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ABSTRACT: This paper presents a novel approach developed for the
measurement of the power reflectance of metal meshes and wire grids
using a quasi-optical resonator. It is based on the reconstruction of a
grid’s reflectance from the resonance curve of a quasi-optical resonator.
The model of the resonator loaded by a mesh has been developed to
provide direct reconstruction of its reflectance. A comparison of the
measured results with data obtained in free-space measurements has
shown good agreement. Examples of reflectance measurements of both
conventional and twin-shaped meshes are presented to illustrate the
technique suggested. © 2005 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 45: 185–188, 2005; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.20765
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1. INTRODUCTION

One-dimensional wire grids and 2D metal meshes are widely used
as elements of quasi-optical devices: polarizing filters, deflectors,
quasi-optical gratings, semi-transparent mirrors, different coupling
elements, and so forth [1]. Numerous models have been developed
to estimate the reflectance of these elements [2–6]. However, these
models’ accuracy becomes poor when the size of the mesh’s cell
or the distance between wires are comparable with wavelength. As
a result, experimental estimation of reflectivity in such situations is
mandatory. Basically, direct free-space measurements using re-
flection or transmission mode are widely employed [7]. However,
multiple reflections from feeding elements and supporters are
sources of decreasing measurement accuracy. Also, measurement
of highly reflective structures in free space is not easy to do, since
it requires a reflectometer with high resolution.

An alternative approach developed in this paper is based on the
measurement of the resonance curve of a quasi-optical resonator
loaded by a mesh or grid which may be considered as a coupling
element. The coupling coefficient of the resonator with exciting
guide is a function of mesh reflectance. The latter can be recon-
structed from the measured resonance curve. To do this, a model
of a quasi-optical resonator linked directly with input mesh reflec-
tance needs to be developed. This model as well as the procedure

applied for the reconstruction of reflectivity from the measured
resonance curve, are described below.

2. THE MODEL DEVELOPED FOR RECONSTRUCTION OF
POWER REFLECTANCE

Basic optical characteristics, such as attenuation constant of the
resonator guide and power reflection coefficient of the meshes
(grids), are introduced into the microwave-circuit model in order to
provide a direct link between the measured data and reconstructed
parameters. This method, briefly discussed below, is based on a
transmission-matrix description [8]. Indeed, a Fabry–Perot reso-
nator of length L can be described by its equivalent configuration
shown in Figure 1(a). The lossy medium is placed between the two
mirrors which are characterized by own power reflectivities R1 and
R2. In our case, wire grids or metal meshes play the role of
mirrors.

The lossy medium is characterized by a propagation constant
� � � � i�, where � is the field attenuation constant and � �
2�/� is the wave number of the selected mode. The same resonator
can be represented by microwave parameters to simulate the
behavior of a mirror. We can replace them by the two reactive
elements B1 and B2, as shown in Figure 1(b). Now a Fabry–Perot
resonator can be analyzed in terms of a transmission ABCD matrix
as follows:

TR1 � � 1 0
B1 1� , TR2 � � 1 0

B2 1� , TL � �cosh��L� sinh��L�
sinh��L� cosh��L��,

(1)

where TR1 and TR2 are transmission matrices of the reactive
elements and TL is a transmission matrix of the lossy line of length
L. By doing standard multiplication of these matrices, we can
calculate the resulting transmission matrix Tres of the Fabry–Perot
resonator as follows:

Tres � �TR1��TL��TR2�. (2)

The A, B, C, D elements of Tres are given by

A � cosh��L� � B2sinh��L�, B1 � sinh��L�,

Figure 1 (a) Fabry–Perot resonator filled by a lossy medium; (b) micro-
wave representation of a Fabry–Perot resonator. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.
com.]
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C � sinh��L� � B1cosh��L� � B2�B1sinh��L� � cosh��L��,

D � B1sinh��L� � cosh��L�. (3)

The parameters B1 and B2 are directly linked with power
reflectance Rp using the following expression:

B�Rp� :� � Rp

�1 � Rp�
. (4)

Now we can derive the formula for an input reflection �(Rp, �, f )
of the resonator considered as a function of power reflectivity Rp,
attenuation constant �, and frequency f using the well-known
expression [8]:

��Rp, �, f � � � A � B � C � D�/� A � B � C � D�. (5)

From a practical point of view, the measurement of reflectivity can
be done more easily with a one-port resonator configuration that

corresponds to the following conditions: B1 � � iB, B2 � 	
(short-circuit line). Substituting Eqs. (3) and (4) into Eq. (5), we
can write the analytical expression to be used for the reconstruc-
tion of power reflectance of the mesh under test from the measured
resonator frequency response, namely:

��Rp, �, f � �

�1 � i2� RP

1 � RP
� tanh��� � i��L� � 1

�1 � i2� RP

1 � RP
�tanh��� � i��L� � 1

. (6)

It should be pointed out that Eq. (6) is valid for any loss and can
be used for direct reconstruction of power reflectivity from the
measured �(Rp, �, f ) curve.

3. THE RECONSTRUCTION PROCEDURE

To built up the procedure for reconstructing Rp and �, the two
measurements of � must be done at some specified frequencies—
�(Rp, �, f0) and �(Rp, �, f1)—where f0 is the resonance fre-
quency and f1 is an arbitrary frequency located just near resonance.
Assuming that the measured values are A0 and A1, respectively,
the following system of two nonlinear equations can be written for
unknown Rp, and �:

��Rp, �, f0� � A0, ��Rp, �, f1� � A1. (7)

The system of Eq. (7) can be solved numerically using different
techniques. The results of the reconstruction given below were
obtained with the following standard algorithms available from the
MathCad 2001 library: Conjugate Gradient, Quasi-Newton and
Levenberg–Marquardt.

When solving equations numerically, it is necessary to define
values from which the solver has to start the search for a solution
of Eq. (7). To create a set of guess values, some preliminary
information concerning the behavior of reflection coefficient �(Rp,
�, f ) in the space {Rp, �} is required near the resonance fre-
quency. This can be obtained, for instance, by using a proper
approximate analytical model for the resonator and grid [9]. It
should be pointed out that the resonance curve becomes asymmet-
rical when the parasitic modes are excited. In this case, measure-
ments of the return loss must be done on both sides of the
resonance curve (below and above the resonance frequency). The
value of frequency detuning 
f � f1 � f2 depends on the
asymmetry of the resonance curve. A trade-off needs to be used to
determine almost the same resonator parameters for both detuned
frequencies—f1 and f2. The average value of the power reflectance
estimated for these detuned frequencies is used below as a final
result of the measurement discussed. Then, the average values of
Rp and � are substituted in Eq. (6) in order to make a comparison
with the measured resonance curve. This procedure has been

Figure 2 The configurations of measured meshes: (a) rectangular and (b)
twin-shaped forms

Figure 3 Typical frequency response of the quasi-optical resonator with
metal mesh at its input

TABLE 1 Summary of Resonator Parameters Used for Reconstructing Power Reflectivity from Measured Resonance Curve

f0 [GHz] f1 [GHz] f2 [GHz] RL0 [dB] RL1 [dB] RL2 [dB] �av [1/m] Rp-av Rp-fs

106.7895 106.7845 106.793 �10.63 �8.454 �8.542 0.139 0.956 0.944
102.8725 102.87 102.876 �9.366 �7.762 �7.663 0.151 0.954 0.942
96.6205 96.617 96.624 �8.916 �7.652 �7.432 0.190 0.937 0.975
91.1525 91.149 91.158 �9.48 �8.355 �8.16 0.193 0.945 0.982
86.3165 86.308 86.324 �15.58 �7.376 �7.092 0.122 0.938 0.979
79.219 79.216 79.222 �10.8 �9.52 �9.597 0.148 0.954 0.987

f0, f1, and f2 are resonance and detuned frequencies; RL0, RL1 and RL2 are measured return losses at the above frequencies; �av is averaged attenuation
constant after reconstruction; Rp-av is averaged power reflectivity after reconstruction; Rp-fs is measured power reflectivity in free space.
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applied to the meshes of the square cells shown in Figure 2 with
rectangular and twin-shaped configurations.

3. WIDEBAND MEASUREMENTS OF POWER REFLECTANCE

To measure reflectance in a wide frequency range, we used a set of
fixed modes excited in a quasi-optical resonator. A short-circuited
resonator (R2 � 0), as shown in Figure 1, with length L �
0.1893 m and rectangular cross section 10.5 � 24.8 mm2 was
excited by a rectangular horn illuminating input mesh. The mesh’s
dimensions are 11 � 29.5 mm2, the period is gx, gy � 1.1 mm,
the width of the metal strips between apertures is 2a � 0.35 mm,
the material is stainless steel [see Fig. 2(a)]. An example of

measured spectrum in the 90–95 GHz band is depicted in Figure
3. Several selected resonance modes were chosen within 75–110
GHz for measurement by HP-8757D network analyzer. Their
resonance frequencies, as well as the other parameters needed for
the reconstruction procedure, are given in Table 1.

The averaged attenuation constants and power reflectances
given in Table 1 were substituted into Eq. (6) for comparison with
the measured resonance curve. A typical example of such a com-
parison is depicted in Figure 4. Due to the excitation of higher-
order modes, the resonance curve is asymmetrical at frequencies
above resonance. However, the reconstruction procedure works
well, even in the presence of asymmetry of the resonance curve. In
the case discussed, we have obtained very close values of the
reconstructed parameters for both sides of the resonance curve:

● � � 0.156 [1/m] and Rp � 0.952 for frequency set f0 and f1;
● � � 0.147 [1/m] and Rp � 0.956 for frequency set f0 and f2.

We can state that both the measured and constructed data are in
good agreement, thus proving that the roots of nonlinear system (7)
have been found correctly.

4. MEASUREMENTS OF THE POWER REFLECTANCE OF
TWIN-SHAPED MESHES

Some quasi-optical devices employ beam-splitting based on the
Talbot effect [10]. Figure 5 shows the structure of a split beam
used to illuminate a twin-shaped mesh. Here, direct free-space
measurement of reflectance is very difficult to carry out. However,
if such a mesh is used as a coupling element of a quasi-optical
resonator excited via a Talbot splitter, as shown in Figure 6, the

Figure 4 Measured (dotted line) and reconstructed (solid line) return
loss (dB) for the mesh given in Table 1. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Figure 5 Illustration of beam splitting used in the resonator with twin-shaped mesh. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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method proposed can be very successful. As an illustrative exam-
ple, we consider a quasi-optical resonator with twin-shaped metal
mesh [Fig. 2(b)] denoted as R1, placed inside the Talbot reflector
(see Fig. 6). The mesh is illuminated by a Gaussian beam splitter
inside the Talbot splitter. Element R2 is a short with a hole in the
center to allow transport of an electron beam, since the resonator
is part of a free-electron maser. The total resonator length deter-
mining its resonance frequencies is L � 1.31 m. The resonator is
excited by a rectangular horn antenna. A scalar network analyzer
HP-8757D measures the input reflection coefficient (return loss).
Figure 7 shows the measured results (dotted line) and recon-
structed data (solid line), based on the method suggested, for the
grid dimensions considered in the previous section. The power
reflectance of this grid is RP � 0.9414 at the frequency 99.938
GHz, which is very close to the data reported in Table 1 for a
rectangular grid with the same cell dimensions.

The stability of the solution of the system of the two nonlinear
equations of Eq. (7) has also been investigated in the case dis-
cussed. The following range of guessed values, which provide the
same solutions of Eq. (7), have been determined: 0.01  �  0.5
[1/m] and 0.8  Rp  0.99 [%].

CONCLUSION

A model linking the reflectivity of metal meshes and grids and
used as a coupling element of a quasi-optical resonator has been
presented. Based on this model, the reflectance measurements of
rectangular and twin-shaped meshes have been done by applying
reconstruction algorithms. The measurements were based on an
asymmetrical resonance curve and their validity was demonstrated.
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ABSTRACT: By embedding a simple arc-shaped slot in a circular-
disk monopole antenna, an ultra-wideband (UWB, 3.1–10.6 GHz)
operation with a controlled notched frequency band can be obtained.
The arc-shaped slot is placed close to the boundary of the circular-
disk monopole and has a length of about one-half wavelength of the
desired notched frequency. The proposed slotted circular-disk mono-
pole antenna showing UWB operation with a notched frequency band
for rejecting the 5.8-GHz WLAN band is demonstrated. The effects of
the dimensions of the arc-shaped slot on the notched frequency band
are also analyzed. © 2005 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 45: 188 –191, 2005; Published online in Wiley Inter-
Science (www.interscience.wiley.com). DOI 10.1002/mop.20766

Key words: antennas; circular disk monopole antennas; ultra-wideband
(UWB) monopole antennas; band-notched UWB antennas

Figure 6 Configuration of the resonator with a grid inside the Talbot
splitter

Figure 7 Measured results (dotted line) and reconstructed data (solid
line) for the resonator with twin-shaped mesh. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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