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1 Introduction

In this note, several computations are suggested to compare the capabilities of different con-
tinuation codes. In the first section, some physical background is given of the problem,
followed by the model formulation. In the last section, specific computations are described
and points of comparison are highlighted. The participants are free to choose discretization,
resolution, graphical output, machines etc. However, when presenting the results during the
Colloquium, it should be clear what is actually done.

2 Description of the Physics

The study of the physical problems in the area of cellular convection is motivated by results
from a conceptually simple experiment (Fig. 1). A container which may have rectangular or
circular cylindrical shape is filled with a relatively viscous liquid, such as silicone oil. Above
the upper surface of the liquid is an ambient gas, for example air and the temperature far the
gas-liquid interface is nearly constant. When the initially motionless liquid is heated from
below, the liquid remains motionless below a critical value of the vertical temperature gra-
dient. The heat transfer through the layer is only by heat conduction. When the temperature
gradient slightly exceeds the critical value, the liquid is set into motion and after a while the
flow organizes itself into cellular patterns. The motion of the liquid can also be detected by
measuring the horizontally averaged vertical heat flux. A measure for the increase of heat
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transport due to convection is the Nusselt numberNu which is unity in case of conduction
only. In Fig. 2,Nu is plotted as a function of a measure of the vertical temperature gradient.
The onset of convection in the liquid is shown by the increase ofNu above unity.

Figure 1:Sketch of the experimental set-up (from [1]); the liquid is situated on the (heated) silicon
block and separated from the (cooled) sapphire block by a small air gap.

3 Model

In this test problem, we will consider the computation of bifurcation points marking the
transition from a motionless to a convecting liquid as it is heated from below in a bounded
container. The equations governing the flow are the continuity equation

∇ · v = 0 (1a)

the momentum balances,

ρ0

[
∂v

∂t
+ v.∇v

]
= −∇p+ µ∇2v − ρge3 (1b)

and the thermal energy balance

ρ0Cp

[
∂T

∂t
+ v.∇T

]
= λT∇2T (1c)

In these equations,(x, y, z) are the Cartesian coordinates of a point in the liquid layer,t
denotes time,v = (u, v, w) is the velocity vector,p denotes pressure,e3 the unit vector in
z-direction andT is the temperature. Finally,ρ0, g, Cp, µ andλT are the reference den-
sity, the acceleration due to gravity, the specific heat, the dynamic viscosity and the thermal
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conductivity, respectively. The thermal diffusivityκ and kinematic viscosityν are given by
ν = µ

ρ0
andκ = λT

ρ0Cp
. All these quantities will be assumed constant. A linear equation of

stateρ = ρ0(1 − αT (T − T0)) is assumed. In the equations above, the Boussinesq approxi-
mation is applied which is adequate here since the density variations are small with respect
to ρ0. In this approximation, density variations are only considered in the body force term of
(1b) and apart from this, the liquid is considered incompressible.

Figure 2:Plot of the Nusselt number (see text) as a function of the vertical temperature gradient∆T
(from [2]); Nu = 1 if the heat transport is by conduction only andNu increases if there is convection
in the liquid;∆Tc is the critical temperature gradient.

Let the gas-liquid interface be located atz = d and nondeformable, then the boundary
conditions become:

∂u

∂z
=
∂v

∂z
= w = 0 ; − λT

∂T

∂z
= h(T − TA) (2a)

whereh is an interfacial heat transfer coefficient andTA is the temperature of the gas far
from the interface. The lower boundary is a very good conducting boundary and therefore
the temperature is constant. Moreover, no-slip conditions apply and hence,

z = 0 : T = TB ; v = 0 (2b)

On the lateral walls (atx = 0, Lx andy = 0, Ly) no-flux and no-slip conditions are
prescribed, i.e.

x = 0, Lx : u = v = w =
∂T

∂x
= 0 (3a)

y = 0, Ly : u = v = w =
∂T

∂y
= 0 (3a)
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4 Motionless solution

For v̄ = 0, there is a steady state given by

T̄ (z) = TB − βz ; β =
h(TB − TA)

λT + hd
(4a)

where the quantityβ is the vertical temperature gradient over the layer. The pressure is
readily determined from (1b) and if one choosesT0 = TA one obtains

p̄(z) = p0 + ρ0g([αT (TB − TA)− 1]z − αTβ
z2

2
) (4b)

This motionless solution is characterized by only conductive heat transfer and is easily real-
ized in laboratory experiments.

5 Non-dimensional equations

The equations are non-dimensionalized using scalesκ
d

for velocity, d
2

κ
for time andd for

length. Moreover a dimensionless temperatureT̂ is introduced throughT = (TB − TA)T̂ +
TA. This leads to the non-dimensional problem

Pr−1

[
∂v

∂t
+ v.∇v

]
= −∇p+∇2v +RaT̂e3 (5a)

∂T̂

∂t
+ v.∇T̂ = ∇2T̂ (5b)

The dimensionless boundary conditions become

z = 1 :
∂u

∂z
=
∂v

∂z
= w = 0;

∂T̂

∂z
= −BiT̂ (6a)

z = 0 : T̂ = 1 ; v = 0 (6b)

x = 0, Ax : u = v = w =
∂T̂

∂x
= 0 (6c)

y = 0, Ay : u = v = w =
∂T̂

∂y
= 0 (6d)

In the equations (5-6), the dimensionless parametersPr (Prandtl),Ra (Rayleigh),Ax, Ay
andBi (Biot) appear which are defined as

Ra =
αTg(TB − TA)d3

νκ
; Pr =

ν

κ
; Bi =

hd

λT
; Ax = Lx/d; Ay = Ly/d (7)
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and hence there are five parameters in this system of equations. This number reduces to
four in the two-dimensional case.

6 Computations

The dimensionless motionless solution is given by

T̄ (z) = 1− Bi

Bi+ 1
z (8)

6.1 Two-dimensional case

The solution (8) is a solution for all values ofRa, but it becomes unstable ifRa increases
above a certain critical value, sayRac.

Problem 1: ComputeRac as a function ofAx ε [1, 10] for fixedBi = 1.

Problem 2: ComputeRac as a function ofBi ε [0, 10] for fixedAx = 10.

Problem 3: Compute the pattern of the critical mode for the caseAx = 10, Bi = 1.

6.2 Three-dimensional case

The solution (8) is also a solution for all values ofRa, and it becomes again unstable ifRa
increases above a certain critical value, sayRac.

Problem 4: ComputeRac as a function ofAx = Ay ε [1, 8] for fixedBi = 1.

Problem 5: Compute the patterns of the critical modes for the caseAy = 4, Bi = 1 for
several values ofAx ε [1, 8].

6.3 Presentation

In presenting the results, the following guidelines may be helpful.

1. Sketch the discretization and resolution used.

2. Describe the type of continuation method and the path followed through parameter space.
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3. Describe the basic (linear systems and eigenvalue) solvers.

4. Provide the CPU time per steady solution/eigenvalue computation and mention the
machine on which the calculations have been done.

5. Describe typical problems encountered.

I have not yet done all the computations myself !
Happy Computations
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