograd Chair of Fluid
Mechanics and Heat Transfer at the Technion, and by thE&IG. 19. Critical parameters obtained with a different number of basis func-

Fund for the Promotion of Research at the Technion. tions. (@) Re, vs & (b) w, vs & X, 30X30 Galerkin functionsQ, 34x34
Galerkin functions;], 36X36 Galerkin functions;<®, 38x38 Galerkin

functions; andA, 40x40 Galerkin functions.
APPENDIX: DEPENDENCE OF RESULTS ON THE
NUMERICAL DISCRETIZATION

The calculations of steady states do not cause any nwwith 30X30 and 3434 basis functions. The results for these
merical difficulties. The steady states shown in Figs. 1-3wo discretizations coincide in the interval0.8<¢<0.5. For
were calculated, both with the Galerkin spectral method and-1<£<-0.8 and 0.5:¢<0.6 the 4(<40 discretization
with the finite volume method. The number of basis func-gives only two correct digits of the critical parameters.
tions in the Galerkin method varied from 224 to 30x30. The critical values in the interval 0s6(<1 are most
The number of nodes in the stretched finite volume grid varsensitive to discretization. It was found that there are two
ied from 50<50 to 100x100. Comparison of results ob- distinct eigenvalues in this interval, which change their signs
tained with the finest discretizations showed that the calcuat very close values of the Reynolds number. Two distinct
lated values of the streamfunction and the azimuthal velocitgurves ofw,(£) for 0.6<£<1 are shown in Fig. 1®). Be-
differ by less than 1%. Correct patterns of the flow weresides this, the convergence of the critical Reynolds number is
obtained also with coarser discretizations. much slower than it was for smaller valuesé&fuch that for

The critical parameters Reand o, calculated with dif-  £=0.7 the use of 4840 basis functions is not enough to
ferent numbers of basis functions in the truncated Galerkirensure the convergence. However, with an increasing num-
series are shown in Fig. 19 for the whole intervel<é<1.  ber of basis functions the intervals between sequentially ob-
The largest number of the basis functions wax40 in the tained Re, decrease.

Galerkin series used for the approximations of the meridi- More exact conclusions about the onset of instability in
onal and the azimuthal components of the fl@ge Gelfgat the interval 0.6¢<1 were drawn from the solution of the

et al* for detail9. Thus, the largest total number of degreesfull unsteady problem using the finite volume method with a
of freedom for the Galerkin method was 3200. 150x 150 stretched grid. The slightly supercritical oscillatory

The convergence of the critical parameters for differentstate até=1 showed that the instability sets in without a
values of the rotation rati@ is shown in Table I. It was break of the reflection symmetry with respect to the plane
shown by Gelfgaet all! that the use of 2424 basis func- z=y/2. This allowed us to repeat the calculations with the
tions in the Galerkin series gives three correct digits of theGalerkin method for only one-half of the cylinder and to
critical Reynolds number and five correct digits of the criti- obtain the converged values of Rend w, at {£=1 (see
cal frequency for the cas&=0, y=1.5 (the values of Rg  Table |). Further calculations with the finite volume method
and w,, are reported in Table).l However, the convergence for é&=0.9, 0.8, 0.7, and 0.6 showed that the critical Reynolds
for large | is slower, especially foé=0.6. The most de- number is localized correctljsee Fig. 183)], and that the
tailed comparison reported in Fig. 19 is done for calculationgerturbation with lower, [see Fig. 1&) for 0.6<¢é<1] is
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