
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-19, NO. 8, AUGUST 1972 967 

Computation of Bipolar Transistor  Base  Parameters for 

General  Distribution of Impurities in Base 

AVRAHAM GOVER, JAN GRINBERG, AND ADY SEIDMAN 

Abstract-A procedure is suggested by  which  dc  and  ac base 
gain  parameters  can  be  computed  for  general  impurity  distributions 
in the base. The procedure consists of solving  the current  equation as 
series in the recombination  time (117). 

The series expansion  coefficients  are  computed  for a Gaussian 
distribution  up  to  first  order,  along  with the  resulting base alpha 
transport  factor  and the transit time. Mobility  variation  with im- 
purity  concentration is also taken  into  account. 

Explicit expressions for  cutoff frequencies and excess phase shift 
(WT, we, wg, m) are  developed  using  the  coefficients of the series ex- 
pansion  up  to the second  order.  Computation of these parameters  for 
the case of an  exponential distribution,  with  and  without  assumption 
of diffusion  coefficient  variation, results in  new  expressions and  val- 

DEFINITION OF SYMBOLS 
Acceptors  concentration. 
Surface  concentration of acceptor  impurities 
profile. 
Acceptor  impurities  concentration  at  emit- 
ter--base junction. 
Emitter-base  junction  depth. 
Base-collector junction  depth. 
Base  width. 
Excess  electrons  concentration. 
Equivalent  to n’(x1). 
Current  density of injected  electrons. 
Base transport  factor. 
Excess  phase  shift. 
Cutoff frequency  for a. 
Cutoff frequency  for p. 
Gain-bandwidth  product. 

I.  INTRODUCTION 

s IXCE  the  introduction of drift  transistors  into 
widespread  production,  many  authors [2],  [3] ,  
[7] ,  [8 ]  have  tried  to fit a  theory  to  the  nonhomo- 

geneous  base  distribution.  The  nonhomogeneous  base 
problem  is  more  complicated  than  the  homogeneous  one, 
not  only in the  additional field term,  but  also in having 
the diffusion  coefficient varying  across  the base. 

One possible approach  to  the  solution of the  nonhomo- 
geneous  base  problem [2],  [8]  consists of keeping  the 
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Fig. 1. Illustration of one-dimensional impurity distribution in 
transistor.  (For more accurate analysis  one may choose to define 
x1 and x2 a t  the edges of the emitter-base and base-collector 
depletion regions, respectively. The following derivations apply 
equally  for this choice.) 
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convenient  gain  parameters of basic  theory [l 1, [4] such 
as  a ~ ,  m, w,, cog, UT (not all independent of each  other!). 
A recently  published  paper  [9]  best  presents  the  other 
approach,  consisting of an  exact  computer  calculation of 
a(w)  for  specified impurity  distributions (in [SI the 
Gaussian  and  error  functions were taken  as  examples, 
with  the  origin at the emitter-base  junction).  This  ap- 
proach,  although  accurate,  has  the  disadvantage of giv- 
ing  an  exact  solution  only  for  each  individual  case, i.e., 
an  entire  calculation  must  be  done  not  only for  each 
separate  impurity  distribution,  but also for  each  indi- 
vidual  distribution  parameter. 

The  approach of this  paper is basically the  first  one. 
We  develop  a  mathematical  procedure  to  solve  the ex- 
cess minority  carrier  equation  for  a  general  impurity 
distribution  and  any  assumption of mobility  variation, 
yielding  explicit  expressions  for the  above-mentioned 
gain parameters (aT, m, w,, ws, w ~ )  in  the  same general 
conditions  (considering  base  transport  contribution 
only). 

The  examples  that  are  treated using  this  procedure 
were  chosen  with  special  reference to  the  commonly 
used  double-diffusion  production process  for  silicon 
transistors.  Therefore,  the  base  impurity  distribution is 
assumed  to be either  exponential  or  Gaussian,  with  the 
origin  lying at  the  transistor  surface  (Fig. l), and  the 
diffusion  coefficient is assumed  to  be  either  constant or 
power-law dependent  on  the  impurity  distribution [ 5 ] .  
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All derivations  and  calculations  are  done  for  n-p-n 
transistors,  but  the  same  results  apply also  for  p-n-p 
transistors  with  an  appropriate  change of symbols. 

11. BASE DC  PARAMETERS  CALCULATION 
We  intend  to  calculate  the  current  and excess minor- 

ity  carriers  in  the  base  in  order to derive  base electrical. 
parameters. 

We  assume  that  the excess minority  carriers n' and 
the  minority  carriers  current  density J ,  are  governed  by 
the  equations 

but, since the  two  terms of J,, without  injection, cance:l 
each  other,  and  assuming low-level injection, so that E ,  
the  built-in field resulting  from  the  gradient of the speci- 
fied base  impurity  distribution [2]  

d# KT 1 d iV~  
E =  --E -_-I_ 

dx q ~ V A  dx 
(3:) 

is also true  for excess minority  carriers n'. 

of short-circuited  collector  junction  are 
The  boundary  conditions  for (1) and ( 2 )  for condition- 

%'(xl) = nl' = np(xl)  (eqvikT - 1) (4:l 
n'(r2) = 0 ( 5  I 

where x1 and x2 are emitter-base and base-collectu: 
junctions,  respectively.  These  boundary  conditions  also 
hold approximately  for  normal  biasing in the  activ? 
region. 

Alternatively,  instead of (4) we can  require  the  bound- 
ary  condition 

J , ( x ~ )  = Jn( ' ) -  (6) 

Equations (1)-(3) together  with  boundary  conditions 
(4) and ( 5 ) ,  or  (6)  and (S), form  a well-defined mathem2- 
tical  problem. The  simplest  formal  method of solution 
is to  substitute one into  the  other  and solve the resulting; 
second-order  differential  equation  with  boundary  condi- 
tions.  This  has  actually  been  done for a homogene0L.s 
base [ l]  and for an  exponential  impurity  distribution i n  
the base [Z], where  immediately  integrable  differentid 
equations  were  obtained.  Unfortunately,  for  other pra1:- 
tical  impurity  distributions,  the  resulting  differenti 11 
equation is not  analytically  integrable.  Fortunately, ;LS 
(W/L,)2 is very  small,  a  first-order  solution  for t l ~  
parameters is generally  sufficient. Therefore,  althoui;;]~ 
a  solution  for  the  homogeneous base has  been  found [I 1, 
expansion  to  first  order  in  recombination ( 1 / ~ )  is cor?- 
monly used : 

( '7 )  

Following  expression (7 ) ,  we  will present  a  straight- 
forward  procedure  for  calculating  the  terms of series  ex- 
pansion of CYT in the case of a  general impurity  distribu- 
tion.  For  dc  conditions,  the  first-order  term will be suffi- 
cient.  We will show  later  that  for  ac  conditions,  expan- 
sion up  to second  order is sufficient: 

W2 w4 
CYT 3 1 - 241.- L n 2  + u ~ * - 4 - . * . -  Ln (9) 

Substituting (3) into (1) and using the  Einstein  rela- 
tion, 

We  transform (10) and (2) into  integral  form,  im- 
plicitly  including  the  boundary  conditions ( 5 )  and ( 6 )  

Now %'(x) and Jn(x)  can  be  calculated  as  series  in 
recombination: 

Jn(x)  = J,'O'(X) 3. Jn(l ' (x)  + f . (13) 

%'(x) = n'(O)(x) + %'(I)(%) + . . (14) 

These  series  are  obtained  by  successive  substitution 
of (11) and (12), one into  the  other.  For zero  order  (no 
recombination  approximation), Jn(x)  = Jn(0). Substi- 
tuting  this in ( l l ) ,  we obtain  the  zero-order  term of 
n'(x) .  This  term, when substituted in (12 ) ,  results in the 
first-order  term of Jn(x )  and so forth: 

J,(O)(x) = Jn(0) ( 1 3  

In  particular, 

base. This assumption is common1 used, and it allows simple expres- 
1 Further, we assume that  the lifetime does not change al'ong the 

sions. According to Schockley andYRead [lo], T E T , + T ~ ( ~ ~ I / N A ) .  For 
NA>>vz~ (which is generally valid in the base) (n~/iV~)<<l and so 
= T~ = (1 /K,N,), where Ne, the recombination  centers  concentration, 

less, one can assume any kind of theoretical or empirical dependence 
and Kg,  their capture cross section, do  not  vary in the base. Neverthe- 

of lifetime on impurity concentration and still apply  the following 

following derivations. 
rocedure, if one keeps the lifetime inside the integral sign in all the 
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where (18) together  with (4) yield the  electron  leakage 
current  and  enable (when the hold leakage  current is 
also  known)  computation of emitter efficiency [2 ] ,  and 
(19)  is the  total  recombination  current  in  the  base  up  to 
first  order in recombination: 

J,, 'v ],(I). (20) 

Using  (6), aT to  a first-order  approximation  is  readily 
obtained : 

and so also the base  transit  time tt, 

Higher  order  approximations  for CXT can  be  obtained 
by  including  higher  order  terms of (13). 

I I I .  CALCULATIONS FOR GAUSSIAN 
IMPURITY DISTRIBUTION 

In  most  common double-diffused  transistor  produc- 
tion processes, the  assumption of a Gaussian  distribu- 
tion profile for  acceptor  impurity diffusion  gives a  very 
good approximation,  especially  in  the  base  region. 
Therefore, we choose to  apply  the  procedure  described 
in Section I1 to  the  Gaussian-distribution  case: 

N A  = N S e - Z 2  (23) 

where 

and  this  distribution is assumed  to  exist  between  the 
normalized emitter  and collector  junction  depths: 

2 1  = xr/2X zz = x2/2x. (25) 

We  first  assume 

D, = const (26) 

and  by  substituting (23)  in (16), (18), and (19),  we ob- 
tain 

where 

4; F(Z, 2,) = - ez2(erf Z Z  - erf 2). 
2 

With u1 defined  in  (9),  and  using (21) and (22)  

W 2  
ar = 1 - Z L 1 ~  

L n 2  

where 

(33) 

The  functions F ( Z , Z 2 )  and ul(Z1,Zz) were  numerically 
evaluated  and  plotted, using the  Tel-Aviv  University 
CDC 6600 computer  for  various  values of the  parameter 
2 2 ,  and  are  presented in Figs. 2 and 3.  Observe  that for 
case Z1-+Zz or  case Z1, ZZ+O (which corresponds  to 
X-+ m ) ,  we approach  the  homogeneous-base  case  and 
u1-3. 

IV. MOBILITY VARIATION WITH COXCENTRATION 

For  convenience in solving the excess minority  car- 
riers  differential  equation,  the diffusion coefficiet D ,  
has  been  generally taken  to  be some constant  average 
value.  Using  the  series  expansion  procedure of Section 
11, this  imprecise  approximation  can  be  easily  avoided 
by  substituting D,'s dependence  in NA into (16)-(19). 

In  this  work we approximate  the  mobility  (and  hence 
the diffusivity)  dependence  on  impurity  concentration 
in Si, by  distinguishing  three  regions of behavior:  for 
low and high  doping, D, and p, are  nearly  constant, 
and in the  intermediate region they  are  assumed  to 
vary  according  to  a  power  law. 

The  low and  middle  regions,  which  are of practical 
interest,  are defined by 

D = Do, 11' < No (34) 

By  fitting  the log-log plot of mobility  versus  impurity 
concentration  [4] by straight lines, and using  Berry's 
value [SI  for the power  exponent,  the followmg typical 
values  for use  in  (34) and (35) are f'ound. 

Electrons Holes Unit 

DO 32 

K 
NO 5 .lo16 

0.27 
5 .lo's 

12 

0.27 

By  analogy  with  Section 111, using (34) and (35)  in 
(16), (18), and  (19),  calculations  for  the  Gaussian  dis- 
tribution (23) were  done  for  the region of varying  diffu- 
sivitv (35) : 

(31) where  our  choice  to  evaluate D, in x? is  permitted by the 
freedom  in  defining F":  
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Fig. 2. Plots of F(Z ,  ZZ)  (Gaussian profile; Dn=const). 
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Fig. 3.  Plots of ul(Z1,  ZZ) (Gaussian profile; D,=const). 

The dots describe u1 of exponential profile for comparison wlen 
22=3. 

From (21) ,  (22) ,  and (38) 

where 

Here  again F*(Z, ZJ and ul*(Z1,  Z,) were  numerically 
calculated  and  plotted  for  various  values of Zz and  are 
presented  in  Figs. 4 and 5. As K is the  same  for  both 
p-n-p  and  n-p-n  transistors,  these  graphs  apply  in  both 
cases. 

By  comparing  the  plots  for  varying  diffusivity  with 
the  plots  for  constant  diffusivity, i t  is verified that  the 
variation of diffusivity  has  an  observable effect on 
transistor  parameters.  Referring  to  Fig. 5 ,  we observe 
that  ul*>0.3 always  and  also  happens  to  be  greater 
than 0.5, indicating  the  limited  improvement  in  transit 
time  and  the aT defect of the  Gaussian-distributed-base 
drift  transistor  relative  to  the  homogeneous-base 
transistor  with  base  impurity  concentration  equal to 
tha t   a t   the  collector  junction of the  drift  transistor. 

V.  APPLICATION TO TRANSISTOR DESIGN 
A simple  transformation of the  parameter u1 intro- 

duces  a  much  more  convenient  parameter for  design 
purpose: 

111 = U 1 '  ( Z ,  - 2 1 ) 2  = F(2, Z,) dZ L: 
z2 

V I *  = U l * '  ( Z ,  - Z1)2 = s,, F*(Z, 2,) 

giving  in  turn 

( 2 U  * 
CQ = 1 - 111'- 

Ln2 

(2Q2 

Dn 
tt, = 111.- 

and in the case of varying  diffusivity 

The parameters V I  and VI* are  plotted in Figs. 6 and 7.  
For  given  collector  substrate  doping  and  base im- 



GOVEIR et d. : BIPOLAR  TRANSISTOR  BASE  PARAMETERS  AND  IMPURITIES 971 
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Fig. 6 .  Plots of vl(Z1, ZZ) (Gaussian profile; D,=const). 

Zl 

Fig. 7. Plots of vl*(Z1, Z,) (Gaussian profile; D.=Do(N/No)-0 .z7) .  
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purity diffusion conditions, X and ZZ are  determined t 'y  
(23)-(25). Thus  as all dependence  in 21 is included 11 

V I  we can,  using  the  plot of v1 for the specified 2'2, 
directly  observe  the  variation of OLT and tt, with emitb:r 
junction  depth Z1. On the  other  hand, for  given  emittr:r 
and base  diffusion conditions, X and Z1 are   determind 
and we can  examine  the  variation of parameters will1 
collector substrate  background  concentration  by  movirg 
vertically  among  the  different  plots of various 2 2  for tElc 
same specified 21. 

I t  should  be  noted  that  each of the  parameters u1, u1 

and u1*, V I *  can  be used only in the cases  where tfe 
impurity  concentration  values lie in  either  the region o f  
constant  diffusivity (34) or in  the region of varyirg 
diffusivity  (35).  Fortunately,  base  impurities  concell- 
tration of a  double-diffused  transistor  generally li(::s 
only in the region of varying  diffusivity (35) [SI. 

I n  the case  where  base  impurity  concentration valuc:a 
lie in  both Dn regions (34) and (35), the  integrals in (l!):) 
must be divided  into  three  terms  and  the  resultir g 
parameter uleff, which  can  be  expressed  in  terms of tl t: 
formerly  computed  parameters v1 and V I * :  

where 2 0  is defined by 

n7(z0) = nr0. (5: 

The  parameters v1 and VI* are  plotted  in Figs. 6 and I'! 
and erf 2 and  i.erf (iZ) are  known  tabulated  function:$ 

VI. CUTOFF FREQUENCIES AND EXCESS 
PHASE SHIFT 

For  ac  conditions,  the  continuity  equation (2) bc!- 
comes 

aut' 1 a J n ( x )  a' - (54) 
at q 8% Tn 

_ _ _ - _ _ _ _ _ .  

Eliminating  the  time  dependence,  assuming eiWt varia- 
tion, 

n' 1 d J ,  
= -.- ~ (5 .5 )  

Tn/'(l + iWTn) 4 dx 

Equation (55) is of the  same  form  as ( 2 ) ,  and  the  a: 
boundary  conditions  also  resemble  those of the  dc cas(: 
[4]; therefore,  the  dc  solution  may  be used to  find thl: 
ac  parameters  by  simply  substituting: 

Tn 4 Tn/(l i ( J T n )  ( 5  6 )  

L, 4 Ln/( l  + iWTTn) i .  (57) 

In  place of (9) we now have 

W2 w4 

L?LZ L n  
CYT = 1 - 'u1'- (1 + + u2*- (1 + iWTn)' 

- * * . (58) 

This discussion is concerned  with  high p transistors. 
For  the  practical region of frequencies 

(1 - (YT) do << - << 1 
w 

a0 

the following expansion of OLT results  in 

where w o  is  defined by 

We  have,  therefore,  the  interesting  result  that  the 
same series  expansion  coefficients  developed  in  Section 
I1  for OLT in  terms of recombination  apply  also  for ex- 
pansion of CIT in terms of frequency. 

A common  approximation  for a, dependence on fre- 
quency, is the single  pole  with excess phase  shift 

CYoe-im w l w a  

(YT = (61) 
w 

l + i -  
wa 

which  when  substituted  in  the  definition  for /3 gives 
(using  first-order  approximation  in  the  denominator) 

p -im w / w a  e-im o l w a  oe 

1 + i- 1/po + i - 
PT = - - (62) 

w w 

0 8  wT 

There  are  several  ways  to fit approximation (61) to  
the real  solution for ( o L T ) ~ ~ ,  and  thus define the  param- 
eters w,, wp, U T ,  m. For  some  reasons i t  is  preferable  to 
have a good fit for the region w<<w, instead of the region 
around w,. Accordingly,  Gummel [6] proposed a low- 
frequency  definition of U T :  

This is effectively a first-order  approximation of P(u) 
according  to  (62).  Regarding (59), we observe that  the 
imaginary  part of LYT in  the low-frequency  limit  is 
really  the  first-order  term of the UT expansion  in  fre- 
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quency.  Therefore,  the following  definition is equivalent  VII.  HOMOGENEOUS-BASE EXAMPLE 
to  Grummel’s  definitions: In  order  to  test  the expressions  developed  in  Section 

1 VI, we apply  them  to  the homogeneous-base  situation. 
_ -  (65) For  this  case,  the  exact  solution is known [ l]  and  the 
WT coefficients u1 and u2 are  obtained  by  expanding  it: 

or  using (59) 

and  further 

with w o  defined  in  (60). 
Note  that (32) and (66)  give the  relation U T =  l/tt,, as 

would  be  expected. 
Our  suggestion  is to  extend  Gummel’s  approach in 

order  also  to  define wa and m. As  explained  in the  Ap- 
pendix,  these  parameters  cannot  be  computed  by  first- 
order  fitting.  Therefore, we do  a  low-frequency fit of (61) 

and 

U l  = - 
2 
5 

u2 = - 
24 

Using  (66),  (67),  (70),  and (71) 

( 7 7 )  

to (59) up  to  second  order  and  obtain  the  equations 
uo W 2  

,241 m + l  
w T = - = 2 -  (79) 

-- - --( = ;> (68)  u1 DTl 
WO W a  wo W2 

Pal PoDn a2 1 m2 4- 2m 4- 2 U P = - -  
- 2 -  (80) 

wo2 2 WCt2 

-- _ -  (69) 
1 m =  - I =  ,$/: - :l = 0.22 

Solving (68) and (69) simultaneously, we get d 2 P  - 1 (81) 

where 

1 
m -  --l 

d 2 P  - 1 

WO 
wa = 

in  good agreement  with classical results 1141. 

VIII. EXPONENTIAL DISTRIBUTION EXAMPLE 
Equations (73) and (74) are here  applied  to  the ex- 

ponential  distribution  for  both  constant  and  power-law- 
(72)  dependent diffusion  coefficient: 

and u1 and u2 result  from  the  general  procedure of Sec- 
tion 11: where x = 0 is now the  emitter-base  junction. 

N A ( X )  = NAEBe-’X’W (83)  

(73) 

One  may  compute ul and u2 numerically  for  general 
impurity  distribution NA(x)  and  with  any  assumption 
about D,. Having  these  two  parameters, we have  shown 
how a;!l dc  and  ac base  gain  parameters  can  be  readily 
computed. 

For  constant D,, integration of  (73’) and (74) yields 
the expression 

q+e-q - -  1 
$61 = (84) 

v 2  
which is identical  to  that given by t:he conventional 
treatment [4], and  the expression 

1 2 -  2 q  2 + 3ye-q + e-n + e-2q 

v 4  
u2 = - .  (85) 

Equations (70) and (72) together  with (84) and (85) 
give a new analytical  expression  for m. The  functions U I  

and m are  plotted  versus 7 in  the  dotted lines  in  Figs. 8 
and  9, respectively.  Both  are  in good agreement  with 
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and correspondingly for u1. 

WT 

Kelly and  Ghausi's  plots  derived  using  the  method of: 
infinite  product  expansion of a in terms of its poles 
[SI. In  the case of =4 ,  we obtain m ~ 0 . 6 4 5  ,and 
wa/wo=m+l/ul= 8.7,  whereas Kelly and  Ghausi [SI 
give m = 0.62 and wJw0 = 8.1. Our  results .fit better 
with  Abraham's [7]  results: m = 0.645 and w,/wo = 8.4, 
calculated  by  fitting (61 )  to  the  exact  computer calcula- 
tion of a(w) .  

An advantage of our  method  is  the  possibility of 
calculating  the  parameters for the  assumption of vary- 
ing diffusion  coefficient,  which cannot  be  done  in  the 
two  other  methods. 

Using (35) and (83)  in (73) and (74), 

Ul* = 
eKn + Ke-n - ( 1  f K )  

K( l  f K ) r 2  
(136) 

3 + 4K 
UUz* = - 

K( l  + K)(1  + 2K)  '-' 
- 

4 i + 
+ 
+ 

Now m* is calculated  from  these  parameters using (70). 
The  functions ul* and m* were calculated  assuming 
K =0.27  and  are  plotted  versus  in  Figs. 8 and 9, 
respectively,  in  a  continuous line. They  are  observably 
different  from  the  corresponding  parameters  for  con- 
s tant  diffusion  coefficient. 

I t  is  also  possible  now to  estimate  the  error of using 
exponential  approximation  instead of Gaussian  distri- 
bution  in  the  calculation of u1 and u1*. Using (23)-(25) 
and  (83), 

which  allows  expressions (84) and (86) to be written  as 
functions of Z1 with Zz as  parameters.  The  dots in  Figs. 
4  and 5 represent  the  calculation of these  functions  for 
2% = 3 and  various  values of 21. This  example  illustrates 
the difference  between the  two  distribution  assumptions, 
indicating  that  the difference is not  prominent in the 
case of constant D, (Fig. 4), but  quite  prominent for 
varying D, (Fig. 5). In  both cases the difference de- 
creases  for  increased ZI. 

APPENDIX 
Following Abraham [7], we explain  by  means of a 

complex  vector  diagram  (Fig. 10) why wp and UT can  be 
defined  from a  first-order  approximation of (59), while 
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wa and m can be  defined only  by a second-order  ap- 
proximation. 

At  low frequencies  the  module of a ( w )  is approxi- 
mately  constant,  but  the  module of 1 - a ( w )  may  in- 
crease  appreciably  when 

I,a(w) - 1 - 010. (89) 

As @=all  -a, rolloff is  therefore  expected  to 
begin  in this  frequency  range. 

Regarding (58) or (59), we observe  that for  high p 
transistors  and  for w/wo<<l (as is the case in the wg order 
of magnitude), Ima(w) is approximated  by  the  first- 
order  term of (59). Therefore,  first-order effect explains 
,8 rolloff and  enables us to  define wp [observe,  moreover, 
substitution of (59) into (89) results  in (67)]. 

First-order  approximation  cannot  explain I 0 1 1  rolloff. 
On  the  contrary, (59) up to first  order will produce 
a~l > 1 ;  it is only  the  second-order  term  that covers 
a /  rolloff through a decrease  in the real part of a. 
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Numerical Investigation of the Thyristor Forward Characteristic 

JOZEF CORNU, MEMBER, IEEE, AND MANFRED LIETZ 

Abstract-Analytical solutions  for the forward  characteristic of 
thyristo.rs have been limited to abrupt  and constant doping profiles. 
Average values for the mobilities and  the  carrier lifetime had to be 
assumed for  each region of the device. 

Results will be  presented  here which are  based on an exact num- 
erical solution of the transport, continuity, and Poisson  equations for 
the one-dimensional  thyristor. Doping, mobility, and lifetime can be 
varied from point to point. Thyristor structures  are  much wider and 
higher doped than  the devices treated numerically  in the literature. 
The dependency of the forward  characteristic on various device 
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parameters  was examined, and  the important results  were verified 
experimentally. 

For high current  and a base width that is large compared to  the 
diffusion length, the dependency of mobility on the  carrier concen- 
tration  leads to a base voltage drop significantly lower than  that ex- 
pected from analytical  theory. Furthermore,  it is shown that for this 
case the  parameters of the highly doped side regions (doping, width, 
and lifetime)  have  much less influence than predicted from Herlet’s 
[3 1 theory. 

INTRODUCTION 

HE operation of a  p+-n-p-nf  thyristor  can  be 
divided  into  four  well-distinguishable  states: 
turn-on,  forward  conduction,  turn-off,  and block- 


